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Abstract: We propose to use chance constrained programming for process optimization 
and control under uncertainty. The stochastic property of the uncertainties is included in 
the problem formulation. The output constraints are to be ensured with a predefined 
confidence level. The problem is then transformed to an equivalent deterministic NLP 
problem. The solution of the problem has the feature of prediction, robustness and being 
closed-loop. In this paper, the basic concepts and solution strategies are discussed to 
illustrate the potential for optimization and control under uncertainty. 
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1. INTRODUCTION 
 
It is a well-known fact that uncertainties exist in 
every chemical process. In most previous studies on 
process optimization and control, the stochastic 
properties of uncertainties have not been taken into 
account. In the industrial practice, uncertainties are 
compensated for by using conservative operating 
strategies, which may lead to considerably more 
costs than necessary. In addition, feedback control is 
used to compensate for uncertainties. However, 
compensation without considering the uncertainty 
properties is in fact the wait-and-see strategy and has 
several drawbacks. First, it is always a posteriori. 
Second, the system propagates the disturbances to 
connecting systems. Third, a feedback can not 
ensure constraints on open-loop variables. In many 
cases it is impossible to on-line measure some 
variables which describe product properties (e.g. 
composition, viscosity, density). These variables 
have to be open-loop under the uncertainties but 
they should be confined to a specified region 
corresponding to the product specifications.  
 
To overcome these drawbacks, we have recently 
proposed and studied a new framework for process 
optimization and control under uncertainty. The 
uncertainty properties are to be included in the 
problem formulation. These properties can be gained 
by statistical analysis of historical data. A stochastic 
programming problem under chance constraints is 

formulated for both optimization and control. It will 
be relaxed to an equivalent deterministic NLP 
problem. The essential challenge lies in the 
computation of the probabilities of holding the 
constraints as well as their gradients. Approaches of 
chance constrained programming to linear, nonlinear 
and dynamic problems have been developed and 
applied to different process engineering problems. 
The method of moving horizon is employed for 
solving dynamic optimization and control problems 
under uncertainty.  
 
While chance constrained programming has been 
applied in many disciplines like finance and 
management (Prekopa, 1995; Uryasev, 2000), few 
applications have been made in chemical process 
operations (Henrion et al., 2001). It has been used 
for batch process planning (Petkov and Maranas, 
1997). Several studies on model predictive control 
using chance constrained programming have been 
carried out for linear processes (Schwarm and 
Nikolaou, 1999; Li et al. 2000 and 2002a,b). 
Recently, a method to nonlinear chance constrained 
problems was introduced for process optimization 
under uncertainty (Wendt et al., 2002). It has been 
extended to nonlinear dynamic optimization 
problems under uncertainty (Arellano-Garcia et al., 
2003). In this paper, the basic principles of chance 
constrained programming and its applications to 
process optimization and control are discussed to 
illustrate its potential and limitation. 
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2. UNCERTAINTY ANALYSIS 
 

In process operation, there are two general types of 
uncertainties. External uncertainties are from 
outside but have impacts on the process. They can 
be the rate and/or composition of feed and recycle 
flows as well as flows of utilities, the temperature 
and pressure of the coupled operating units or 
market conditions. Internal uncertainties represent 
the unavailability of knowledge of the process. For a 
determined model structure, they are uncertain 
model parameters often regressed from a limited 
number of experimental data. We call both of these 
uncertain inputs. Due to these uncertainties, 
conservative or aggressive decisions may be made. 
While internal uncertainties have been well studied 
in the framework of robust control in the past 
(Morari and Zafiriou, 1989; Kothare et al., 1996; 
Bemporad et al. 2002), external uncertainties have not 
been much emphasized. 
 
As shown in Fig. 1, an uncertain input ξ  can be 

constant (e.g. model parameters) or time-dependent 
(e.g. atmospheric temperature) in the future horizon 

],[ 0 fttt ∈ . They are undetermined before their 

realization. The “realization” means either the 
measurable uncertain variables have been measured 
or parameters newly estimated. The distribution of 
the variables may have different forms. Very often 
normal (Gaussian) distribution is considered as an 
adequate assumption for many uncertain variables in 
the engineering practice. The basic justification of 
this statement is embodied in the central limit 
theorem (Maybeck, 1994). The values of mean and 
variance are usually available. The uncertain 
variables may be correlated or uncorrelated.  
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Fig. 1: Two different uncertain variables 
 
These uncertain inputs will propagate through the 
process to output variables (e.g. temperature, 
composition). This makes the outputs also uncertain. 
A continuous process with constant uncertain inputs 
leads to a steady-state problem, while such a process 
with time-dependent uncertain inputs or a batch 
process is a dynamic problem under uncertainty. For 
a nonlinear process it is very difficult to analytically 
describe the distribution of the outputs. A scheme of 
simulation with sampling can address this problem. 
According to their distributions, random values are 
generated. After many runs of simulation with the 
sampled data, the probability distribution of the 
outputs can be gained. Besides Monte-Carlo, some 
efficient sampling strategies have been proposed 
(Diwekar and Kalagnanam, 1997). Obviously, the 
wait-and-see strategy can not result in satisfactory 

operations under these uncertainties. Thus we are 
confronted with making decisions a priori for the 
future operation (i.e. the here-and-now strategy). 
Under the uncertainties, a stochastic programming 
problem has to be defined and solved to answer 
these questions: 1) how to achieve an economically 
optimal operation? 2) how to ensure the constraints 
of the output variables? 3) how to prevent the 
propagation of the uncertainties to downstream 
processes? and 4) how to design a proper feedback 
control system?  
 

3. CHANCE CONSTRAINED PROBLEMS 
 
A general optimization or control problem under 
uncertainty can be formulated as 
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where f is the objective function, g and h are the 
vectors of equality and inequality constraints. x, u 
and ξ  are the vectors of state, control and uncertain 

inputs, respectively. 0x  is the known initial state. 

This dynamic nonlinear optimization problem has to 
be descretized with time intervals into a static 
problem so that it can be solved with the method of 
stochastic programming. Time-dependent uncertain 
inputs will be approximated as discretized uncertain 
variables in individual time intervals. In this work, 
they are assumed to have a correlated multivariate 
normal distribution.  
 
There have been two general stochastic approaches 
(Kall and Wallace, 1994) to solve such problems. 
The two-stage programming uses recourse to deal 
with inequality constraints. The first-stage decision 
variables are determined and fixed before the 
realization of the uncertain variables, while the 
second-stage variables are decided after their 
realization. The violation of constraints is 
compensated for by some penalty functions and 
leads to additional costs for the second stage 
decisions. Since a proper penalty function is usually 
not available, the application of this method to 
operation and control may be not appropriate.  
 
The other method is the chance constrained 
programming. Its unique feature is that the resulting 
solution ensures a predefined probability of 
satisfying the constraints. The solution will lead to 
an expected optimal value of the objective function 
by searching for the decision in a feasible region to 
hold a given confidence level, denoted as 

)10( ≤≤ αα . Since α  can be defined by the user, 

it is possible to select different levels and make a 
compromise between the function value and risk of 
constraint violation. It should be noted that with both 
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solution strategies there have been, until now, no 
suitable approaches to nonlinear problems.  
Recently, we have studied chance constrained 
programming for process optimization and control 
under uncertainty (Li et al. 2000 and 2002a,b; 
Henrion et al., 2001; Wendt et al., 2002). In 
engineering practice, a very popular form of 
inequality constraints is to specify or restrict some of 
output variables y (note y is part of x): 
 

Iiyyy iii ,,1),( maxmin L=≤≤ ξu           (2) 

 
maxmin , ii yy  are the required lower and upper bound of 

an output, such as a pressure or a temperature 
restriction of a plant. Holding these constraints is 
usually critical for the production and safety. For 

],[ 0 fttt ∈  a probabilistic form of (2) is  

 
         { } α≥=≤≤ Iiyyy iii ,,1,),(Pr maxmin Lξu        (3) 

 
With this representation, all inequalities are included 
in the probability computation. It means that they 
should be satisfied simultaneously with the given 
probability. This is called joint probabilistic (chance) 
constraint. Another form is single chance constraint, 
where individual probabilities of ensuring each 
inequality will be held: 
 
     { } Iiyyy iiii ,,1,),(Pr maxmin L=≥≤≤ αξu         (4) 

 
It should be noted that in deterministic approaches 
the expected values of the uncertain variables are 
usually employed. In reality, however, the uncertain 
variables will deviate from their expected values. 
Thus the implementation of the results from a 
deterministic approach will violate the inequality 
constraints with a probability of around 50%. The 
difference between (3) and (4) is that a joint chance 
constraint requires the reliability in the output 
feasible region as a whole, while single chance 
constraints demands the reliability in the individual 
output feasible region. If the constraints are related 
to the safety consideration of a process operation, a 
joint chance constraint may be preferred. Single 
chance constraints may be used when some output 
constraints are more critical than the other ones. The 
equalities in (1) are the model equations of the 
process. They have to be satisfied with any 
realization of the uncertain variables. In fact, the 
effect of the model equations is a projection of the 
space of the random variables ξ  as inputs to a space 

of state variables x, with given controls u. Thus the 
equalities will be eliminated if an integration of the 
equations in the space of the uncertain variables is 
made. It implies that a sequential approach is 
suitable for solving stochastic problems with 
equality constraints. To treat the objective function 
in (1), minimizing the expected value and the 
variance of the objective function has usually been 
adopted (Darlington et al. 1999): 

[ ] [ ]),(),(min ξux,ξux, fDf ω+Ε           (5) 

 
E and D are the operators of expectation and 
variation, respectively. ω  is a weighting factor 
between the two terms. In the sense of relaxation the 
objective function in (1) is now a deterministic 
function through these two operators. Now a general 
chance constrained problem is formulated with (5) 
as objective function and (3) or (4) with constraints.  
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Fig. 2: Classification of chance constrained 
problems 

 
As shown in Fig. 2, such problems can be classified 
based on the properties of processes, uncertainties 
and constraint forms. Thus there are 16 different 
formulations. We can use the initial letters to denote 
the problems. For example, a steady state process 
with constant uncertainties under single chance 
constraint is called an LSCS problem. It is 
interesting to note that LSTS and NSTS can be 
solved separately for each interval, while for LSTJ 
and NSTJ (a quasi-dynamic problem) the whole time 
horizon should be considered. To solve such 
problems with an existing optimization routine, the 
probability of holding the constraints has to be 
computed. Moreover, the gradients of the probability 
function to the controls are required. Different 
problems have different degrees of complexity for 
computing these values, which will be discussed in 
the following two sections. 
 

4. APPROACH TO LINEAR SYSTEMS 
 

Chance constrained linear problems can be relatively 
easily treated and have some nice properties. 
Theoretical results show that the feasible region of 
linear problems with quasi-concavely distributed 
uncertain variables is convex (Prekopa, 1995). 
Another merit property is that linear transformations 
of multivariate normally distributed variables have 
the same distribution. Optimization of linear steady 
state systems (LSCS and LSCJ) under constant 
uncertain variables has been well studied (see Kall 
and Wallace). It can be applied in process design 
and planning under uncertainty. 
 
We consider linear dynamic systems with time 
dependent uncertain inputs (LDTS and LDTJ). The 
outputs in the future horizon depend on the current 
state, the future and past controls as well as 
uncertain inputs. The uncertain inputs include both 
uncertain parameters (e.g. step response coefficients) 
and disturbances. The controls in the horizon will be 
decided to optimize some objective function and 
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ensure the chance constraints for the outputs. A 
quadratic objective function leads to a chance 
constrained model predictive control, as shown in 
Fig. 3. One can easily notice that the novelty of this 
controller, compared with the conventional MPC, is 
it includes the uncertainties explicitly in the problem 
formulation. Moreover, it is worth noting that the 
objective function may only include the quadratic 
terms of controls, since the outputs are confined in 
the chance constraints, e.g. 
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For linear MPC with single chance constraints 
(LDTS), the chance constraints can easily be 
transformed to linear deterministic inequalities. It 
leads to a QP problem and thus the solution can be 
derived analytically (Schwarm and Nikolaou, 1999).  
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Fig. 3: Chance constrained MPC 
 
In cases of problems with a joint chance constraint 
(LDTJ), an explicit solution cannot be obtained, 
since the calculation of a joint probability of 
multivariate uncertain variables is needed. Although 
one chance constraint for all outputs and all time 
points can be formulated, it is natural to constrain 
each output separately, i.e. for Ii ,,1 L=  
 
  { } iiii Njjtyjtyjty α≥=+≤+≤+ ,,1),()()(Pr maxmin L  

              (6) 
Note that even if the uncertain inputs are 
uncorrelated, the outputs are correlated through the 
linear propagation. With some linear transformation, 
(6) can be described as the following form 
 

iiii α≥+≤′ }Pr{ buAξ            (7) 

 

iξ′  is an N-dimensional uncertain vector. The joint 

probability makes (7) nonlinear constraints and the 
stochastic MPC becomes an NLP problem. 
Unfortunately, it is not possible to easily compute 
those probability values even numerically, if the 
dimension is larger than 3. A simulation scheme to 
estimate joint probabilities was proposed (Prekopa 
(1995). The first and second term of the inclusion-
exclusion formula are computed exactly and the rest 
terms are evaluated by sampling. Moreover, the 
gradient calculation is required to solve the problem 
with an NLP solver, which is more difficult. We 

used this simulation scheme for the probability 
computation and proposed a reduced gradient 
computation strategy (Li et al., 2000, 2002a). The 
efficient sampling by Diwekar and Kalagnanam 
(1997) is used. SQP is used for the optimization and 
the control proceeds by moving horizon. After the 
control of the first time interval is implemented, 
together with the realization of the uncertain inputs 
in this interval, the system moves to the new state, 
and the control policy in the new horizon will be 
computed. The tuning parameters of this algorithm 
are the length N of the time horizon and the 
confidence level α . As a kind of predictive 
controller a large N is desired, but the computation 
time will be greater. The major computation load is 
due to sampling of the uncertain variables to 
evaluate the probabilities and their gradients. A 
larger N means more uncertain variables are 
included in the problem formulation.  
 
Tuning the value of α  is an issue of the relation 
between feasibility and profitability. Of course a 
high confidence level to ensure the constraints is 
always preferred. The solution of a defined problem, 
however, is only able to arrive at a maximum value 

maxα  which is dependent on the properties of the 
uncertain inputs and the restriction of the controls 
and outputs. The knowledge of maxα  is crucial; if a 

value greater than maxα  is chosen, the feasible region 
will be empty. An easy-to-use method was proposed 
to compute this maximum value for SISO systems 
(Li et al., 2002b) which can be extended to MIMO 
systems. The basic idea is to map the stochastic 
inputs to outputs and analyze the property of the 
outputs. It can be proved that the joint probability 
has the maximum value if the mean values of the 
outputs are at the middle of their restricted region 

],[ maxmin yy . Thus maxα  can be obtained via a 

simulation run. The profitability of the stochastic 
MPC means the achievability of the objective 
function value, which is also a function of the 
confidence level. They have a monotone relation: 
the value of objective function will be degraded if α  
is increased. One can analyze the profile of the 
function value with changing α  and decide on a 
suitable trade-off between profitability and 
reliability.  
 

5. APPROACH TO NONLINEAR SYSTEMS 
 
The motivation to consider nonlinear chance 
constrained problems is to find systematic ways to 
compensate for uncertainties so as to avoid intuitive 
or empirical decisions. Recently we proposed a 
solution method to nonlinear steady state problems 
under single chance constraints (NSCS), in which 
direct computation of the probability of holding the 
output constraints is avoided (Wendt et al., 2002). 
The basic idea is to map the chance constrained 
region of the outputs back to a bounded region of the 
uncertain inputs. This can be done by a monotone 
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relationship between an input Sξ  (assuming there 

are S uncertain variables) and the constrained output 

iy . Thus the output probability can be computed by 

integration of the density function of the uncertain 
inputs, e.g. if ↑↑⇒ iS yξ , then 
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For the multivariate integration, collocation on finite 
elements is used to discretize the bounded region of 
the uncertain inputs. The input boundary max

Sξ  is 

computed inversely by the Newton-Raphson method 
based on the output value of max

iy . Since this 

boundary depends on the realization of the uncertain 
variables ( 11, −Sξξ L ), it has to be computed on each 

collocation point of these variables. In this way, the 
equality constraints (model equations) are eliminated 
by expressing the state variables in terms of decision 
and uncertain variables. Again, a sequential solution 
approach is used. It can principally be described 
with Fig. 4. Due to the uncertainty, three different 
controls will result in three different output 
distributions: 1) too conservative (e.g. resulting in 
great operation costs), 2) acceptable and 3) too 
aggressive (resulting a high probability of constraint 
violation). Due to the monotony, the bound values 

(
)3(max)2(max)1(max ,, iii ξξξ ) of the uncertain variable can 

be determined and thus the probabilities of holding 
the constraint can be computed.  
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Fig. 4: Approach to nonlinear constrained problems 
 

Principally, this approach can solve problems under 
uncertainties with any kind of distributions, provided 
the density function and a monotone relationship 
between the constrained variable and one of the 
uncertain inputs are available. A numerical 
integration scheme for problems with correlated 
Gaussian inputs is developed. It should be noted that 
for normal distributions the boundaries of the 
infinite integrals in (8) can be chosen as ]3,3[ σσ− . 

A nested computational scheme to the multivariate 
integration is proposed based on the fact that the S-
dimensional integration can be computed by an (S-
1)-dimensional integration. The gradients of the 
probabilities to the controls can be computed in the 
same way. To address the issue of feasibility, one 
can first define the objective function as 
maximization of the achievable probability. The 

problem is then solved for the value of maxα . For 
some practical processes, one may gain this value 
through simulation. For example, if the control is 
monotone with the constrained variable, then maxα  
corresponds to the confidence level with the lower 
or upper bound of this control variable. This 
approach can straightforwardly be extended to 
multiple single probabilistic constraints. For each 
constraint a probability computation will be made in 
the form of (8). In this case, different confidence 
levels can be selected for different output 
constraints. The extension of the approach to a joint 
chance constrained problem (NSCJ) is not a trivial 
task, since it may be difficult to find an uncertain 
variable which is monotone with the joint 
probability. It may be possible to find such a 
variable by carefully analyzing the relations between 
the uncertain inputs and constrained outputs. This 
can be done with process simulation by perturbing 
the uncertain variables.  
 
This approach has been extended to solve NDCS 
problems of nonlinear dynamic optimization under 
uncertainty (Arellano-Garcia et al., 2003). We 
consider dynamic problems with constrained outputs 
at selected time points and with constant uncertain 
inputs. The control policy u(t) for the entire 
operation time will be developed to optimize the 
objective function subject to single chance 
constraints of holding the point restrictions. This is a 
suitable formulation to optimize batch process 
operations under model parameter uncertainty. Two 
difficulties have to be overcome in solving such 
dynamic problems. First, since multiple time 
intervals are considered, the reverse projection of the 
output feasible region to a region of uncertain inputs 
is not trivial. The method of bisection through 
simulation seems to be efficient to address this 
problem. This is because it is a one-to-one 
projection. Second, since the controls have different 
impacts on the outputs in different time intervals, the 
gradients of the uncertain input to the controls in 
each interval have to be computed and passed to the 
time points from interval to interval in order to 
compute the gradients of the probability.  
 

6. OPEN-CLOSED FRAMEWORK 
 
A closed-loop control requires on-line measured 
values of controlled variables. However, many 
variables in the engineering practice can not be 
measured on-line (e.g. concentration, viscosity, 
density etc.). These variables represent the qualities 
of products and their control is desired. To address 
this problem, measurable variables (temperature, 
pressure) are chosen as controlled variables to 
indirectly control the product quality. This concept 
can be described with Fig. 5. y will be controlled at 
their setpoints SPy  by using controls u. Control of 

Cy  is desired, but due to the lack of on-line 

measurement it has to be open-loop. In these cases, 



 6

Cy  needs to be constrained but y is not constrained. 

To ensure the product quality, the present solution in 
the industrial practice is to choose an extremely 
conservative setpoint value. This leads to the fact 
that the product quality will unnecessarily be much 
higher than specified and, due to the greater flow 
rates of the controls, the operation costs will be 
much higher than necessary.  
 
Therefore, it is necessary to choose an optimal set of 
setpoints for the controllers. This can be gained by 
chance constrained optimization, i.e. the costs will 
be minimized and the constraints to Cy  satisfied 

with a desired confidence level. This leads to a new 
concept of control: to control open loop processes by 
closed-loop control. Unlike the above problem 
definitions where controls are decision variables, in 
the closed framework the setpoints of the 
measurable outputs should be defined as decision 
variables. Moreover, controller equations have to be 
included in the problem formulation. It is normally a 
complicated NDTS or NDTJ problem. In practice, 
many continuous processes have constant uncertain 
inputs, and their impact on the controlled variables y 
can easily be compensated for by the controllers. 
Then the problem is reduced to a NSCS or NSCJ 
problem which can be solved by the approach 
discussed in the last section. 
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Fig. 5: The open-closed framework 

 
The approach has been applied in a pilot distillation 
column to separate a methanol-water mixture with 
uncertain feed flow and composition as well as 
column pressure (Li et al. 2003). The operating 
energy is to be minimized subject to a rigorous 
model composed of component and energy balances, 
vapor-liquid equilibrium and tray hydraulics for 
each tray. The temperatures on the sensitive trays are 
selected as the controlled variables, while the bottom 
and top product purity are probabilistically 
constrained. The optimization results provide the 
profiles of the objective function value and the 
corresponding controller setpoints along with the 
confidence level to hold the product specification.  
 

7. CONCLUSIONS 
 

We have discussed the concepts, solution strategies 
and perspectives of chance constrained optimization 
and control. Since the uncertainty properties are 
taken into account, the solution of the problem is a 
decision a priori. A predefined probability to satisfy 
the constraints will be held under the uncertainty and 
thus the decision is robust. Moreover, the solution 
provides a comprehensive relationship between the 

performance criterion and the probability level of 
satisfying the constraints. Thus one can decide on 
proper actions which will result in a desired 
compromise between profitability and reliability. In 
this way, conservative or aggressive decisions, 
which may have been made so far, can be prevented. 
We have solved LDTJ, NSCS and NDCS problems 
and applied these approaches to several optimization 
and control applications. Development of more 
efficient methods to address high dimension NDTJ 
problems remains a challenge for future work.  
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