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Abstract: An Artificial Neural Network (ANN) is an adequate tool for modeling 
nonlinear systems and can be applied straightforward in the predictive functional control. 
New structure of ANN multi-step prediction that is different from cascade or parallel is 
presented, at the same time, the nonlinear predictive functional control using this ANN 
model has been developed in this paper. The useful of this control strategy is evaluated 
by applying it to a Continuous Stirred Tank Reactor (CSTR). The simulation results 
indicate that it is more effective than PID control. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 

Model Based Predictive Control (MBPC) refers to a 
class of algorithms that compute a sequence of 
manipulated variable in order to optimize the process 
performance. It is recognized as an efficient control 
strategy by the industrial control community. The 
first MBPC techniques were developed in 1970s. 
Model Predictive Heuristic Control (MPHC) based 
on finite impulse response has been successfully 
applied in PVC plant, a distillation column and 
power plant by Richalet, et al.(1978). Dynamic 
Matrix Control (DMC) based on finite step response 
was developed by Cutler, et al.(1980). Not only 
MPHC but also DMC belong to MBPC based on 
nonparametric model. In 1987, the Generalized 
Predictive Control (GPC) of Clarke, et al.(1987a,b) 
which absorbs the advantages of predictive control 
and adaptive control can turn the model parameter 
online. The Predictive Functional Control (PFC) 
which belongs to the third generation predictive 
control has been developed by Richalet, et al.(1988), 

which has been successfully used in the fast and 
accurate robot control. 
 
Many processes are sufficiently nonlinear to preclude 
the successful application of linear model based 
predictive control technology. MBPC such as DMC 
and GPC developed initially for linear processes have 
been successfully extended to nonlinear processes by 
many researchers (Mutha, et al.(1998), Robit, et 
al.(1998)). Henson(1998) has published excellent 
technical reviews of Nonlinear Model Based 
Predictive Control (NMBPC). It has presented the 
current status of NMBPC technology, and meanwhile 
outlined myriads of directions for future research. 
 
The purpose of this paper is to develop a Nonlinear 
Predictive Functional Control (NPFC) based on the 
Artificial Neural Network (ANN) model. The general 
principle of PFC is discussed in section 2. In section 
3, the ANN model is developed. NPFC using ANN 
model is developed in section 4. Simulation results 
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are elucidated in section 5 and conclusion is 
described in section 6. 
 
 

2. GENERAL PRINCIPLE OF PREDICTIVE 
FUNCTIONAL CONTROL 

 
PFC belongs to the classical family of MBPC. It is 
essentially based on the following three principles of 
MBPC: predictive model, receding horizon 
optimization, modeling error compensation. 
 
 
2.1 Predictive model 
 
PFC uses a model to predict future output. The 
output of the model ym(k+i) can be divided into two 
main components: free response yl(k+i) and forced 
response yf(k+i). 
 
Free response has nothing to do with future inputs 
and thus just depends on the actual model output.  
 
The other component of the model output is forced 
response that depends on the set of future 
manipulated variables and has nothing to do with the 
actual model output. The structure of manipulated 
variables is the key to the control performance in 
PFC. The future manipulated variable are structured 
by a linear combination of functions defined forehead 
that we refer to as base functions. The future 
manipulated variables u(k+i) and forced response are 
given by: 
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Whereμn stands for coefficients, ubn(i) the nth base 
function at t=iTs, ybn(i) is the advance output of the 
nth base function at t=iTs and Ts is the sampling 
period. The selection of the base functions depends 
on the nature of the set point and on the process. 
Often the polynomial base function set is used.  

 

 
 

2.2 Receding Horizon Optimization 
 
Various types of reference trajectories can be used. 
The most elementary reference trajectory is a 
first-order exponential trajectory. The reference 
trajectory yr(k+i) can be given by: 

yr(k+i)=c(k+i)-λi  (c(k)-yP(k))   (3) 

Where c is the set point, λ = −e Ts Tr( / )  and Tr is the 

95% response time of the reference trajectory, yP is 
the process output. 
 
The control objective of PFC is to minimize the sum 
of squared errors between the predicted output and 
the reference trajectory at all coincidence points. The 
objective function can be given by: 
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Where )(~ iky +  is the predicted output at 

t=(k+i)Ts, ym(k+i) is the output of the model at 
t=(k+i)Ts, e(k+i) is the predicted errors, H1, H2 are 
coincidence horizon. 
 
 
2.3 Modelling error compensation 
 
The output of the predictive model and the process in 
general differ due to model mismatches, secondary 
input and disturbances which are not taken into 
account by the predictive model. There are several 
procedures to eliminate a permanent off-set by 
compensating the reference trajectory with the 
predicted errors between model and process output at 
each time instant of the coincidence horizon. The 
predicted errors can be given by: 

 e(k+i)=yP(k)-ym(k)   (6) 
Where yP(k) is the process output at t=kTs, ym(k) is 
the model output at t=kTs. 
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3. ARTIFICIAL NEURAL NETWORK MODEL 
 
PFC uses a model to predict future outputs. Any type 
of predictive model such as transfer function, state 
equations and ANN model can be used. NPFC 
requires the availability of a suitable nonlinear 
dynamic model of the process. The NPFC controller 
may be based on a fundamental model or a 
combination of the fundamental and empirical model. 
First, it is difficult for us to construct sufficiently 
accurate comprehensive mathematical process 
models. On the other hand, the potential disadvantage 
of the fundamental modeling approach is that the 
resulting dynamic model may be too complex to be 
useful for NPFC. In this work, ANN model is 
employed as the predictive model in PFC. 
 
During the last decade, there has been an increasing 
trend in the industry towards the use of ANN. It has 
been proven that a feed forward ANN which is 
comprised of a great number of interconnected 
neurons can approximate any continuous function to 
any desired accuracy. This makes feed forward ANN 
very suited to deal with complex nonlinear. A feed 
forward layered ANN is employed as the model of 
NPFC. 
 
The structure of ANN is shown in Fig 1. It consists 
of a layer of input neurons, a layer of output neurons, 
and two hidden layers. The transfer function f1(x) of 
the first hidden layer neuron is given by: 
         f1(x)=(ex-e-x)/(ex +e-x)   (7) 
The activate function f2(x) of the second hidden 
layer neuron is shown by: 
   f2(x)=1/(1+e-x)     (8) 
 
The transfer function f3(x) of the output hidden layer 

neuron is given by: 
  f3(x)=x       (9) 

 
The most important aspect of the ANN is learning the 
information about the system to be modeled. The 
most versatile learning algorithm for feed-forward 
layered network is back propagation (BP). 
Unfortunately, BP is very slow because it requires 
small learning rates for stable learning, on the other 
hand, it is possible for the network solution to 
become trapped in the local minimum. 
Levenberg_Marquardt(LM)( Matlab User’s Guide, 
1994) optimization algorithm is used in this 
investigation. This technique is more powerful than 
gradient descent, but requires more memory. 
 
The L_M update rule is given by: 
      △W=(JTJ+μI)-1JTE    (10) 
Where J is the Jacobian matrix of derivation of each 
error to each weight, μis a scalar, and e is an error 
vector. If the scalar μ  is very large, the above 
expression approximates gradient, while if it is small 
the above expression becomes the Gauss-Newton 
method. 
 
 

4. NONLINEAR PREDICTIVE FUNCTIONAL 
CONTROL 

 
A NPFC strategy is developed in this section. The 
principle of the NPFC using ANN is shown in Fig. 2. 
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Fig. 2 Principle of the NPFC using ANN model 
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4.1 Artificial neural network model 
 
Predictive model plays a key role in predictive 
functional control. It demands that certain precision 
must be attained, at the same time with multi-step 
prediction. Generally there are two kinds of 
structures which can fulfil multi-step prediction using 
ANN, one is cascade, the other is parallel. Cascade 
structure, in which the output of time k+1(ym(k+1)) 
can be achieved from the data of time k, and next 
time ym(k+1) as input to estimate the output of time 
k+2(ym(k+2)), and so on. The benefit of this structure 
is that only one ANN model is needed. But there also 
exists the accumulation of prediction error in such a 
structure. Parallel structure needs many ANNs to 
predict, with each ANN for a specific step. The 
benefit of parallel is that the prediction error is 
comparatively small, but the disadvantage is that the 
calculation is heavy for there are so many ANNs to 
be trained. In this paper, a new structure for 
multi-step prediction is proposed. Only an ANN is 
needed in such a structure. In order to fulfil 
multi-step prediction, an additional input J(J=1,2,…H) 
is employed, which distinguishes the ANN outputs 
ym(k+J). So the multi-step prediction is realized. 
 
 
4.2 Nonlinear predictive functional control using 
artificial neural network model 
 
The objective function of NPFC is similar to the 
other classical MBPC. With a certain optimization 
procedure we can determine a sequential manipulated 
variable that minimizes the objective function. The 
objective function of NPFC is given by equation 4. 
The method of Levenberg-Marquardt or 
Gauss-Newton which can be realized by MATLAB 
TOOLBOX is used as optimization algorithm. 
 
The algorithm of NPFC can be summarized in the 
following steps: 

1) Select the sample for training 
2) Identify the ANN model with sample 
3) Evaluate the extent of ANN model 
4) Realize the NPFC strategy using ANN model 

and L_M optimization algorithm 

① Calculate the error between the output of 
process yp(k) and actual model output 
ym(k) 

② Calculate the actual model output 
ym(k+i),i=1,2,…,H and the predictive 

output of the process i)(ky~ +  

③ calculate for reference trajectory of 
yr(k+i), i=1,2,…,H 

④ calculate the sequence manipulated 
variable u(k+i) i=1,2,…,H using the 
method of L_M optimization algorithm. 

⑤ Perform u(k) and go to ① at the next 
sample time. 

 
 

5. SIMULATION 
 
In order to evaluate the performance of the NPFC, a 
Continuous Stirred Tank Reactor (CSTR) is chosen 
as an application example. 
 
 
5.1 Reactor 
 
The dynamic equations describing the CSTR systems 
can be written as: 
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The dynamic equations can be written in 
dimensionless from Venkateswarlu(1997) as: 
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    Where x1 and x2 are the dimensionless reactant 
concentration and temperature, respectively. The 
input u is the cooling jacket temperature. The 
physical parameters are chosen as: 
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Here the task is to control the reactant concentration 
x1, and the manipulated variable is the input u of the 
cooling water temperature. 
 
 
5.2 Predictive model of artificial neural network 
 
Given the x1(k), x2(k),u(k) at the t=(k)Ts and J, the 
x1(k+J) at the t=(k+J)Ts can be obtained. The number 
of neurons in the two hidden layers is 10, 
respectively. In order to evaluate the performance of 
the ANN model, 30 groups input data are created at 
random to compare the output of the ANN and 
process. The output of ANN model (+) and the 
output of the process (o) are shown in the Fig 3(a). 
The errors between the output of ANN model and 
process are shown in Fig 3(b). We can obtain that the 
accuracy of ANN model is enough for NPFC. 

5.3 Simulation of nonlinear predictive functional 
control and PID control for CSTR 
 
Simulation studies are carried out in order to evaluate 
the performance of the NPFC, the results of PID are 
also presented as a reference. The parameters of PID 
are P=0.2, I=30 seconds and D=0. The NPFC selects 
one base function. The parameters of NPFC are given 
by H=5, Tr=10 seconds. 
 
The setpoint of concentration is changed from x1=0.2 
to x1=0.6 at t=20, at the same time, a step 
disturbance 0.1 has been applied to the system at 
t=200. The results of PID control are shown in the 
Fig 4(a). The manipulated variable of PID is shown 
in Fig 4(b). The results of NPFC are shown in the Fig 
5(a). The manipulated variable of NPFC is shown in 
Fig 5(b).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3(a) Results of process output and ANN output

Fig. 3(b) Errors between process output and ANN output

Fig. 4(a) Results of PID control 

Fig. 4(b) Manipulated variable of PID control
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As can be seen from the figure, PID control has fast 
response but has large overshoot. NPFC using ANN 
has slow response but no overshoot. Compared with 
PID control, NPFC can reject the disturbance more 
effectively. 
 

6. CONCLUSION 
 
An NPFC using ANN model strategy is presented for 
control of high-nonlinear system. The performance of 
this strategy is evaluated by applying it to a CSTR 
for controlling them at the desired state operating 
point. The results illustrate that the NPFC is more 

effective for control nonlinear system than PID 
control. 
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Fig. 5(a) Result of NPFC control 

Fig. 5(b) Manipulated variable of NPFC control


