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Abstract: In this work, a hybrid control scheme that employs switching between bounded
control and model predictive control (MPC) is proposed for the output feedback stabilization
of linear time-invariant systems with input constraints. Initially, we design a bounded output
feedback controller for which the region of constrained closed-loop stability is explicitly
characterized and an MPC controller that minimizes a given performance objective subject
to constraints. Switching laws are derived to orchestrate the transition between the two
controllers in a way that reconciles their respective stability and optimality properties, and
guarantees asymptotic closed-loop stability for all initial conditions within the stability region
of the bounded controller. The hybrid scheme is shown to provide a safety net for the practical
implementation of output feedback MPC by providing a priori knowledge, through off-line
computations, of a large set of initial conditions for which closed-loop stability is guaranteed.
The proposed hybrid control approach is illustrated through a simulation example.
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1. INTRODUCTION

1.1 Classical vs. hybrid control

The conventional, or “classical", approach to control
has been that of modelling the process (up–to the req-
uisite level of detail) and then designing an appropriate
controller to achieve the desired control objective. The
salient feature of the classical approach is the absence
of a discrete component in the control structure.

In contrast, a hybrid control structure (Figure 1) in-
volves, by design, a blend of continuous (i.e., the
classical controllers) and discrete components (i.e.,
the logic–based supervisor that switches between the
controllers). The controllers within the control block
could be of similar structure (but with different gains
or parameters), or could be structurally different (for
example, an analytic and a model predictive con-
troller). The switching between multiple classical con-
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trollers is orchestrated by the supervisor for the pur-
pose of either meeting an objective that cannot be
achieved by the individual controllers or to reconcile
the different (complementary) strengths and capabili-
ties of different control approaches.
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Fig. 1. A schematic representation of a hybrid control
structure.

The general idea of hybrid control, manifested through
switching between different controllers, has been used
in the literature in a variety of contexts. Examples in-
clude gain–scheduling (e.g., see (Rugh and Shamma,
2000)) as a tool for control of nonlinear systems,
multiple linear models for transition control (e.g., see



(Banerjee and Arkun, 1998; Sun and Hoo, 1999)) and
scheduled predictive control (e.g., see (Aufderheide et
al., 2001)) of nonlinear processes. A recurrent theme
in most of the work on hybrid control has been that of
switching between different models (which results in
an implicit switching between different controllers), or
that of using multiple structurally similar controllers.

In (El-Farra et al., 2002), we proposed a hybrid control
structure, that employs switching between two struc-
turally different controllers – an MPC controller and
a bounded analytical controller – for the state feed-
back stabilization of linear systems with input con-
straints. The bounded controller was used to provide
a safety net for the implementation of MPC within a
well–defined region of guaranteed stability. The pro-
posed hybrid control structure was extended to ad-
dress the problems of robust control of linear systems
with uncertainties (El-Farra et al., 2003b) and con-
strained stabilization of nonlinear systems (El-Farra
et al., 2003a). In this work, a hybrid control scheme,
uniting bounded control with MPC, is proposed for the
output feedback stabilization of linear time-invariant
systems with input constraints.

1.2 Background
Input constraints arise as a manifestation of the physi-
cal limitations inherent in the capacity of control actu-
ators (e.g., bounds on the magnitude of valve open-
ing). Input constraints automatically impose limita-
tions on our ability to steer the dynamics of the closed-
loop system at will, and can cause severe deterioration
in the nominal closed-loop performance and may even
lead to closed-loop instability if not explicitly taken
into account at the stage of controller design.

One of the key limitations imposed by input con-
straints is the restriction on the set of initial states
of the closed-loop system that can be steered to the
origin with the available control action. The absence
of an a priori explicit characterization of this set (or
an appropriate estimate thereof) can have an impact
on the practical implementation of the given control
policy by requiring extensive closed-loop simulations
over the whole set of possible initial conditions, to
check for closed-loop stability, or by limiting oper-
ation within an unnecessarily small and conservative
neighborhood of the desired equilibrium point. These
considerations have motivated significant work on the
design of stabilizing bounded control laws that pro-
vide explicitly-defined, large regions of attraction for
the closed-loop system (e.g., see (Lin and Sontag,
1991; Teel, 1992; El-Farra and Christofides, 2001; El-
Farra and Christofides, 2003)).

Currently, MPC, also known as receding horizon con-
trol, is a widely used control method for handling
constraints within an optimal control setting. Within
MPC, the control action is obtained by solving re-
peatedly, on-line, a finite-horizon constrained open-
loop optimal control problem. The industrial success
of MPC has spurred numerous research investigations

into the stability properties of MPC controllers and
led to a plethora of MPC formulations that focus on
closed-loop stability (e.g., see (Rawlings and Muske,
1993; Allgower and Chen, 1998; Mayne et al., 2000)
for extensive surveys of these developments). The sig-
nificant progress in characterizing the stability proper-
ties of MPC notwithstanding, the issue of obtaining,
a priori (i.e. before controller implementation), an
analytic characterization of the region of constrained
closed-loop stability for MPC controllers remains to
be adequately addressed. This difficulty can have an
impact on the practical implementation of MPC by
requiring extensive closed-loop simulations over the
whole set of possible initial conditions to check for
closed-loop stability, or by potentially limiting oper-
ation within an unnecessarily small neighborhood of
the nominal equilibrium point.

In addition to the problem of input constraints, the
problem of output feedback stabilization of con-
strained systems has been the subject of numer-
ous research studies. Examples include scalar out-
put feedback control of linear systems (Shamma and
Tu, 1998), stability analysis of a composite system
comprising of a moving horizon regulator and a mov-
ing horizon observer for control of nonlinear systems
(Michalska and Mayne, 1995) and moving horizon
estimation as an extension of Kalman filtering, for
constrained and nonlinear processes (Rao and Rawl-
ings, 2002). In these works, however, the stability
region of the constrained closed–loop system is not
explicitly characterized.

Motivated by the above considerations, we propose in
this paper a controller switching strategy that extends
the hybrid control structure in (El-Farra et al., 2002)
to the case of output feedback. The guiding principle
in realizing this strategy is that of using a suitable
state observer design which, in conjunction with the
bounded controller, yields an explicitly characterized
stability region within which the operation of the
MPC controller can be embedded by devising suit-
able switching rules (see (Mhaskar et al., 2003) for
a detailed analysis of the theoretical issues involved
and the mathematical proofs of the results). The rest
of the paper is organized as follows: in section 2, we
present some preliminaries that describe the class of
systems considered and review briefly the methodol-
ogy of designing the state observer, and how the con-
strained control problem is addressed in both bounded
control and model predictive control. In section 3,
we formulate the controller switching problem un-
der output feedback and propose a switching scheme
that addresses the problem. Finally, in section 4, nu-
merical simulations are presented to demonstrate the
implementation of the switching scheme and test the
robustness of the proposed approach with respect to
measurement noise.

2. PRELIMINARIES
In this work, we consider the problem of output
feedback stabilization of continuous-time linear time-



invariant (LTI) systems with input constraints, with the
following state-space description:

ẋ = Ax+Bu

y = Cx

u(t) ∈ U ⊂ IRm
(1)

where x = [x1, · · · , xn]
′ ∈ IRn denotes the vector

of state variables, y = [y1, · · · , yk]
′ ∈ IRk denotes

the vector of output variables, u = [u1, · · · , um]′ is
the vector of manipulated inputs, taking values in a
compact and convex subset, U , of IRm that contains
the origin in its interior. The matrices A, B and C are
constant n × n, n × m and k × n matrices, respec-
tively. The pairs (A,B) and (C,A) are assumed to be
controllable and observable, respectively. Throughout
the paper, the notation x′ denotes the transpose of x.

2.1 State observer design

For the system of Eq.1, we use a standard Luenberger
observer described by

˙̂x = Ax̂+Bu+ L(y − Cx̂) (2)

where x̂ = [x̂1, · · · , x̂n]
′ ∈ IRn denotes the vector of

estimates of the state variables, L is a constant n × k

matrix chosen such that the eigenvalues of A−LC are
placed at −βa1, −βa2...−βan with β ≥ 1 and ai 6=
aj ≥ 1. In the closed–loop system, the estimation
error, defined as e = x − x̂, evolves independently
of the controller according to ė = (A− LC)e

Note that the dynamics of the error equation can be
manipulated at will by appropriate choice of the de-
sign parameters ai and β. This state estimator design
guarantees convergence of the error in a way that for
larger values of the parameter β, the error decreases
faster (i.e., given any em > 0, one can find a Td

such that ‖e(t)‖ ≤ em ∀ t ≥ Td). However, for
larger values of β, the error could possibly increase to
large values before eventually decaying. The design,
therefore, includes the possibility of “peaking” of state
estimates, where the observer generates incorrect esti-
mates for short times. This, however, does not pose a
problem in our design because the physical constraints
on the manipulated input prevent transmission of the
incorrect estimates to the plant.

2.2 Model predictive control

For the sake of illustration, we consider here the
following nominally-stabilizing finite-horizon MPC
formulation with terminal equality constraints:

Js(x, t, u(·)) =

t+T
∫

t

(x′(s)Qx(s) + u′(s)Ru(s))ds

u(·) = argmin{Js(x, t, u(·))|u(·) ∈ S}
s.t. ẋ(t) = Ax(t) +Bu(t), x(0) = x0

u(·) ∈ S, x(t+ T ) = 0

(3)

where S = S(t, T ) is the family of piecewise contin-
uous functions, with period ∆, mapping [t, t+T ] into

the set of admissible controls, where T is the horizon
length. A control u(·) in S is characterized by the
sequence {u[k]}where u[k] := u(k∆). A control u(·)
in S satisfies u(t) = u[k] for all t ∈ [k∆, (k + 1)∆).
Js is the performance index and R and Q are strictly
positive definite, symmetric matrices. Feasibility of
the formulation in Eq.3 can be ensured by relaxing
the terminal equality constraint; however, closed loop
stability then cannot be guaranteed.

One of the issues that arise in the implementation of
MPC formulations of the form of Eq.3 is the diffi-
culty in obtaining an explicit characterization of the
stability region, which depends on a complex interplay
between several factors, including the constraints, the
initial condition, and the horizon length. Faced with
these difficulties, the current industrial implementa-
tion of MPC relies heavily on extensive simulations
to test the stability of MPC controllers.

2.3 Bounded Lyapunov-based control
Consider the Lyapunov function candidate V = x′Px,
where P is a positive-definite symmetric matrix that
satisfies the Riccati equation

A′P + PA− PBB′P = −Q̄ (4)

for some positive-definite matrix Q̄. Using this Lya-
punov function, we can construct, using a modification
of Sontag’s formula for bounded controls proposed
in (Lin and Sontag, 1991) (see also (El-Farra and
Christofides, 2003)), the following bounded nonlinear
controller

u(x) = −2k(x)B′Px := b(x) (5)

where k(x) =








L∗

fV +

√

(

L∗

fV
)2

+ (umax‖(LgV )′‖)
4

‖(LgV )′‖2
[

1 +

√

1 + (umax‖(LgV )′‖)
2

]









with L∗

fV = x′(A′P + PA)x + ρx′Px, (LgV )′ =
2B′Px, ρ > 0. One can show that whenever the
closed-loop state trajectory evolves within the state–
space region described by the set:

Φ(umax) = {x ∈ IRn : L∗

fV ≤ umax‖(LgV )′‖}(6)

the resulting control action respects the constraints
(i.e., ‖u‖ ≤ umax) and asymptotically stabilizes the
origin of the closed-loop system. Note that the size of
the set Φ depends on the magnitude of the constraints
in a way such that the tighter the constraints, the
smaller the region described by this set. Using this set,
an estimate of the stability region of the controller of
Eqs.5–6 can be obtained by considering an invariant
subset of Φ, preferably the largest, which we denote
by Ω(umax). A common way of doing this is using
the level sets of V .

Using Lyapunov arguments, one can derive bounds
on the estimation errors (em), with respect to which



the state feedback bounded controller ensures that the
closed–loop state trajectory does not escape the state
feedback stability region (see Figure 3). By initializing
the states and the state estimates sufficiently inside
Ω(umax) and choosing a consistent observer gain ma-
trix L, one can ensure that the norm of the estimation
error decays to a value less than the tolerable measure-
ment error before the states have a chance to reach the
boundary of the state feedback stability region. For a
given choice of Ωb ⊂ Ω(umax), therefore, one can
choose a value β for the observer gain parameter that
guarantees stability for all initial conditions within Ωb

under output feedback control.

3. IMPLEMENTING OUTPUT FEEDBACK MPC
WITH GUARANTEED STABILITY REGION

While the bounded controller possesses a well-defined
region of initial conditions that guarantee closed-loop
stability in the presence of constraints, the perfor-
mance of this controller is not guaranteed to be opti-
mal with respect to an arbitrary performance criterion.
On the other hand, the MPC controller is well-suited
for handling constraints within an optimal control set-
ting; however, the analytical characterization of its set
of initial conditions, for which closed–loop stability is
guaranteed, is a more difficult task than it is through
bounded control. The lack of state measurements in-
troduces another level of complexity in implementing
the controllers designed with the assumption of state
feedback. In this section, we show how to reconcile
the two control approaches by means of a switching
scheme that combines the desirable properties of both
approaches.

3.1 Problem formulation and overview of solution

Consider the linear time-invariant system of Eq.1, sub-
ject to input constraints ‖u‖ ≤ umax, and for which
the observer of Eq.2, the bounded controller of Eqs.5-
6 and the MPC controller of Eq.3 have been designed.
We formulate the control problem as that of designing
a set of switching laws that orchestrate the transition
between the MPC controller and the bounded con-
troller under output feedback in a way that guaran-
tees asymptotic stability of the origin of the closed-
loop system starting from any initial condition in an
explicitly characterized set Ωb ⊂ Ω(umax), respects
input constraints, and accommodates the optimality
requirements whenever possible. In the remainder of
this section, we present a switching scheme that ad-
dresses the problem.

3.2 Controller switching scheme

The four main components of the hybrid control struc-
ture include the observer, the bounded controller, the
MPC controller, and a higher-level supervisor that or-
chestrates the switching between the two controllers.
A schematic representation of this structure is shown
in Figure 2. The design procedure for the hybrid con-
trol structure and the implementation of the controller
switching scheme is as follows:
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Fig. 2. A schematic representation of the hierarchical
hybrid control structure merging the bounded and
MPC controllers under output feedback

(1) Given the system of Eq.1 and the performance
objective, design the bounded controller and the
MPC controller.

(2) Compute the stability region estimate for the
bounded controller under state feedback, Ω(umax),
using Eq.6 and, for the state observer design,
choose a β consistent with the choice of the out-
put feedback stability region Ωb.

(3) Compute the region Ωs ⊂ Ωb and Td such that
if the norm of the error is less than a given
tolerance, then x̂ ∈ Ωs ⇒ x ∈ Ωb for all times
greater than Td.

(4) Initialize the closed–loop system at an initial
condition, x(0) within Ωb, under the bounded
controller using an initial guess for the state x̂(0)
within Ωb.

(5) After a time Td, once x̂ ∈ Ωs, test the feasibility
of the MPC controller using values of the esti-
mates generated by the state observer.

(6) If the MPC controller is feasible, implement it
for as long as x̂ ∈ Ωs and V (x̂) keeps decaying,
else switch to the bounded controller.

x (0)

umaxΩ(       )

Ωb

Ωs

x (0)
Switch to MPC

State estimates trajectory
State trajectory

Switching surface

|e| < e
m

MPC feasible

Fig. 3. A schematic representation of the implementa-
tion of the proposed controller switching scheme.

Remark 1: Figure 3 shows a representative sketch of
the closed–loop system under the controller switch-



ing scheme. The states are initialized at x0 while the
state estimates are initialized at x̂0. The state estimator
design ensures that the norm of the error is under
the allowable error before (and if) the state trajectory
reaches the boundary of the state feedback stability
region, Ω(umax). After a time Td (by which time,
the state estimator design ensures that the estimation
error has gone down to a small value), the supervisor
implements MPC in closed–loop only if it is feasible
and the state estimates are in Ωs, while monitoring
the evolution of the Lyapunov function value. If the
switching rules are satisfied, MPC is implemented in
closed–loop for the remaining time, else the supervi-
sor switches back to the bounded controller to stabilize
the closed–loop system.

Remark 2: For a given choice of the output feedback
stability region, an estimate of the necessary observer
gain can be obtained; however, this estimate is typi-
cally conservative. In practice, having chosen Ωs, one
can choose a ‘sufficiently’ large gain based on simula-
tions or experience. The stability region under output
feedback Ωb can be made as close to the one under
state feedback, Ω as desired by increasing the gain
parameter β.

4. A NUMERICAL EXAMPLE

In this section, we demonstrate an application of the
proposed hybrid control structure to a three dimen-
sional linear system where only two of the states are
measured. Specifically, we consider an exponentially
unstable linear system of the form of Eq.1 with A =




0.55 0.15 0.05
0.15 0.40 0.20
0.10 0.15 0.45



, B =





1 0
0 1
1 1



 and C =

[

1 0 0
0 0 1

]

,

where both inputs u1, u2 are constrained in the interval
[−1, 1]. We initially used Eqs.5 to design a bounded
controller and construct its stability region via Eq.6.
The matrix P was chosen as:

P =





6.5843 4.2398 −3.830
4.2398 3.6091 −2.667
−3.830 −2.667 2.8033



 (7)

and the observer gain parameter was chosen to be
β = 500 to ensure closed–loop stability for all initial
conditions within Ωb ⊂ Ω. For the MPC controller,
the parameters in the objective function of Eq.3 were
chosen as Q = qI , with q = 1 and R = rI ,
with r = 0.1. We also chose a horizon length of
T = 1.5 in implementing the MPC controller of Eq.3.
The resulting quadratic program was solved using the
MATLAB subroutine QuadProg, and the set of ODEs
integrated using the MATLAB solver ODE45.

In the first simulation run (solid lines in Figs.4–5),
the states were initialized at x0 = [0.75 − 0.5 1.0]′

while the observer states were initialized at x̂0 =
[0 0 0]′ (which belong to the stability region of
the bounded controller, Ωb). The supervisor employs
the bounded controller, while continuously checking

MPC feasibility. At t = 5.45, the MPC becomes
feasible and is implemented in the closed-loop to
stabilize the system. Note that feasibility of MPC
can be achieved by increasing the horizon length to
T = 3.5 (dashed lines in Figs.4–5). However, this
conclusion could not be reached a priori, i.e. before
running the closed-loop simulation in its entirety to
check whether the choice T = 3.5 is appropriate. In
contrast, closed–loop stability starting from the given
initial condition under the proposed hybrid control
structure is guaranteed.

In the second set of simulation results, we demonstrate
the need for a choice of observer gain consistent with
the choice of Ωb. To this end, we consider now an
observer design with a low gain (β = 0.5). With
the low observer gain, the estimates take a long time
to converge to the true state values, resulting in the
implementation of ‘incorrect’ control action, by which
time, even though the states and state estimates are
initiated within Ωb, the states have escaped Ω(umax),
thereby resulting in closed–loop instability (dotted
lines in Figs.4–5).
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Fig. 4. Closed-loop state trajectory with T = 1.5
(solid line), T = 3.5 (dashed line), with the low
observer gain (dotted line) and using observer
switching (dash-dotted lines).

To recover, as closely as possible, the state feedback
stability region, large values of the observer gain are
needed. However, it is well known that high observer
gains can amplify measurement noise and induce poor
performance. This points to a fundamental tradeoff
that cannot be resolved by simply changing the es-
timation scheme. For example, if the observer gain
consistent with the choice of the output feedback sta-
bility region is abandoned, the noise problem may
disappear, but then stability cannot be guaranteed. One
approach to avoid this scenario in practice is to ini-
tially use an observer gain to ensure quick decay of the
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Fig. 5. Manipulated input trajectory with T = 1.5
(solid line), T = 3.5 (dashed line), with the low
observer gain (dotted line) and using observer
switching (dash-dotted lines).

initial estimation error, and then to switch to a “low"
observer gain. In the following simulation, we show
how switching between an observer with a high gain
and a low gain in conjunction with switching between
controllers can be used to mitigate the undesirable ef-
fects of measurement noise. To illustrate the point, we
use switching between the high and low observer gains
used in the first two simulation runs and demonstrate
the attenuation of noise.

Specifically, we consider the nominal system de-
scribed by Eq.1, together with model uncertainty and
measurement noise. The model matrix Am is assumed
to be within five percent error of the process matrix
A and the sensors are assumed to introduce noise in
the measured outputs as y(t) = Cx(t) + δ(t) where
δ(t) is a random gaussian noise with zero mean and a
variance of 0.01. As seen by the dash-dotted lines in
Fig.4, starting from the initial condition, x0 = [0.75−
0.5 1.0]′, using a high observer gain followed by a
switch to the low gain observer at t = 1.0, and a
switch from bounded control to MPC at t = 3.5,
the supervisor is still able to preserve closed–loop
stability, while at the same time resulting in a smooth
enough control action (see Fig.5).
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