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Montréal, PQ, Canada

Abstract: In this paper, we present an adaptive extremum seeking control scheme for non-
isothermal continuous stirred tank reactors. We assume limited knowledge of the reaction
kinetics. An adaptive learning technique is introduced to construct an optimum seeking
algorithm that drives the system states to optimal equilibrium concentrations of the reaction
mixture. Lyapunov’s stability theorem is used in the design of the extremum seeking con-
troller structure and the development of the parameter learning laws. Under mild assumptions,
the resulting controller is an output-feedback controller. the performance of the technique is
demonstrated with the van de Vusse reaction.
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1. INTRODUCTION

The task of extremum seeking is to find the operating set-
points that maximize or minimize an objective function.
Since the early research work on extremum control in the
1920’s (Leblanc 1922), many successful applications of
extremum control approaches have been reported (e.g.,
(Vasu 1957), (Astrom and Wittenmark 1995), (Sternby
1980) and (Drkunov et al. 1995)). Recently, Krstic et.
al ((Krstic 2000), (Krstic and Deng 1998)) presented
several extremum control schemes and stability analysis
for extremum-seeking of linear unknown systems and a
class of general nonlinear systems ((Krstic 2000) and
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(Krstic and Deng 1998)). An alternative Lyapunov-based
adaptive extremum-seeking technique is developed in
(Guay and Zhang 2002) in which the function to be
optimized is not available for measurement.

In this study, we investigate an alternative extremum
seeking scheme for nonisothermal continuous stirred tank
reactors. Only limited knowledge of the reaction kinet-
ics are assumed. A Lyapunov-based adaptive learning
control technique is used to approximate the unknown
kinetics and to steer the system to its unknown extremum.
The technique ensures convergence of the system to an
adjustable neighbourhood of its unknown optimum that
depends on the approximation error. We also show that a
certain level of persistence of excitation (PE) condition is
necessary to guarantee the convergence of the extremum-
seeking mechanism. The paper is organized as follows.
Section 2 presents some notations and the problem for-



mulation. Section 3 presents the adaptive extremum seek-
ing controller and the stability and convergence of the
closed-loop extremum seeking system. A numerical sim-
ulation is shown in Section 4 followed by brief conclu-
sions in Section 5.

2. PROBLEM

We focus on a class of nonisothermal continuous stirred-
tank reactor models described by

ẋ =−Dx + KC(x, T ) + Uin (1)

Ṫ =−DT + λT C(x, T ) + u (2)

where x ∈ Sx ⊂ R
n denote the concentration of chem-

ical components in the reaction mixture taking value in
compact subset Sx of R

n. The temperature is denoted
by T , it takes values on a compact subset ST of R

+,
the positive reals. K ∈ Rn×r is the n × r matrix of
stoechiometric coefficients for each n components on r
chemical reactions. The vector C(x, T ) ∈ R

r summa-
rizes the temperature dependent chemical kinetics for r
chemical reactions of the reaction network under study.
D is the CSTR dilution rate. Uin ∈ Rn gives the rate
of addition of each n components. The vector λ ∈ R

r

provide the heats of reaction for each reaction. The con-
trol input u is assumed to be the rate of heating and
cooling. The control objective is to design a controller,
u, such that the function y = Hx, where H ∈ R

1×n,
achieves its maximum at steady-state. We consider the
extremum-seeking problem for the nonisothermal CSTR
with unknown chemical reaction kinetics, C(x, T ). It is
assumed that the stoechiometry of the reaction network
(summarized by the matrix K) and the heats of reaction,
λ, are known. The nonisothermal CSTR is initially as-
sumed to operate at constant flowrate.

The problem is solved by first expressing the equilibrium
concentrations in the reaction mixture as function of
temperature, T. We assume that there exists a vector-
valued function, π(T ), that solves the following equation

−Dπ(T ) + KC(π(T ), T ) + Uin = 0. (3)

The solution π(T ) is assumed to be continuous on ST .
More specifically, we require the following.

Assumption 2.1. The function Hπ(T ) is continuously
differentiable and it admits a maximum on ΨT =
{x ∈ Sx|x = π(T )}.

By Assumption 2.1, we consider only cases where
Hπ(T ) is a continuously differentiable convex function
of T .

We consider systems where the isothermal reaction kinet-
ics are stable. We state this requirement as follows.

Assumption 2.2. Consider the reaction kinetics dynamics
eq.(1). There exists a positive definite function V (x) ∈
C1 such that

c1‖x‖2 ≤ V (x) ≤ c2‖x‖2

and

V̇ ≤ −c3‖x − π(T )‖ + c4‖x‖‖π(T )‖

for positive nonzero constants c1, c2, c3 and c4.

Assumption 2.2 provides a minimum-phase property of
the reaction kinetics that guarantees converge of the com-
positions, x, to a neighbourhood of the equilibrium x =
π(T ).

The temperature dynamics eq.(2) subject to the equilib-
rium condition eq.(3) are written as

Ṫ =−DT + λT K+Dπ(T ) − λT K+Uin

+ u + λT (C(x, T ) − C(π(T ), T )) (4)

We assume that the following holds.

Assumption 2.3. ∀x ∈ Sx and ∀T ∈ ST , ∃ a positive
nonzero constant L1 such that

‖C(x, T ) − C(π(T ), T )‖ ≤ L1‖x − π(T )‖. (5)

The strategy developed in this paper consists in ap-
proximating the steady-state, or equilibrium, composi-
tion π(T ) using a linear approximation technique such
as neural networks. Radial basis function (RBF) neural
networks presented in (Sanner and Slotine 1992) and
(Seshagiri and Khalil 2000) shall be used to approximate
a continuous function φ : Rp → R as

φ(z) = W ∗T S(z) + µl(t) (6)

with NN approximation error µl(t), and basis function
vector

S(z) = [s1(z), s2(z), · · · , sl(z)]T

si(z) = exp

[−(z − ϕi)
T (z − ϕi)

σ2
i

]

, i = 1, 2, ..., l(7)

where ϕi is the center of the receptive field, and σi is the
width of the Gaussian function. The ideal weight W ∗ in
(6) is defined as



W ∗ := arg min
W∈Ωw

{

sup
z∈Ω

∣

∣

∣
WT S(z) − φ(z)

∣

∣

∣

}

(8)

where Ω is a compact subset of Rp and

Ωw =
{

W
∣

∣

∣
‖W‖ ≤ wm

}

with positive constant wm to be chosen at the de-
sign stage. Universal approximation results stated in
(Funahashi 1989) (Kosmatopoulos et al. 1995) indicate
that, if l is chosen sufficiently large, then W T S(z) can
approximate any continuous function to any desired ac-
curacy on a compact set.

We apply eq.(6) to develop an approximation of the
objective function y = Hπ(T ) given by

Hπ(T ) = W ∗

p
T S(T ) + µp(t) (9)

where W ∗

p and S are as defined in eqs.(7)-(8). Since it is
assumed that the reaction kinetics are unknown, we need
to approximate the term DλT K+π(T ). To allow for the
simultaneous approximation of the objective function and
the regulation of the system temperature, we breakdown
the heat of reaction term as follows,

λT K+π(T ) = λT K+HT W ∗

p
T S(T ) + W ∗

o
T S(T ) + µl(t).

We make the following assumption about the approxima-
tion error terms µp(t) and µl(t).

Assumption 2.4. The NN approximation errors satisfies
|µp(t)| ≤ µ̄p and |µl(t)| ≤ µ̄l with constants µ̄p > 0 and
µ̄l > 0 over the compact set Ωw × ST .

3. CONTROLLER DESIGN

In this section, we design a control strategy that tracts the
unknown optimum of y. We first develop the parameter
estimation algorithm for the unknown parameter vector
W ∗. Let Ŵ denote the estimate of the true parameter W ∗

and let T̂ the predictions of T . Using eqs.(9)-(10) and
eq.(4), the temperature dynamics are written as,

Ṫ =−DT + F (T )W ∗ + Dµl(t) − λT K+Uin + u

+ λ (C(x, T ) − C(π(T ), T )) (10)

where F (T ) = [DS(T )T , DλT K+HT S(T )T ] and
W ∗T = [W ∗

p
T ,W ∗

o
T ].

The predicted state T̂ is generated by

˙̂
T =−DT + F (T )Ŵ − λT K+Uin + u

+ kT (T − T̂ ) + c1(t)
˙̂

W (11)

with gain function kT > 0 and prediction error eT = T −
T̂ . The vector-valued time-varying function c1(t) is to be
assigned. It follows from (2)-(11) that

ėT = F (T )W̃ + Dµl(t) − kT eT

+ λT (C(x, T ) − C(π(T ), T )) − c1(t)
˙̂

W(12)

where W̃ = W ∗ − Ŵ .

The objective of the extremum-seeking control is sta-
bilize the closed-loop system around a point where the
gradient of y = Hπ(T ) with respect to T vanishes while
attenuating the effect of the modelling uncertainty µl(t).

Using the approximation eq.(9), the objective function
given by

y = Hπ(T ) = W ∗

p
T S(T ) + µp(t)

is approximated by

ye = ŴT
p S(T )

where Ŵp is an estimate of the optimal weight W ∗

p . The
estimated gradient of ye with respect to T is given by

z =
∂ye

∂T
= ŴT

p dS(T ) (13)

where dS(T ) = ∂S(T )
∂T

. The Hessian of ye with respect to
T is given by

∂2ye

∂T 2
= ŴT

p d2S(T ) = Γ2 (14)

where d2S(T ) = ∂2S(T )
∂T 2

Define

zs = ŴT
p dS(T ) − d(t) (15)

where d(t) ∈ C1 is an excitation signal to be assigned.
In the remainder, the dependence of the radial basis
functions S on the temperature is implied and we write
S, dS and d2S.

To address the controller design, we define the following
auxiliary signals

η1 = eT − c1(t)
T W̃ (16)

η2 = zs − c2(t)
T W̃ (17)

where c2(t) is a time-varying vector valued function to be
assigned in the design.

We propose the Lyapunov function candidate



V =
1

2
η2
1 +

1

2
η2
2 . (18)

The following dynamic controller is considered

ḋ(t) = c2(t)
T ˙̂
W − kzzs − kd|Γ2|d(t) − Γ2a(t) (19)

u = DT − F (T )Ŵ + λT K+Uin

− kdsgn(Γ2)d(t) − a(t) (20)

where kz > 0 and kd > 0 are gain function to be assigned
in the sequel, sgn is the sign function. The signal a(t)
acts as a secondary dither signal that is used to generate
information about the unknown nonlinearities associated
with the reaction kinetics. The dynamics of the time-
varying functions c1(t) and c2(t) are assigned as follows

ċ1(t)
T =−kT c1(t)

T + F (T ) (21)

ċ2(t)
T =−kzc2(t)

T + Γ2F (T ) (22)

Taking the time derivative of V and substitution of
eqs.(19)-(22) gives

V̇ =−kT η2
1 − kzη

2
2 + (η1 + Γ2η2)

×
[

Dµl(t) + λT (C(x, T ) − C(π(T ), T ))
]

(23)

From Assumption 2.2 it follows that

sup
x∈Sx,T∈ST

‖x − π(T )‖ = C1

exists and is finite. By Assumption 2.3, we get

V̇ ≤−kT η2
1 − kzη

2
2 + (η1 + Γ2η2)Dµl(t)

+ (|η1| + |Γ2|‖η2‖) ‖λ‖L1C1 (24)

Completing the squares and applying the gain functions

kT = kT0 +
k4

2
D2 +

k5

2
‖λ‖2, (25)

kz = kz0 +
k7

2
‖λ‖2Γ2

2, (26)

we obtain the following inequality

V̇ ≤−kT0η
2
1 − kz0η

2
2 +

(

1

2k4
+

1

2k5

)

µl(t)
2

+

(

1

2k6
+

1

2k7

)

L2
1C

2
1 (27)

where kT0 > 0, kz0 > 0, k4 > 0, k5 > 0, k6 > 0
and k7 > 0 are constants. Eq.(27) establishes that the
state, η, converges to a small neighborhood of the origin.
It remains to show that the original state variables, eT

and zs and the parameter estimation errors W̃ converge
to a small neighborhood of the origin. To this end, we de-
rive a persistency of excitation condition that guarantees

the convergence of the parameter estimates to the ideal
weights, W ∗.

Consider the following matrix,

Υ(t) =

[

c1(t)
T

c2(t)
T

]

By construction, this matrix solves the matrix differential
equation

Υ̇(t) = −K(t)Υ(t) + B(t) (28)

where

K(t) =

[

kT 0
0 kz

]

, B(t) =

[

F (T )
Γ2F (T )

]

.

A bound on the parameter estimates Ŵ can be ensured by
choosing the following parameter update law.

˙̂
W =



















γwΓ if ‖Ŵ‖ ≤ wm or
if‖Ŵ‖ = wm and ŴT Γ ≤ 0

γw

(

I − ŴŴT

ŴT Ŵ

)

Γ otherwise
(29)

where Γ = Υ(t)T e Eq.(29) is a projection algorithm
which ensures that ‖Ŵ‖ ≤ wm. The convergence of the
parameter estimation scheme is considered in the sequel.

By the property of the projection algorithm and for the
specific choice of basis function it is possible to show
that the norm of B(t) is bounded. Using the bound on
B(t), an explicit bound for the solution of eq.(28) can be
obtained as follows,

‖Υ(t)‖ ≤C2e
−λ2(t−t0) + C2

BM

λ2
. (30)

where C2 = ‖Υ(t0)‖ > 0 and λ2 > 0 is a positive
constant. Next, we want to show that the parameter es-
timation error W̃ converges to a neighborhood of the
origin.

Substituting for e = η + Υ(t)W̃ we obtain the perturbed
dynamics

˙̃W = −γwΥ(t)T Υ(t)W̃ − γwΥ(t)T η

+















0 if ‖Ŵ‖ ≤ wm or
if‖Ŵ‖ = wm and ŴT Υ(t)T e ≤ 0

γw

ŴŴT

ŴT Ŵ

(

Υ(t)T Υ(t)W̃ + Υ(t)T η
)

otherwise

(31)

To establish the convergence of the parameter estimation,
we make the following persistency of excitation assump-
tion.



Assumption 3.1. The solution of eq.(28) is such that there
exists positive constants T > 0 and kN > 0 such that

t+T
∫

t

Υ(τ)T Υ(τ)dτ ≥ kNIN (32)

where IN is the N-dimensional identity matrix.

By a standard adaptive control argument, the persistency
of excitation condition guarantees that the origin of the
differential equation

˙̃W = −γwΥ(t)T Υ(t)W̃ (33)

is an exponentially stable equilibrium. Since B(t) is a
bounded function, it is shown that the parameter estima-
tion error is guaranteed to decay exponentially as

‖W̃‖ ≤ α4e
−λ4(t−t0) +

|µ̄l| + L1C1√
2kmc3

(34)

Hence the parameter estimation error and the redefined
state variables, η, converge exponentially fast to an ad-
justable neighbourhood of the origin. By definition, con-
vergence of η and W̃ to a neighbourhood of the origin
implies that ‖e‖ ≤ ‖η‖ + ‖Υ(t)‖‖W̃‖. Substituting for
‖η‖, ‖Υ(t)‖ and W̃ , we obtain

‖e‖ ≤ α5e
−λ5(t−t0) + β5 (35)

where α5 > 0 and β5 > 0 are computable positive
constants. The convergence of the error vector, e, implies
that the convergence of the prediction error, eT and the
exponential convergence of the closed-loop system to an
adjustable neighbourhood of the unknown steady-state
optimum. We summarize the result of the above analysis
as follows.

Theorem 3.1. Consider the nonisothermal continuous stirred
tank reactor model eqs.(1)-(2) in closed-loop with the
state prediction eq.(11), the controller eq.(20), the dither
signal eq.(19) and the adaptive learning law eq.(29). As-
sume that the signal a(t) is such that

t+T
∫

t

Υ(τ)T Υ(τ)dτ ≥ kNIN (36)

for positive constants T > 0 and kN > 0 where Υ(t) is
the solution of eq.(28). Then

• the error dynamics eq.(12) converge exponentially
to a small neighbourhood of the origin

• the parameter estimation errors W̃ converge expo-
nentially to a small neighbourhood of the origin

Parameter Value
k10, E1 1.287 ×10

12, 9758.3

k20, E2 1.287 ×10
12, 9578.3

k30, E3 9.043 ×10
9, 8560.0

Table 4.1. Kinetic Parameters of the van de
Vusse reactor

• the tracking error from the unknown steady-state,
zs, converges exponentially to a small neighbour-
hood of the origin.

4. SIMULATION RESULTS

In this section, we demonstrate the effectiveness in simu-
lation of the proposed adaptive extremum-seeking con-
trol. We consider the standard van de Vusse chemical
reaction. The reaction scheme for this reactor is given by

A→B

2A→D

The reaction kinetics are summarized by

K =

[

−1 0 −1
1 −1 0

]

, C(x, T ) =







k10e
−(E1

T )x1

k20e
−(E2

T )x2

k30e
−(E3

T )x2
1







where x1 and x2 are the concentrations of components
A and B, respectively, T is the reactor temperature, k10,
k20 and k30 are the pre-exponential factors, E1, E2 and
E3 are the activation energies. The numerical values used
for simulation are listed in Table 4.1.

The dilution rate, D, is 14.19 hr−1. The latent heat of
reaction is given by λT = [−4.2, 11.0, − 41.85]/ρ/Cp

where ρ = 0.9342 and Cp = 3.01. The pseudo-inverse of
K is given by

K+ =





−0.333 0.333
−0.333 −0.667
−0.667 −0.333





The objective is to steer the system to the maximum
steady-state concentration of B, that is H = [0, 1].

We consider the initial conditions, x1(0) = 1, x2(0) = 0,
T (0) = 25. The centers of the linear approximation are
evenly spaced points on the interval [75,125], σ2

i = 10
for 1 ≤≤ l. The six(6) centers, ωi, are picked evenly at
spaced points on that interval. The dither signal was set
to

a(t) = exp(−0.1t)
6
∑

i=1

(sin((0.5i)t) + cos((0.5i)t) )



The simulation results are shown in Figures 1 to 3. The
concentration of component B is shown in Figure 1. Fig-
ure 2 shows the reactor temperature profile. The required
control action is given in Figure 3. The true optimum con-
centration of B is 1.09. As shown in Figure 1, the adaptive
controller recovers the unknown optimum is a relatively
short time. The control profile and the temperature profile
demonstrate that the control is physically realizable.

5. CONCLUSION

We have solved a class of extremum seeking control
problems for continuous stirred tank reactors represented
by an unknown growth kinetic model. It has been shown
that when the external dither signal is designed such that a
persistent of excitation condition is satisfied, the proposed
adaptive extremum seeking controller guarantees the ex-
ponential convergence to an adjustable neighborhood of
its optimum.
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