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Abstract: Successful application of model based control depends on having good 
estimates for the system dynamic states and parameters. A multivariate dynamic 
linear model is developed for the estimation of the states from limited measurements 
in a non-linear system comprising model uncertainties. Since the noise statistics are 
rarely available a priori, the noise covariance matrix is treated as a tuning parameter 
and determined through repeated simulations. For non-linear, time varying processes, 
the assumption of a constant process noise covariance matrix does not realise accurate 
estimates. In this paper Monte Carlo simulations are used to obtain the time-varying 
noise covariance matrix.  The methodology is demonstrated on a benchmark 
polymerisation process. Copyright © 2002 IFAC 

 
Keywords: State estimation; Parameter estimation; Dynamic linear model; Monte 
Carlo simulation; Extended Kalman filter 

 
 
 

 
1. INTRODUCTION 

 
In batch polymerisation processes, the operating 
objectives require the satisfaction of complex 
property requirements for the final polymer whilst 
reducing production costs. Most mechanical and 
rheological properties of polymer products are 
directly, or indirectly, linked to the molecular 
structural properties of the polymer chains that are 
not usually measured on-line. Average polymer 
molecular weight properties (e.g. number and weight 
average molecular weight), and particle size 
distribution which can be inferred from on-line 
measurements, are often selected as the major 
controlled variables that need to be maintained within 
well-determined limits so that the desired product 
quality criteria can be achieved.  
 
Recursive stochastic state estimation techniques, 
such as the Extended Kalman filter have been 
traditionally used for state and parameter estimation 
especially for polymerization processes. The main 
bottleneck in the application of recursive stochastic 
state estimation techniques to real world situations is 
that the process noise statistics are rarely available a 
priori. In most applications, they serve as tuning 

parameters and are determined through a trial-and 
error procedure using repeated simulations. 
 
Few techniques for determining the process noise 
covariance matrix have been developed for chemical 
engineering applications. Zhou and Luecke (1995) 
used maximum-likelihood estimation with linear 
regression to obtain the diagonal elements of the 
covariance matrices for linear systems. For non-
linear systems, the use of innovation processes for 
estimating the noise statistics was proposed by Myers 
and Tapley (1976). However they assumed the 
covariance matrix to be constant. For batch processes 
with time-varying process dynamics that operate over 
a range of process conditions, this is not the case. 
The specification of a constant process noise 
covariance matrix may not be sufficient to provide 
sufficiently accurate estimation. Using a fixed value 
of noise statistic can lead to poor estimation or 
potentially result in filter divergence. 
 
Valappil and Georgakis (2000) introduced two 
approaches to systematically estimate the process 
noise covariance matrix. The first method was based 
on Taylor series expansion whereas the second 
method used Monte Carlo simulations to calculate 
the time-varying values of the process noise 



 

     

covariance matrix on-line. Both methods require 
information about the plant-model mismatch in the 
form of a parameter covariance matrix. The process 
noise covariance matrix is obtained from the 
parameter covariance matrix. If the user is not certain 
about the process-model mismatch, or the model 
uncertainty can not be represented by the parameter 
covariance matrix, it is difficult to apply these 
methods. 
. 
In this paper, a new approach is proposed where a 
multivariate dynamic model is constructed for the 
estimation of the states. Monte Carlo simulations are 
then used to calculate the time-varying process noise 
covariance matrix on-line from the prediction errors. 
 
 

2. BAYESIAN DYNAMIC MODEL 
 
2.1 Multivariate Dynamic Linear Model 
 
The dynamic linear model (DLM) is a Bayesian 
forecasting tool based on a state space model that 
allows a variety of adaptive linear and generalised 
linear models to be fitted iteratively to univariate or 
multivariate time series data. A DLM incorporates 
information from any relevant source, including 
subjective expert views, leading to amended and 
updated model structures. The general multivariate 
dynamic linear model developed by West and 
Harrison (1997), is given by the following system of 
equations: 
 
Observation equation: 
             

tttt vxFY +=         ],0[~ tt N Vv  (1) 
 
System equation: 
 

tttt wxGx += −1     ],0[~ tt N Ww  (2) 
 
Initial information: 
      

],[~)|( 0000 Cmx ND  (3) 
 
where tY  is the observed vector of the series at time 

point t , tx  is the state vector, tv  is the 

observational error, tw  is the vector of process noise 
that is assumed to be independent and normally 
distributed and 0D  is the initial prior information at 

0=t . At any future time point, t , the available 
information set is:  
                             

},{ 1−= ttt DD Y  (4) 
 
At time t-1, for some mean 1−tm  and variance matrix 

1−tC , the posterior is given by: 
                       

],[~)|( 1111 −−−− tttt ND Cmx  (5) 

and the prior for the state vector at time t can be 
derived from the system equation: 
 

],[~)|( 1 tttt ND Rax −  (6) 
 
where 
           

1−= ttt mGa   and   ttttt WGCGR +′= −1  (7) 
 
According to the observation equation, the one step 
ahead forecast can be given by: 
                       

],[~)|( 1 tttt ND QfY −  (8) 
 
where 
               

ttt aFf ′=   and   ttttt VFRFQ +′=  (9) 
 
The feedback of information obtained at time t from 
vector tx  is achieved through the application of 
linear Bayes methods. As stated previously, the 
model at time (t-1) requires only the mean vector and 
covariance matrix of the posterior for )|( 11 −− tt Dx . 
Thus at time t, the corresponding moments: 
                        

],[~)|( tttt ND Cmx  (10) 
 
are required in order to progress to time point, (t+1), 
and subsequent observations. The information 
obtained at time point, t, is used to update the prior 
moments to give: 
          

tttt eAam +=  and ttt AQARC tt
′−=  (11) 

 
where 
 

1−′= tttt QFRA   and  ttt fYe −=  (12) 

  
 
2.2 Multivariate Non-linear Dynamic Model 
 
For a non-linear model, the process can be expressed 
as:  
 

tttt f vxY += )(   ],0[~ tt N Vv  

ttt g wxx += − )( 1   ],0[~ tt N Ww  

(13) 

 
Before the usual DLM updating procedure is applied, 
the model requires to be linearized. The most 
straightforward and easily interpreted linearization 
technique is the Taylor series approximation. 
Applying Taylor series expansion to the updating 
function about the mean 1−tm : 
               

)()()( 111 −−− −+= ttttt mxGmgxg  
                sorder termhigher  and quadratic+  

(14) 

 



 

     

where tG  is the matrix derivative of the updating 
function evaluated at the estimate 1−tm : 
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)( 1−= ttt mga  and  ttttt WGCGR +′= −1  

(16) 

 
Proceeding to the observation equation, a similar 
approach applies. The non-linear regression function 
is linearized about the expected value ta  for tx , 
giving: 
                 

)()()( ttttttt axFafxf −′+=  
sorder termhigher  and quadratic+  

(16) 

 
where tF  is the matrix derivative of (.)tf  evaluated 
at the prior mean ta : 
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The standard updating equations continue to apply. 
 
Most process models constructed from limited 
experimental observations involve significant 
uncertainties. For batch and semi-batch processes, 
this is especially true. Model accuracy is obtained by 
tuning the covariance matrix Q of the process noise 
using a repeated simulation procedure.  
 
If a covariance matrix whose entries are of small 
magnitude is selected, greater confidence will be 
expressed in the model and less on-line measurement 
information will be required to update the states. 
However, this may result in degraded estimates and 
possibly estimator divergence. Too much state 
compensation can cause the state estimates to be 
noisy and unreliable. 
 
The process noise w(t) is mainly due to uncertainties 
in the model and can be either parametric or 
structural. Monte Carlo simulations are utilized to 
estimate a time-varying covariance matrix Q on-line. 
 
 

3. ESTIMATION OF THE COVARIANCE 
MATRIX 

 
The concept of applying Monte Carlo simulation to 
estimate the process noise covariance matrix is to 
capture the effect of uncertainties in the model 
through the statistics of w(t). The key issue is how to 
derive the information from the measurements and 
model evolution to represent the process noise. In the 
algorithm described above, the prediction error 
vector te  gathers the information about the errors 

that caused by process disturbance and model 
uncertainties. The updating information from prior to 
the posterior for the states is obtained by multiplying 
the prediction errors te  with a gain tA . The idea in 
this paper is that, using the information drawn from 
the prediction errors te  and the updating information 
to estimate the process noise covariance matrix. 
 
At a desired time instance t-1, a set of samples }{ 1

k
t −x  

is randomly selected from the posterior distribution 
function, equation (5), of the state vector while the 
observation 1−tY  is given. For the kth Monte Carlo 
simulation, a non-linear model is used to generate 
random samples of 1| −ttx  
                             

)( 11|
k
tt

k
tt −− = xgx  (18) 

 
Because k

t 1−x  is randomly sampled directly from a 
probability distribution function, some samples may 
be located in the tails of the distribution. For non-
linear systems, the presence of such samples will 
seriously affect the performance of the estimate. One 
solution is to reject these samples. The simplest way 
is to set a rejection bound. Those samples that have a 
probability larger than the rejection bound will be 
accepted, otherwise they are discarded and new 
samples generated. Once the new measurement tY  is 
obtained, the prediction errors are calculated 
                           

)( 1|
k

tttt
k
t −−= xfYe  (19) 

 
and the information used to update the prior moments 
is calculated as follow: 
                                 

k
tt

k
t eA? =  (20) 

 
The process noise is also obtained from the samples 
of the updating information: 
                                

t
k
t

k
t ??w −=  (21) 

 
where t?  denotes the mean of the updating 
information. The process noise is normally 
distributed with zero mean. The process noise 
covariance matrix tQ  can be calculated from k

tw , 
and is a non-diagonal and time-varying matrix.  
Because the process measurements are available at 
discrete time instances, the preceding calculation of 

k
tw  and tQ  is performed for discrete time intervals. 

 
For the model development described in the previous 
section, the process noise is assumed to be a white, 
Gaussian random process. Thus the approximation of 
normally distributed process noise needs to be tested 
using the values of the process noise data set }{ k

tw  
that were obtained from the Monte Carlo simulations. 



 

     

For this, normal probability plots were used and the 
distribution was observed to be approximately 
normal.  For the simulation case presented, 500 
Monte Carlo simulations of the different state values 
were used, resulting in 500 evaluations of the process 
noise for each state.  
 
 

4. RESULTS 
 
4.1 MMA polymerization 
 
The process studied is the free radical polymerisation 
reactor of methyl-methacrylate (MMA) (Mourikas et 
al, 2001). A mathematical model describes the 
dynamic behaviour of an experimental pilot scale 
system (Fig 1). Heating and cooling of the reaction 
mixture is achieved by controlling the flows of hot 
and cold water stream, through the reactor jacket. 
The polymerisation temperature is controlled by a 
cascade control system consisting of a primary PID 
and two secondary PI controllers. The polymerisation 
is highly exothermic and exhibits a strong 
acceleration in polymerisation rate due to gel-effects.  
Batch duration is 120 minutes. 
 

Tmet

TR

TJ

TJi

PI

PID
Tsp

Hot

Cold

 
 

Fig. 1.  Plant polymerisation reactor 
 
The MMA system consists of 11 states, which are 
monomer conversion; three moments of dead 
polymer that are used to calculate the molecular 
weight distribution; reactor and metal wall 
temperatures; and four jacket zone temperatures. In 
polymerization, frequent measurements of the reactor 
and the jacket inlet and outlet temperatures are 
usually available along with possibly jacket flow. 
Monomer conversion measurements can also be 
obtained from an on-line densitometer. The 
measurements in a real process environment will be 
corrupted with measurement noise. In the following 
simulation, Gaussian white noise is added to the 
measurements. 
 
In this particular study, the process model mismatch 
is introduced in the form of time variation in a kinetic 
parameter. In practice important kinetic parameters 
such as pk , the propagation rate constant, cannot be 
determined accurately and may vary during the 
polymerisation. In this study, the propagation rate 

constant is represented by s
corrpppp ggkk ,0= , where 

0pk  is an intrinsic chemical rate constant, pg  is a 
diffusion controlled function which includes a 
number of parameters that are often unknown. The 
stochastic correction term s

corrpg ,  is used to account 

for the imprecise knowledge of pg . In the model, a 
random walk is assumed for the behaviour of the 
stochastic state.  In the process, the actual value of 

s
corrpg ,  is assumed to decrease linearly from an initial 

value of 1.0 to 0.76. 
 
4.2 Discussion 
 
The results of the estimation studies for the MMA 
polymerization reactor are shown in Fig. 2. It can be 
seen that the uncorrected model (dashed line), in 
which the stochastic correction term of the 
propagation rate constant is fixed at 1.0, differs 
significantly from the actual plant (dotted line), in 
which the propagation rate constant is time-varying. 
The estimates (solid line) closely match the actual 
process. These, results are compared with the 
estimation results from an EKF with fixed process 
noise covariance matrix, Fig. 3. The estimates of 
number average and weight average molecular 
weights in Fig. 2. match the actual process while the 
estimates in Fig. 3. show a discrepancy between the 
actual process and the estimates.   
 
Comparing Fig. 2(e) and Fig. 3(e), the estimator 
involving Monte Carlo simulation tracks the decrease 
in the rate constant more closely and faster. This 
results in better state estimation performance. The 
95% confidence bound (circle) of the estimate for the 
Bayesian approach is narrower than for the EKF, 
indicating that the estimates are more accurate and 
reliable. Since only a limited number of observation 
data can be used to update the estimate, the 
confidence bounds at the beginning are wide and 
hence the estimates are less reliable. As the 
observation data increases, the limits decrease in 
magnitude. Thus the structure of the confidence 
bounds for parameter estimation by the Bayesian 
approach are more reasonable than those of the EKF. 
 

 
 

(a)  Actual versus estimated (conversion) 



 

     

 
 

(b)  Actual versus estimated (MN) 
 

 
 
(c) Actual versus estimated (MW) 
 

 
 
(d) Actual versus estimated (polydispersity) 
 

 
 
(e) Actual versus estimated (rate constant KP) 

Fig.2. Multivariate DLM state and parameter 
estimation.  

  
 Key: Dotted line - actual plant; solid line - 

estimates; dashed line - process model with 
mismatch; circle - 95% confidence bounds 

 

 
 

(a)  Actual versus estimated (conversion) 
 

 
 
(b)  Actual versus estimated (MN) 
 

 
 

(c) Actual versus estimated (MW) 
 



 

     

 
 

(d) Actual versus estimated (polydispersity) 
 

 
 
(e) Actual versus estimated (rate constant KP) 
 
Fig.3. EKF state and parameter estimation with fixed 

process noise covariance matrix.  
 
 Key: Dotted line - actual plant; solid line - 

estimates; dashed line - process model with 
mismatch; circle - 95% confidence bounds 

 
 

5. CONCLUSIONS 
 
The feasibility of extending multivariate DLM to 
estimate the process states, monomer conversion and 
the molecular weights in MMA batch 
polymerizations has been demonstrated.  The 
methodology provides a new approach to state 
estimation for possible application in on-line model-
based optimising control. The estimator uses on-line 
measurements of key process variables including 
monomer conversion and reactor and jacket 
temperatures, to provide reliable estimates of the 
state variables. Monte Carlo simulation is used for 
the calculation of the process noise covariance matrix.  
 
The results show that the approach presented can 
improve the performance of the state and parameter 
estimation. It also makes the design and the 
application of dynamic Bayesian forecasting more 
robust, since the methodology proposed eliminates 
the need for the tuning of the process noise 
covariance matrix. The non-diagonal and time-
varying covariance matrix is obtained on-line in 

contrast to a diagonal and constant covariance matrix 
which is not able to adapt to non-linear systems with 
model uncertain. The algorithm can also be enhanced 
by Bayesian parameter estimation to provide a 
significantly enhanced overall state and parameter 
estimation methodology (Lu et al, 2001). 
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