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Abstract: This paper explores some issues pertaining to the use of Q–
parametrization in the optimal design of dynamically operable plants. An
optimization–based plant design formulation in which a discrete-time implemen-
tation of the controller parametrization is embedded, is described. Its application
is demonstrated through a reactor case study in which the resulting design is
compared against that obtained using PI control. Differences in results obtained
are discussed and related to the design problem formulation. The impact of other
assumptions, such as the disturbance dynamics, is also discussed.
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1. INTRODUCTION

The impact that the design of a plant can have
on its ability to be satisfactorily controlled has
led to a significant research effort both in the de-
velopment of techniques for dynamic operability
assessment and in the incorporation of dynamic
operability criteria directly within plant design
calculations. Reviews of work in this area include
those of Walsh and Perkins [1996], van Schijndel
and Pistikopoulos [2000], and Pistikopoulos and
Sakizlis [2002].

Optimization-based approaches are particularly
effective both for the quantitative assessment of
dynamic operability, and for the design of plants
that are both economically optimal and dynami-
cally operable. This framework enables the plant-
inherent control performance limitations of non-
minimum phase characteristics, input constraints
and uncertainty [Morari, 1983] to be simultane-
ously accounted for, and offers considerable flex-
ibility in the problem formulation. Inclusion of
various controller types is possible, including no

control [Bahri et al., 1996], perfect control, and
controllers of specified type such as multi-loop PI
control [Mohideen et al., 1996; Bansal et al., 2002].
Swartz [1996] utilized Q–parametrization within
an optimization-based framework to provide a
controller-independent measure of operability for
alternative designs; its extension to plant design
formulations is described in Swartz et al. [2000].

In this paper, we outline the general optimization-
based approach to integrated plant and control
system design, focusing in particular on the use
of Q–parametrization and PI control as the reg-
ulatory control strategy. These strategies are im-
plemented on a comprehensive reactor case study,
and the results compared. We show that the con-
trol performance metric induced by the economic
objective function coupled with path constraints
explains much of the similarity in the results ob-
tained. This issue, along with other features of the
optimization-based formulation, are discussed.



2. PROBLEM FORMULATION

The optimal design formulation considered here is
as follows:

Maximize: objective function

subject to: • dynamic process model;

• operating constraints;

• and controller equations

for all disturbances within a

specified set

To provide: • an optimal design;

• an optimal operating point;

• and optimal controller tuning.

Each aspect of this formulation will now be briefly
described.

2.1 Objective function

The objectives in process design vary widely,
are multifaceted and are frequently conflicting.
A strategy that is widely adopted is to use an
economic–based objective function, as is typically
followed in steady-state design. This single mea-
sure is not likely to completely and accurately
encapsulate all features of interest, such as ease
of operation. These remaining features are incor-
porated as constraints.

The objective function in the case study that
follows is formulated in terms of a physical design
variable and steady-state values of certain oper-
ating variables. The optimal steady-state must be
such that the operation remains feasible over a
specified time horizon for all disturbances within
a specified set.

2.2 The dynamic process model equations

Continuous time processes with a differential and
algebraic equation (DAE) model description are
considered in this formulation. As a simultaneous
solution strategy is employed in this work, the dif-
ferential equation elements of the model are con-
verted to algebraic equations by using orthogonal
collocation on finite elements. The complete set of
algebraic, equality equations is then incorporated
into the problem as constraints.

Discrete time controllers are used in this study
and it is important to align their sampling time
with the finite element representation of the pro-
cess model. Many finite elements per sampling pe-
riod are used in the model discretization strategy
to capture the range of process dynamics that may
occur within one sampling interval.

2.3 Operating constraints

The process operating constraints define desirable
and feasible process behaviour. Collectively they
define the required dynamic operability and also
aide in the the solution of the optimization prob-
lem by limiting the search space.

2.4 Disturbances

Step–like disturbances will be used in this paper,
going from nominal to upper or lower bound val-
ues. Combinations of disturbances are handled by
using a set of parallel process models – one for
each disturbance combination. All these parallel
models are constrained to use the same physi-
cal design, operating point and controller tuning,
thereby increasing the problem’s size, but main-
taining the same degrees of freedom.

2.5 Controller equations

Two feedback controller types are considered here:
PI control and Q–parametrization.

2.5.1. PI control The velocity form of the digi-
tal PI controller is given by

∆uk = Kc

[

ek − ek−1 +
∆t

τI
ek

]

(1)

where: ∆uk = uk − uk−1

Two controller tuning variables, Kc and τI, are
introduced for every PI loop added to the process.

2.5.2. Q–parametrization is an established part
of control theory and provides a convenient mech-
anism for representing and parameterizing all sta-
ble closed-loop maps from a set of exogenous
inputs to regulated outputs in a linear feedback
system [Francis, 1987; Green and Limebeer, 1995].
The IMC controller [Garcia and Morari, 1982;
Morari and Zafiriou, 1989] shown in Figure 1
yields a parametrization of this type for stable
plants. The feedback system is stable ifQ is stable.

The significance of this representation in the
present operable design application is that by
including a finite dimensional approximation of
Q in the decision space, a design is obtained that
represents an optimum for linear control indepen-
dent of controller type or tuning.

A finite impulse representation is used for Q,
which for SISO systems takes the form,

Q(z−1) =
L
∑

i=0

qiz
−i L = (tf − t0) /∆t (2)

The controller decision variables are the coeffi-
cients qi, i = 0, 1, . . . , L.
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Fig. 1. The Q–parametrization structure used

Asymptotic tracking may be achieved by requiring
(

L
∑

i=0

qi

)

Gm = 1

where Gm is the model gain. In addition, this con-
dition yields an initial guess strategy for q(z−1) by
setting q0 = 1/Gm and qi = 0 for the remaining
coefficients.

In the case study that follows, the optimization is
carried out on the nonlinear dynamic model. The
linear model required for the Q–parametrization
is obtained by linearizing the nonlinear model
around the current iterate of the steady-state op-
erating variables. Upon convergence of the op-
timization, the Q–parametrization is consistent
with the optimal steady-state operating point.

2.6 Solution Strategy

Cervantes and Biegler [2001] review solution
methods for dynamic optimization problems and
divide them into two major classes, Direct and
Indirect methods. The Direct methods are widely
used and are again divided into two categories:
the sequential and simultaneous methods. In this
paper a simultaneous solution strategy is used and
since no integer variables are present, it results in
a nonlinear programming (NLP) problem.

3. CASE STUDY

The case study presented here considers the inte-
grated design and control of a stirred tank reactor
in which an irreversible, exothermic reaction takes
place. The study is based, in part, on the work of
Loeblein and Perkins [1998].

The objectives of this study are to:

• find a design that is dynamically operable
with respect to the given process constraints;

• determine the difference between designs us-
ing PI control and designs using a controller
described by Q–parametrization;

• analyze the design by investigating the as-
sumptions and constraints.

3.1 Process description

The process model is given by the equations in (3)
with parameter values in Table 1. Values in the

lower half of this table represent the values of the
variables at the steady–state economic optimum,
with the objective function given by Equation (3f)
and constraints in Equation (4).

The disturbances are taken to be step changes
from the nominal value, in parentheses, of the
following two variables to their upper and lower
bounds:

• 18 6 Cin(t) 6 22 kmol/m3 (20 kmol/m3)
• 290 6 Tin(t) 6 310 K (300 K)

dC

dt
=
Fin

V
(Cin − C) − k0e

−
E

RT C (3a)

dT

dt
=
Fin

V
(Tin − T ) +

(

−
∆HR

ρCp

)

k0e
−

E
RT C

−
Qcool

V
(3b)

Qcool = UA(T − Tmean) (3c)

Qcool = Fc(Tcool − Tcool,in) (3d)

Tmean = 0.5(Tcool + Tcool,in) (3e)

φecon = 10F in

(

Cin − C
)

− 0.01Qcool

− 0.1F in − 0.075V 0.7 (3f)

T (t) 6 350 K (4a)

0.05 6 Fin(t) 6 0.8 m3/s (4b)

Tcool(t) 6 330 K (4c)

Tcool(t) < T (t) (4d)

C(t) 6 0.1 kmol/m
3

(4e)

V 6 10 m3. (4f)

Table 1. Nomenclature and value for the
process model

Variable Nominal Units Lagrange

Name Values Multiplier

Cin 20 kmol/m3
−

Tin 300 K −

Tcool,in 300 K −

Fc 0.7 m3/s −

k0 2.7 × 108 s−1
−

E/R 6000 K −

UA 0.35 m3/s −

−∆HR

(ρCp)
5 m3.K/kmol −

C 0.1 kmol/m3 4.6437
T 350 K 2.2603

Fin 0.2828 m3/s 0
V 5.808 m3 0

Tcool 320 K 0
Tmean 310 K 0
Qcool 14 m3.K/s 0
φecon 55.86 $/hr −

3.2 Integrated design and control

The steady–state economic optimum presented in
Table 1 is not dynamically operable, even with
feedback control, since a disturbance could cause



Table 2. Steady–state values for open–
loop operation

Name Value Name Value

C 0.07146 kmol/m3 Qcool 11.65 m3.K/s

T 341.6 K Tmean 308.3 K

F in 0.2007 m3/s T cool 316.6 K
V 8.803 m3 φecon 39.52 $/hr

C and/or T to violate their respective active
constraints. The process operating point must
be changed to achieve dynamic operability. An
analysis of the design degrees of freedom shows
that two independent variables may be selected
in order to fix the remaining variables. Of the
seven variables in the lower half of Table 1, one
is a design variable, V , while the remaining are
constrained operating variables, such as C, T , Fin

and Tcool.

3.2.1. No feedback control: An operating point
can be found for this particular example which
does not require feedback control. This operating
point is within the permanent feasible region,
so that no constraint violation occurs when the
given disturbances impact on the process either
separately or together. This operating point is
found by using the formulation described above
without controllers where the search variables are
then the tank volume and the steady state inlet
flowrate, F in.

The design summary is given in Table 2 which
shows that a sacrifice in the profit has to be
made in order to operate at this point – the price
to be paid to remain operable without feedback
control. This design has all variability appearing
in the process outputs, with the process inputs
remaining constant.

3.2.2. With feedback control: The sacrifice in
process profit can be reduced by implementing
feedback control, but the aim of this study is to
investigate how much improvement is to be had
by using either PI control or Q–parametrization.

The tank temperature with a 10 second measure-
ment delay is selected as the controlled variable;
the inlet flowrate is chosen to be the manipulated
variable in this study, as was done in the work
of Loeblein and Perkins [1998]. The search space
now consists of the process design and operating
variables from the lower half of Table 1 as well
as the controller tuning variables of the two con-
troller types.

Solving the design problem with PI control re-
sults in the operating point given in Table 3. An
improvement of $ 6.62 per hour is achieved com-
pared to the profit with open–loop operation. The
integral square error (ISE) values are computed
from Equation 5 with ψ = 0, the weighted ISE

(wISE) values have ψ = 30 000 for all possible
disturbance combinations, J , over a time horizon
with tf = 500 s.

wISE =

J
∑

j=1

L−1
∑

k=0

[

(

T − Tk,j

)2
+ ψ (∆Fin,k,j)

2
]

∆t

(5)

L = (tf − t0)/∆t J = 8 (6)

Table 3. Design with PI control

Name Value Name Value

C 0.06054 kmol/m3 Qcool 12.71 m3.K/s

T 345.4 K Tmean 309.1 K

F in 0.2341 m3/s T cool 318.2 K
V 10.00 m3 φecon 46.14 $/hr

Kc 0.01511 τI 28.50
ISE 1586 wISE 1885

Solving the same design problem using Q–para-
metrization yields an improvement of $ 7.26 per
hour when using 2 or more coefficients for q(z−1).
Table 4 shows the values at the nominal operating
point, which do not change after two coefficients
for Q(z−1). Only the integral squared error met-
rics are reduced by adding further coefficients, as
seen in Table 5.

Table 4. Design withQ–parametrization

Name Value Name Value

C 0.06034 kmol/m3 Qcool 12.80 m3.K/s

T 345.7 K Tmean 309.1 K

F in 0.2372 m3/s T cool 318.3 K
V 10.00 m3 φecon 46.78 $/hr

ISE 877 wISE 1571

Table 5. Varying the number of FIR
coefficients in Q(z−1)

Q(z−1) φecon ($/hr) ISE wISE

0.009336 45.51 3236 3306
0.07148 − 0.06191z−1 46.78 1400 2184

q0 + . . . + q4z−1 46.78 878 1620
q0 + . . . + q9z−1 46.78 904 1584
q0 + . . . + q19z−1 46.78 877 1571

Figures 2 and 3 show trajectories for the de-
sign under PI control and for design with Q–
parametrization. These trajectories represent the
closed–loop response and manipulated variable
inputs respectively for the case when both dis-
turbances are stepped to their upper limits simul-
taneously at t = 20. These figures also serve to
illustrate the difference between using 2 and 20
coefficients for Q(z−1) and contrast to PI control.

3.3 Design Analysis

The above results indicate that there is not much
difference, in this case study, between using PI
control or the more advanced Q–parametrization
strategy to maintain dynamically operable pro-
cess behaviour while still remaining economically



Fig. 2. Controlled variable trajectories
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Fig. 3. Manipulated variable trajectories
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optimal. This occurs because the distance from
the constraints for both controller types is ap-
proximately the same. The integral squared error
is however less for the more advanced controller
and unless this has a significant economic benefit
the standard PI controller would be economically
acceptable.

Two aspects of the study require some further
analysis and discussion for completion. The first
aspect is the volume constraint that is active in
all of the above designs and the second is the
assumption of disturbance type and its dynamics.

3.3.1. The volume constraint: Table 6 shows
the result of using the formulation to relax the vol-
ume constraint in Equation 4. It is understandable
that a larger tank volume would attenuate the
initial deviation for the controlled variable when
the disturbance impacts the process. This allows
for T to be closer to the constraints of 350 K,
resulting in increased profit in φecon.

Note that if the volume constraint is completely
removed, the economically optimal tank volume
is calculated as 114 m3. Increasing the volume to
such a large value may be considered as down-
grading the process equipment, but it is necessary
to maintain an operable system at the calculated

Table 6. Effect of the volume constraint
on the process design and operation

Variable PI Control
V 6 10 V 6 20 V 6 80 V 6 ∞

T (K) 345.4 347.0 349.0 349.3
V (m3) 10.00 20.00 80.00 114.0

φecon ($/hr) 46.14 48.93 52.07 52.19

wISE 1885 1255 686 600

set point. A point to also note is that assumptions
of perfect mixing may not be valid at such high
tank residence times and the model may need to
be adjusted.

3.3.2. The disturbance dynamics: The PI con-
troller design of Table 3 was used, but the step
disturbance input was replaced with the following
disturbance model:

Cin(t) = 2 sin(0.01t) + 20 t ∈ [t0; tf]

Tin(t) = 10 sin(0.01t+ ϕ) + 300 ϕ ∈ [0; 2π]

Figure 4 shows the output of the two constrained
state variables at 10 equally spaced points in the
range of ϕ. This ball of process operation can
be seen to lie well within the constrained region,
indicating that the nominal operating point of the
current design could well be moved closer to the
upper temperature and concentration constraints
of 350 K and 0.1 kmol/m3 respectively.
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Fig. 4. The effect of sinusoidal disturbances on
process variability with PI control

In summary, the effect of varying the process
constraints can be understood and quantified us-
ing this formulation. It allows for more informed
economic and operability trade–off when process
parameters are to be investigated. Furthermore,
the assumption of step–like disturbance dynamics
was shown to lead to a conservative design and
improved profit could be had if the disturbance
dynamics were known more accurately.

4. CONCLUSIONS

An implementation of an integrated plant and
control system design formulation is described,



focusing in particular on the use of PI control
and a parametrization of all linear stabilizing con-
trollers. The integrated design strategy is illus-
trated through an application to a reactor case
study. Various scenarios are considered – steady-
state optimal design; dynamic optimization with-
out control; the inclusion of PI control; controller
parametrization; relaxation of the maximum vol-
ume constraint and the effect of disturbance dy-
namics.

The difference between PI control and the re-
sult using controller parametrization was found
to be slight. One reason for this is that the con-
trol performance metric induced by the objective
function and path constraints is the distance of
the steady-state operating point to active con-
straints, and PI control appears to be essentially
as good as the best linear controller in minimizing
the peak output variation in the direction of the
active constraints. While the difference between
the closed-loop performance as measured by the
integral square error is significant, this measure
is incorporated neither into the objective function
nor constraints. This illustrates the importance
of accurately capturing the desired design and
operational objectives.
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