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Abstract: A zone model predictive control algorithm is proposed and developed through 
the soft constraint method. The estimation of zone violation is avoided; as a consequence 
the selection of the approximate setpoint when the control variable violates its zone 
constraint is skipped. To further improve control performance, zone trajectory method is 
proposed and a parameter is provided to trade off the response performance and model 
accuracy. The effective performance is proved by the simulation results. The stability of 
the algorithm is also analyzed.  Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
Although in industrial control applications, the 
controlled variable usually has a specific set point. It 
is common that many of the controlled variables 
have range limits rather than set point. This kind of 
process variable is treated as zone variable in most 
industrial MPC controller such as RMPCT, 
DMCPlus and HIECON, which all provide zone and 
setpoint options for CVs to meet industrial need 
(Richalet, et al., 1978; Qin and Badgwell, 1997; 
Morari and Lee, 1999). 
 
Zone control is also necessary for over-specified 
processes, whose process model can be cast at steady 
state by the following form (Muske and Rawlings, 
1993) 
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where ija  is steady gain ， id  is disturbance. When 
the number of outputs exceeds the number of inputs, 
all the set points cannot be met at the same time. If 
one of the set points is changed into a zone 
specification, the outputs specifications are relaxed 
slightly. The probability that the process will meet all 
of its specifications increases. Moreover, because the 
output’s change within zone is ignored, the need to 
coordinate the movement of inputs is largely 
eliminated, which decreases its sensitivity to model 
mismatch and improves its robust performance, 
especially for the process whose outputs and inputs 
variables are interacted with each other strongly. 
 
*Address correspondence to this author 
E-mail: xuzh@iipc.zju.edu.cn. 

In conventional dynamic model control, zone control 
cannot be solved directly. But the receding 
optimization formulation of model predictive control 
provides the possibility to realize zone control. Zhou 
(2001) used setpoint approximation method to 
implement zone control, but the limit was that it still 
needed estimation of zone violation concomitant with 
the selection of the approximate setpoint value. 
 
In this paper, a zone model predictive control 
algorithm using the soft constraint method is 
proposed to achieve better control performance and 
to avoid the mentioned problem. To further improve 
control performance, zone trajectory method is 
proposed which provides a tuning parameter to trade 
off the response performance and model accuracy. 
The stability of the algorithm is analyzed finally. 
 
 

2.  ZONE  CONTROL  ALGORITHM 
 
Consider a stable multi-input multi-output system 
represented by the following model (Garcia, et al., 
1989) 
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where   
( )kjky + =Predicted output vector at time jk +  
( )ky =Actual output vector at time k  
( )ku =Actual input vector at time k  



( )kjkd + =Predicted disturbance vector at time jk +  
N = model horizon length 
r = number of inputs  
s = number of outputs 
 
For setpoint control, the optimization problem at 
every sampling time is solved (Cutler and Ramaker, 
1979; Garcia and Prett, 1986; Garcia, et al., 1989): 
Find the a optimal sequence of M future manipulated 
variable moves ( ) ( )1,, −+∆∆ Mkuku L  so that the 
prediction of the manipulated variables and 
controlled outputs satisfy the criteria which 
minimizes the sum of squared deviations of the 
predicted CV values from a time varying reference 
trajectory over P future time steps. The formulation 
of optimization problem is: 
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where  
( )kjkw + =reference trajectory value at time jk +  

 
A zone region is defined by the minimum and 
maximum values of a controlled variable’s desired 
range of values. One way to simply implement zone 
control is to use setpoint approximation method: 
when the CV is predicted to lie within its zone, its 
weight coefficient of matrix Q is set to zero so the 
controller will ignore it; when the CV is predicted to 
violate its zone limits, its weight is non-zero and a 
point within zone is defined as the approximate 
setpoint and is chose to drive the output back into the 
zone. The simple way to estimation the zone 
violation of output is by examining the initial 
predictive value of outputs.  
 
Even though the initial predictive value of outputs 
meets its zone limits, some of output predictive value 
still may violate its limits when correcting other 
outputs error during calculating the optimal inputs 
moves sequences. The controller will transiently 
move the output farther outside its zone limit, 
because the controller ignores the output’s error 
when the predictive initial value of outputs lie within 
its zone. The solution of set point approximation 
method is generally sub-optimal. Moreover, the 
selection of the approximate setpoint when the 
control variable violates its zone constraint lacks 
rigorous analysis rules, because distinct response 
performance can be achieved by selecting different 
approximate setpoint values. 
 
For zone control, the deviation between the output 
predictive value and zone limits [ ]     +−

cc yy is 
defined as 
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The optimization problem of zone control can be 
formulated as 
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Apparently, ( )kjke + is the optimal value ( )kjk +*ε  of 
following optimization problem 
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 Therefore, optimization problem (5) can be further 
transformed as 

( ) ( )
( ) ( )

( ) ( )

( )
( )

( ) ( ) ( )
( ) Pjkjk

kjkykjkykjky

Mjujkuu

ujkuuts

jkukjkJ

cc

M

j
S

P

j
Q

kPkkk
Mkuku

k

,1  ,  0       

        

,1  ,        

 (6)                                                    .

min
1

0

2

1

2

,,1
1,,

=∀≥+

++≤+≤+−

=∀∆≤+∆≤∆

≤+≤

+∆++=

+−

+−

+−

−

==
++

−+∆∆
∑∑

ε

εε

ε

εε L
L

  
In the above problem formulation, the zone limits is 
treated as soft constraints by adding a slack variable. 
At the same time the slack variables are also included 
in the objective function to be minimized.  
 
Soft Constraints are used to prevent the controller 
from introducing transient errors by defining soft 
constraints on the controlled outputs at intervals from 
the current interval to predictive horizon. When the 
controlled variable has a set point instead of a zone 
region, both the upper and lower limits of the zone 
are set equal to the set point.Through soft constraint 
method, the estimation on the zone violation is 
avoided; as a consequence the selection of the 
approximate setpoint when the control variable 
violates its zone constraint is skipped. 
 
In order to drive the outputs back into its zone region 
more slowly to avoid overshoot consequently, zone 
trajectory is introduced for each controlled output as 
follows
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where ( ) ( )jkyjky rr ++ +−       is determined as follows: 
If ( )ky  within [ ]    +−

cc yy , then  
( ) −− =+ cr yjky    and ( ) ++ =+ cr yjky    

If ( ) +≥ cyky , then  
( ) −− =+ cr yjky    and  
( ) ( ) ( ) ++ −+=+ c

jj
r ykyjky αα 1    

If ( ) −≤ cyky , then  
( ) ++ =+ cr yjky   and
( ) ( ) ( ) −− −+=+ c

jj
r ykyjky αα 1    

where α is the time constant, which is determined 



by the trade-offs that inherently exist between speed 
of response and model accuracy or inputs movement. 
A smaller value gives faster response and 
consequently large MV movement, which requires a 
more accurate model for stable control. A larger 
value, on the contrary gives slower response with 
smaller MV movement and works well with a less 
accurate model. 
 
The controller is obliged to keep the CV within the 
constraints defined by the zone trajectory, but it is 
allowed to follow any figure within these constraints. 
The sensitivity to model error is decreased and the 
robustness is improved 
 
 

3. STABILITY ANALYSIS 
 

Alex Zheng and Manfred Morari(1995) analyzed the 
closed-loop stability for constrained MPC with 
setpoint control. Zone Control also has the similar 
property when using soft constraint method. 
Assume:  

a) There is no model mismatch 
b) Predictive horizon is infinite 
c) Steady-state gain matrix of the model has 

full row rank.  
then the closed-loop system is asymptotically stable 
if and only if the optimization problem (7) is feasible 
at the first sampling time. 
Proof: 
If the optimization problem is not feasible, then the 
controller is not defined. 
At sampling time k, the optimal solution is 
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At sampling time k+1,the solution (18) is a feasible 
solution but may not be the optimal solution. 
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Define ( ) ( )kkkkuu kk 1   ** +=∆=∆ εε  
The above feasible control input yields: 
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Therefore, the sequence { }*
kJ  is non-increasing, its 

low boundary is zero. Consequently, the sequence 
{ }*

kJ  converges. So 
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This together with 0>SQ、 implies that 
 0→kε and 0→∆ ku as ∞→k . Since the 

steady-state gain matrix of the model is bounded, 
( )ky approaches the steady-state value 

asymptotically. 
 
 

4. SIMULATION 
 

(1) Consider the two-input three-output system: 
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with the following input constraints 
03.0,         0.5,5.0 2121 ≤∆∆≤≤− uuuu  

and the following initial conditions 
 0         0 21321 ===== uuyyy  

Choose T=5s,N=100,M=4,P=30,Q=I,S=I,α= 0.95 
If all of the controlled outputs have set points 

67.0    64.0      59.0 321 === yyy
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Fig. 1. Responses of setpoint control 
 
Because the degree of freedom is insufficient, it is 
physically impossible to keep all output at setpoint or 
within range. When the set point for 3y is replaced by 
zone limit [ ]7.065.0 , all output specification would 
be met. 
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Fig.2. Responses of zone Control 
 
(2) Consider the system: 
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with the following input constraints 
03.0,,          1,,1 321321 ≤∆∆∆≤≤− uuuuuu  

and the following output regulatory objective 
5.0,0.5-         2.0 321 ≤≤= yyy  

and the following initial conditions 
 0         0 321321 ====== uuuyyy  

Choose T=5,N=100,M=4,P=30,Q=I,S=I,α= 0.95 
When using set point approximation, the result is 
shown as follows: 
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Fig.3. Responses of set point approximation method 
 
When using soft constraint method, the result is 
shown as follows: 
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Fig. 4. Responses of soft constraint method 
 
From the simulation result, the soft constraint 
method prevent the controller from moving a CV 
farther outside zone while correcting other CV errors 
by defining constraints on the CVs that are imposed 
at intervals from the current interval out to the 
predictive horizon. In setpoint approximation method, 
the controller will ignore the CV when the CV is 
predicted to be within its zone, so its performance is 
worse than that with soft constraint method. 
 
 

5. CONCLUSION 
 

Estimating the violation of zone output limits in the 
setpoint approximation method is simply through 
examining its output predictive initial value, but it 
can not always keep zone output in its zone limit 
while correcting other outputs errors. Using the soft 
constraint method, zone specification is directly 
imposed as constraints in optimization formulation, 
while correcting other CV errors, it will not  violate 
zone output limits, but its computing burden is larger 
than the setpoint approximation method. The tuning 
parameter provided by zone trajectory method 
enables a flexible way to achieve better performance 
and reach a tradeoff between performance and model 
accuracy. 
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