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Abstract: An active fault accommodation control law is developed for a class 
of nonlinear processes to guarantee the closed-loop stability in the presence of 
a fault, based on a neural network representation of the dynamics due to faults. 
Applications of the proposed design indicate that the fault accommodation 
control law is effective for a typical nonlinear fermentation process.  
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1. INTRODUCTION  

The study of fault diagnosis and fault-tolerant 
control has attracted much attention recently [1-8], 
due to the industrial demands for safety and 
efficiency. For certain processes, it is important 
not only to detect (and identify) but also to 
accommodate any faults quickly. Fault-tolerant 
controls have been developed to keep such 
processes in control, in spite of the occurrence 
of a fault. Based on the nature of its design, a 
fault-tolerant control can be categorized into the 
passive or active two types. A passive 
fault-tolerant control uses the same control 
scheme before and after fault, without specific 
accommodating parameters, typically by 
introducing a conservative law. For an active 
fault-tolerant control, a control reconfiguration 
takes place, following the diagnosis of a fault, to 
counteract any dynamic changes caused by this 
fault.  

Within the category of the passive 
fault-tolerant controls, reliable control is widely 
used. Results and scheme details can be found in 
references [3-5]. Robust control design is often 
adopted for reliable control to have the 
guaranteed closed-loop stability and ∞H  
performance. This type control is typically 
conservative, without controller adjustment after 
detection of a fault; the tolerance comes at the 
cost to the control performance. 

In an active fault-tolerant control, faults are 
accommodated, typically by a reconfiguration of 
the feedback control law.  An excellent 
overview on the subject has been given by 
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Patton [6]. Faults are typically associated with 
sensors and actuators failures; in 
correspondence, respective accommodation 
strategies can be so designed. For examples, 
sensor fault accommodations for MIMO systems 
have been discussed by Tortora [7]; actuator 
fault accommodations are given by Michael [8]. 
Adaptive approaches have also been used in 
fault tolerant controls. For examples, an 
adaptive compensation method for actuator fault 
with known plant dynamics has been formulated 
by Boskovic [9]; and a nonlinear adaptive fault 
accommodation controller has been designed by 
Idan [10] to make use of redundancy.   

  In this paper, a new fault accommodation 
control design is presented for a class of 
uncertain nonlinear processes. The dynamic 
changes due to faults are represented by a neural 
network, based on which an adaptive corrective 
control law is formulated to ensure the system 
stability.  
  The remainder of the paper is organized as 
follows. The problem statement and its 
assumptions are given in section 2, followed by 
the formulation of our controller and its relevant 
proofs in section 3. An illustrative example is 
given in section 4 to demonstrate the 
effectiveness of the proposed method. Finally, 
conclusions are drawn in section 5. 
 
2. PROBLEM STATEMENTS  

Consider a system described as: 
)()()]()[()()( xfTtxguxGxxx −+∆++∆+= βζζ&   (1) 

where mn RuRx ∈∈ , are the state and input of 
the system, respectively, )(xζ∆  and )(xg∆ are 
the  model uncertainty in the normal operation, 
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f  characterizes the changes in the dynamics 
due to a failure. The normal system, in the 
absence of any faults, is described by    
 )]()[()()( xguxGxxx ∆++∆+= ζζ&          (2) 
  The nonlinear fault function f  is multiplied 
by a switching function )( Tt −β , 

))(,),(),(()( 21 TtTtTtdiagTt n −−−=− ββββ L  
                                    (3) 
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where T  is the fault occurrence time. The 
problem considered is as follows: 
Fault accommodation (FA) problem: Given 
system (1), design a control Nu  for the normal 
system, and an additional control Fu  for fault 
compensation, so that  as the new 
control after the occurrence of a fault can 
guarantee the resulted closed-loop nonlinear 
system to be stable.  
 
The following assumptions are used.  
Assumption 1: There exists  and 
Lyapunov function )(xV , such that 
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where 4321 ,,, kandkkk  are positive 
constants.  
Assumption 2:  For system (1) 
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3. FAULT ACCOMMODATION 

Firstly, let’s use a neural network to represent 
fault function )(xf . Where, x  is the input 
vector to the neural network. It can be shown 
that there exists an optimized matrix *W such 

that ε≤− )()( * xSWxf  is satisfied for any 

given 0>ε . )(xS  is the sigmoid function.    

)(* xSW  can approximate )(xf  to any degree of 

accuracy, with bounded *W , WMW ≤* . With 

the above, system (1) can be rewritten as: 
)()()]()[()()( * xxSWxguxGxxx εζζ ++∆++∆+=&  (7) 

where, εε ≤−= )()()( * xSWxfx  is the estimation  

error. If we denote W  as the estimate of the 
uncertain weight matrix *W , then 
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                                    ( 8 ) 
where *~ WWW −=  and it has the appropriate 
dimension.. 
Theorem 1: Under assumptions 1 and 2, we can 
design a controller in the form of the following: 

FN uuu +=                  (9 ) 
cba
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where au  is given by assumption 1, and let   
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Where LnR ×∈Θ  and T]0,,0,[ Lθ=Θ . Then, 

the state x  is ultimately consistently bounded 
by the set: 
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with the following adaptive weight update law  
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The parameters of µαλλ andkk ,,,,, 211  can 
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be determined as in the proof. The proof of the 
above theorem is divided into the following two 
steps: step 1, we prove that there exist a nominal 
controller cba

N uuuu ++=  and a Lyapunov 
function )(0 xv  for the normal system described 
by )]()[()()( xguxGxxx ∆++∆+= ζζ& , such that the 
closed-loop of the normal system is stable; step 
2, we prove that the state x  is ultimately 
consistently bounded, using the control law 
stated in the theorem.  
 
Proof: step 1  

Substituting the controller equations of 
(9-12) into system （1） , we have: 

)]()[()()( xguuuxGxxx cba ∆++++∆+= ζζ&  

Define a positive function )()(0 xVxv = , then 
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Thus, we obtain the results 
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From (19), the stability of the normal system is 
proven. 
 
Proof: step 2:  
Define a Lyapunov function for system 1 of the 
following form: 
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By substituting Fu ( ), 1λλ  into (23), from 
Assumption 1, the derivatives of V  satisfies 
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Due to (37), it can be deduced that ( ) ( )xxWx θ,,  
are bounded consistently. From (20), we have 

( ) Vxvk ≤00                        (38) 
Therefore,  

( ) ( ) ,01

00
0

teV
kk

xv α

α
µ

α
µ −






 −+≤ .0≥∀t      (39) 

The above completes the proof that x  is 
ultimately consistently bounded by the set D . 
4. ILLUSTRATION EXAMPLE 

This section takes a fermentation process as a 
nonlinear process example to show that the 
control design of section 3 can result in a stable 
closed-loop to ensure the system states to 
converge to zero in the presence of a fault. 

The fermentation process is assumed to 
operate at a constant volume V , with the 
dynamics of biomass X , substrate S , and toxin 
concentration tC , described by the follows: 
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The parameters of MKKKqy tism ,,,,,, µ  are given 
in Table 1 for the process. 

Table 1: Fermentation model parameters 
 

Volume                        V           200[l] 
Constant                       y           0.417 
Constant                       M         0.0196 
Toxin production constant         q    0.0296[l/h(g/l)2/3 

Maximum specific growth rate     mµ      0.0135[l/h] 

Monod constant                 sK        0.05[g/l] 

Substrate inhibition constant       iK       2150[l2/g2] 

Toxin inhibition constant          tK       5.5[g2/l2] 

Defining the state as T
tCSXx ][= , and 

the input VFu /= , the equations (40-42) become: 
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Using the data in Table 1, we can find:  
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)2,2(1 −∈θ  and )1,1(, 32 −∈θθ  are the 
uncertainty parameters. In this example, a radial 
basis function (RBF) network is chosen to 
represent the dynamic changes after the fault 
occurrence, with 10 hidden nodes and 10 centers 
that are distributed uniformly in region [-1,1].  
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the weight adaptive law: 
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We choose 6.00 =k , the fault is introduced 
at sT 1= , the control results are shown in Figures 
1-6.  

Figures 1, 3, and 5 depict the control 
responses of the three states without using of the 
proposed accommodation strategy. Obviously, 
the states diverge from the set-point after the 
occurrence of the fault at T=1. Converse to the 
above, the results of using the proposed 
accommodation control law show that all states 
converge despite of the fault, as shown in 
Figures 2,4, and 6. This suggest that the 
proposed control is effective. 
5. CONCLUSION 
  An active fault-accommodation control law has 
been developed to ensure the closed-loop stability 
for a class of nonlinear systems, using a neural 
network approach. The application of the proposed 
design has been shown to be effective for a 
fermentation process. 
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Fig.1:  Control response of state )(1 tx   
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Fig.2: Control response of state )(1 tx with 

 the proposed fault accommodation. 
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Fig.3: Control response of state )(2 tx   
Without the fault accommodation 
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Fig.5: Control response of state )(3 tx   
without the fault accommodation 
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Fig.6: Control response of state )(3 tx  with 
 the proposed fault accommodation. 
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