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Abstract: A method of controlling general nonlinear processes is presented. Tt is
applicable to stable and unstable processes, whether non-minimum- or minimum-
phase. The control system includes a nonlinear state feedback and a reduced-
order nonlinear state observer. The state feedback induces an approximately linear
response. The application and performance of the control method are shown by
implementing it on a chemical reactor with multiple steady states. The control
gystem is used to operate the reactor at one of the steady states, which is unstable
and non-minimum-phase. The simulation results show that the closed-loop system

is globally asymptotically stable.
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1. INTRODUCTION

During the past 20 years, many advances have
been made in nonlinear model-based control,
mainly in the frameworks of model-predictive and
differential-geometric control. In model-predictive
control, the controller action is the solution to a
constrained optimization problem that is solved
on-line. In contrast, differential-geometric con-
trol is a direct synthesis approach in which
the controller is derived by requesting a desired
closed-loop response in the absence of input con-
straints. In other words, model-predictive con-
trol involves numerical model inversion, while
differential-geometric control involves analytical
model inversion. In model-predictive control, non-
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minimum-phase behavior is handled simply by
increasing prediction horizons, but in differential
geometric control, special treatment is needed.

Differential-geometric controllers were initially de-
veloped for unconstrained, minimum-phase (MP)
processes. During the past two decades, these
controllers were extended to unconstrained, non-
minimum-phase (NMP), nonlinear processes. The
resulting controllers include those developed by
(Kravaris and Daoutidis, 1990; Isidori and Byrnes,
1990; Tsidori and Astolfi, 1992; Wright and Kravaris,
1992; van der Schaft, 1992; Isidori, 1995; Chen
and Paden, 1996; Devasia et al., 1996; Doyle 11T
et al.; 1996; McLain et al., 1996; Hunt and Meyer,
1997; Niemiec and Kravaris, 1998; Kravaris et al.,
1998; Devasia, 1999). Most of these controllers
are applicable only to single-input single-output,
NMP processes. Although controllers of Niemiec
and Kravaris (1998), Isidori and Byrnes (1990),



Isidori and Astolfi (1992), van der Schaft (1992),
Chen and Paden (1996), Hunt and Meyer (1997),
Devasia et al., (1996), Devasia (1999), and Isidori
(1995) are applicable to multi-input multi-output
(MIMO), NMP processes, either sets of partial
differential equations must be solved (Isidori and
Byrnes, 1990; Isidori and Astolfi, 1992; van der
Schaft, 1992), or the controllers are applicable
to a very limited class of processes (Chen and
Paden, 1996; Hunt and Meyer, 1997; Devasia et
al., 1996; Devasia, 1999; Isidori, 1995). Recently
a differential-geometric control law was devel-
oped by Kanter et al. (2002) for stable, nonlinear
processes with input constraints and deadtimes,
whether the delay-free part of the process is non-
minimum- or minimum-phase. This control law
cannot be used to operate a process at an unstable
operating point.

This paper presents a control method that is ap-
plicable to stable or unstable nonlinear processes,
whether minimum- or non-minimum-phase. The
control system includes a nonlinear state feedback
and a reduced-order nonlinear state observer. The
state feedback induces an approximately linear
response. The application and performance of the
control method are shown by implementing it on
a chemical reactor with multiple steady states.

This paper is organized as follows. The scope of
the study and some mathematical preliminaries
are given in Section 2. Section 3 presents the
nonlinear feedback control method. The applica-
tion and performance of the control method are
illustrated by numerical simulation of a chemical
reactor with multiple steady states in Section 4.

2. SCOPE AND MATHEMATICAL
PRELIMINARIES

Consider the general class of multivariable pro-
cesses with a mathematical model in the form:

dx
Y= Jww. 2(0) :m} v
Yy = h(l’)

where 2 = [z;---2,]T € R" is the vec
tor of state variables, u = [uy---un]? €
R™ is the vector of manipulated inputs, y =
[y1---ym]T € R™ is the vector of controlled out-
puts, f(l'l') = [fl(l'u) B fn(l'u)]T and h‘(l') =
[hi(x) -+~ hy(z)]T are smooth. The relative order
(degree) of a state x;, is denoted by r;, where r; is
the smallest integer for which 9[d"z;/dt™]/Ou #
0.

For a given setpoint value, ys,, the corresponing
steady state values of the state variables and
manipulated inputs satisfy:

0= f(l'ss:uss)
1. = hir_ 0

These relations are used to describe the depen-
dence of a nominal steady state, x4, ., on the
setpoint: xssy = F'(ysp).

Let H(z) = z and define the following notation:

dx;
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drile;
ri—1 _ 2
H’Z (l.) diri—1
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where p; > r; and ut® = dfu/dt’.

3. NONLINEAR CONTROL METHOD

A state feedback that induces approximately lin-
ear responses to the state variables, is first de-
rived. A reduced-order state observer is then de-
signed to reconstruct unmeasured state variables
from the output measurements. To add intgeral
action to the state feedback-state observer system,
a dynamic system is finally added.

3.1 State Feedback Design

Let us request a linear response of the following
form for each of the state variable:

(1D + 1)7'xy = Tysy,
: (3)
(EnD + 1)pn$n = Tssy,
where D = d/dt, and €,--- e, are positive

constants that set the speed of the state responses.
The state responses in (3) can be obtained only
when n = m. However, since in many processes
m < n (there are more state variables than
manipulated inputs), the state responses in (3)
cannot be achieved. We relax the request for
the linear responses by trying to obtain state
responses that are as close as possible to the
the linear ones described by (3). To this end, we
solve the following moving-horizon optimization
problem:
m

min Zwi l|zq, (T) — Z:5(T)

w4

2
gis[t, t+Th,” (4)

subject to:

2Om=0 F£>1.



where ¢ represents the present time, and &;(7) and
x4,(7) are predicted values of the state variable a;
and the desired (reference) trajectory of the state
variable, respectivey. [|z:(7) denotes

gis[t, t+Th
the g;-function norm of the scalar function ;(r)
over the finite time interval [¢, ¢ + T},] with T}, >
0:

1

||z:(T) QidT] ;g > 1

t+Th,
G b+ Th, = / |:(7)
t

and wq,--- .w,, are adjustable positive scalar
weights whose values are set according to the
relative importance of the state variables: the
higher the value of w;, the smaller the mismatch
between x4, and x;.

3.1.1. Output Prediction Equation  The future
value of the ith state variable over the time
interval [¢,t + T},] is predicted using a truncated
Taylor series:

dl’l‘(t)

i’i(T) :l’l‘(t)-{— T[T—t]-{-“‘-{—
i K (5)
o) -t
dtp: pil o
where
z;(t) = H;(z(1))
dai(t) _
7 H; (x(t))
d" it _ i1
—rr = Hi (@)
dril'i(t) s
T = H (), w9 (1)
drixi(t) _ P 0 Pi—Ti
dtp: _Hi (l'(t):u (t) :u( )(t))

3.1.2. Reference Trajectory  The reference tra-
jectory of the ith state variable, x4, . describes the
path that the ith state variable, z;, is forced to
follow at time ¢. The reference trajectory is track-
able when the following conditions are satisfied:

zq,(t) = z:(t) = Hi(2(t))

drqg,(t)  dxi(t) 4
F7aR e H; (z(t))

diitzg () da(t)
deri—t dtri—l
Furthermore, every reference trajectory, x4, should

take its corresponding state variable, x;, to its set-
noint valne. ».. .

= H]  a(t)).

as t = oxr. A class of reference

trajectories that has these properties is described
by

(1D + 1)Pray, (1)

: = Tssy
(emD + 1)Pmzy (1)
subject to the “initial” conditions:
g, (t) = Hi(z(t))

dri*ll'dz. (t) . -
e (1)

d g, (t) s

T H (x(t),uO (1))

i=1, m

dpi_ll'dz‘ (t) _ pi—1 (0) (pi—1—r;)
gt = HT (@), (), )

A series solution for the reference trajectory, zg;,,
has the following form:

e [r — ¢

Ea (1) = Hi(x(t)) + D Hi(z(t)
=1 :

= 0 mrey oy [T — 8
+ Z Hi (l'(t)u( )(t) ' :u( z)(t)) Iz
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s, —Hi(x(t))—rﬂef PO mt (2 (1))
z >(7)

€

+

Zf (’2) HE (), u®(0), - ,ult (1)

b=r;
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€

—t P
X % + higher order terms (6)

7.

3.1.8. State Feedback For a process in the from
of (1), by using the series forms of the output
prediction and reference trajectory equations in
(R and (R). the antimization nroblem in Fa.4 is:
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(7)

In the case that n = m, the performance index
in (4) takes the value of zero and thus, the linear
closed-loop state responses of (3) are achieved.

The preceding state feedback is represented in a
compact form by:

u=U(x,zs5,) (8)

3.2 Reduced-Order State Observer

In general, measurements of all state variables
are not available. In such cases, estimates of the
unmeasured state variables can be obtained from
the output measurements. Here, we use a reduced-
order nonlinear state observer to reconstruct the
unmeasured state variables. The details and prop-
erties of this estimator can be found in (Soroush,
1997).

For a nonlinear process in the form of (1), the non-
redundancy of the controlled outputs ensures the
existence of a locally invertible state transforma-
tion of the form

HEaH

where n = [1,+++ ,Mn—q]?, and P is a constant
(n —q) x n matrix which for the sake of simplicity,
is chosen such that (i) each row of P has only one
nonzero term equal to one, and (ii) locally

The new variables .-+ ,n,_, are simply (n —
g) state variables of the original model of (1),
which satisfy the preceding rank condition, and
thus the state transformation [n y]* = T(z) is
at least locally invertible. In many cases such as
the process example considered in this article,
the measurable outputs are some of the state
variables. In such cases, the state transformation
is linear and elohallv invertihle.

The system of (1), in terms of the new state

variables 1y, -+ , Mg, y. takes the form
n = Fn(n:y:u)
: 9
{y = Fy(n,y,u) ©)
where

Fy(n.y,w) =Pf [T '(n,y),u];

Fy(my:u):ag—(;) - )f[T_l(my):u]
=T Yy

One can then design a closed-loop, reduced-order
observer of the form:
& =T '(z+ Ly.y)

(10)

where the constant [(n — ¢) x ¢] matrix L is
the observer gain. The observer gain should be
set such that the observer error dynamics are
asymptotically stable (Soroush, 1997).

3.8 Integral Action

To ensure offset-free response of the closed-loop
gystem in the presence of constant disturbances
and model errors, the final control system should
have integral action. The integral action can be
added by using the dynamic system:

(€1D + 1);01&-1 = ¢1(1’,U)

: (11)
(EnD + 1)pn€n = ¢n($u)
where
¢i(z,u) = Zef (%) HE(x)+

=0

pi—1
Z€f<pz>H’f($u(O) :u(l—m)): 7':1 ;M

Z:h‘

3.4 Control System

Combing the equations in (8), (10) and (11) leads
to the following control system that has intgeral
action:

£ = Fy(z+ Ly,y,u) — LFy(z + Ly, y.u)
& =T Hz+ Ly.y)
(1D + 1)) = 1 (z.u)
(enD +1)&n = gn(z,u)
v = F(ysp)_i'+€
u = U(z,v)
(12)
The control system parameters eq,--- . €, set the

speed of the closed-loop state responses; the
smaller the value ¢;, the faster the x; response.

The parameters py, -« - , pn, should be chosen such
that py = r1,---,pn = 7, when the process is
minimum-phase, and p; > 71, -+ ,pn > 7, when

the nracess is non-minimnm-nhage.
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Fig. 1. Closed-loop response of the reactant outlet Fig. 2. Closed-loop response of the outlet stream
concentration for different initial conditions. temperature corresponding to Figure 1.
NOTATION
4. APPLICATION TO A CHEMICAL A= Regetant
REACTOR B = Product
C 4, = Inlet concentration of the reactant,
kmol m=3.
Consider a constant-volume, non-isothermal, C'a= Outlet concentration of the reactant,
continuous-stirred-tank reactor, in which the re- kmol m=>.
action A — B takes place in liquid phase. The D = Differential operator, D = d/dt.
reactor dynamics are represented by the following k = Reaction rate constant, s~
model: m= Number of manipulated inputs and
controlled outputs.
dC s n = Process order.
= = —kCa+ (Ca;, — Ca)u/V r; = Relative order of state variable z;.
dT (13) Ti _ ;r{ime’ " ] K
= 6 -, 13 = Reactor outlet temperature, K.
dat WO+ (R~ D)V +4 T; = Reactor inlet temperature, K.
y=T u = Process input vector.
V' = Reactor volume, m?.
x = Vector of state variables.
where k = 5.0 x 10%exp(—8100/T) s~', v = y = Vector of controlled outputs.
39 m® K kmol™!, ¢ = —2.519 x 1072 K.s7!, ysp = Vector of set-points.
Ca, = 12 kmol m™, T; = 300 K, and V =
0.1 m?3.
Greek
The control method of (13) is applied to the reac-
tor, and the resulting controller is used to operate
the reactor at the unstable, non-minimum-phase €1, , €, = adjustable parameters of controller.
steady state (6.319 .-’c:mol.m_"‘, 302.0 K). The &,---,&, = State variables of the controller.
following controller parameter values are used: v = Reactor model parameter, K m?* kmol~"'.
€, = 360 s, €2 = 360 s, pl = 2, pp = 2, and
L=05

For the two sets of initial conditions, [C'4(0), T'(0)]=
[3.0, 320] and [10.0, 290], the peformance of the
controller is shown in Figures 1-3. As can be seen
from these figures, the controller is capable of
operating the process at the desired steady state,
reeardless of the initial conditions of the nrocess.
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