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Abstract: A mathematic model to predict the concentration of 4-carboxy-benzaldhyde 
(4-CBA) for an industrial Purified Terephthalic Acid (PTA) oxidation unit is built in this 
paper. The model is based on a mechanism model from the results of bench-scale 
laboratory experiment and chemical reaction principle, which is structured into two series 
ideal CSTR models. Six plant factors are designed to correct the deviation between the 
laboratory model and the industrial practice. For the existing of substantial time delays 
between process variables and quality variable, the weighted moving average method is 
applied to make each variable be in same time slice. The analysis of process data by 
projection on latent variables of Partial Least Square (PLS) and analysis of Hotelling's 
T-squared statistic value of Principal Component Analysis (PCA) are gave to 
discriminate the operating data into normal operating part and load down and load up 
operating part. At the each operating part, the typical data are selected to regress the plant 
factors. The proposed model predictive result follows the tracks of the observed value 
quite well. Compared with the empirical Amoco model, the proposed model is regarded 
as to be more suitable to be applied to industrial online soft sensor. 
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1. INTRODUCTION 

 

In this Purified Terephthalic acid (PTA) 
oxidation reaction, a proprietary process of 
Amoco Chemical Company is employed for the 
catalytic liquid phase air oxidation of paraxilene. 
More than 30 patents about PTA oxidation 
process and the design of its oxidation reactor 
have been proposed in the past decade (Li, et al., 
2001). The research works about oxidation 
mechanism with high temperature and normal 
pressure also have obtained many progresses 
(Lindahl, et al., 1989, Ge, 1993, Wang, 2001). 
Lindahl, et al. (1989) gave a  set  of empirical  
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mathematical relationships between the oxygen 
uptake in the first  crystallizer,  the CO2 in the 
vent gas from the reactor stage and   
4-carboxy-benzaldhyde   (4-CBA )  content 
levels.  But the empirical model needs a bulk of 
data to regress model parameters and often 
suitable to a limited operating region. Ge (1993) 
provided the experiment results of catalytic 
oxidation kinetics of acetic acid-p-xylene system 
in liquid phase qualitatively. Wang (2001) 
proposed a first principle model based on 
bench-scale laboratory results. It simulated the 
effect of reactive temperature, catalyst ingredient 
and concentration, residence time, vent oxygen 
concentration to the concentration of the 



  

reactants. But the experimental model was only 
verified by few industrial data, and many of 
industrial application problems were not settled. 
 
The paper proposes a practical mathematic 
model to predict the concentration of 4-carboxy 
-benzaldhyde (4-CBA) for an industrial purified 
terephthalic acid (PTA) oxidation unit. The first 
principle model based on laboratory experiments 
is applied and modified according to the analysis 
of the process. The main works comprise: 1. 
obtaining 133 sets of process variables and 
corresponding quality variables by considering 
the time delay between them with weighted 
moving average method; 2. distinguishing the 
operating into normal operating and load down 
and load up operating by projection on latent 
variables of Partial Least Square (PLS) and 
analysis of Hotelling's T-squared statistic value 
of Principal Component Analysis (PCA); 3. 
configuring and regressing six plant factors to 
correct the deviation between the laboratory 
experiment and the industrial process. The 
model is composed of two series CSTR ideal 
models. The plant factors are regressed by 
several sets of typical industrial data. The 
predictive accuracy of the process model could 
satisfy the accuracy requirement of online soft 
sensor. 
 

2. PTA OXIDATION PROCESS 
 
 
Fig. 1 presents the oxidation reaction mechanism 
commonly used (Wang, 2001). The oxidation 
reaction sequence of PX generates three kinds of 
intermediates, p-tolualdehyde (TALD), p-toluic 
acid (P-T) and 4-carboxybenza-ldehyde 
(4-CBA). 

 
The industrial PTA oxidation process flowsheet 
is shown in Fig. 2. Paraxylene (PX), acetic acid 
solvent, promoter, and catalyst are continuously 
metered into feed mixing tank. The residence 
time is approximately 25 minutes. The mixed 
stream pumps the reactor, and the air are fed to 
the reactor through fourinlets. The oxidation 
reaction is conduced in two stages, first stage 
being the agitated oxidation reactor, while the 
second stage is the agitated first crystallizer. 
Exothermic heat of reaction is removed by 
condensing the boiling reaction solvent. A 
portion of this condensate is withdrawn to 
control the water concentration in the reactor, 
and the remainder is refluxed to the reactor.  
 
Reactor effluent is depressurized and cooled to 
filtering conditions in a series of three 
crystallizing vessels (first crystallizer, second 
crystallizer and third crystallizer) for the 
secondary reaction and crystallization step. Air is 
fed to the first crystallizer for additional reaction, 
which used to do polishing oxidation of 
unreacted paraxylene from the reactor. 
Precipitated terephthalic acid (TA) is recovered 
by filtering and drying. The crude TA solids are 
conveyed to the purification section feed silos 
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Fig. 2. Schematic layout of PTA Oxidation process 
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Fig. 1. The oxidation reaction process 

mechanism of PX 



  

for additional processing as shown in Fig. 2. 
 
Autoxidation of PX in acetic acid solvent with 
cobalt acetate, manganese acetate, and 
hydrobromic acid as catalysis proceeds by the 
following overall reaction to afford terephthalic 
acid in 95-96% molar yield. The combined yield 
of the intermediates (4-carboxybenzaldehyde, 
p-toluic acid and p-tolualdehyde) is about 3%. 
The detailed discussion about the oxidation 
mechanism of para-xylene can be found in 
Lindahl, et al. (1989), Ge (1993) and Wang 
(2001). 
 
In the oxidation process, the concentration of 
4-CBA is regarded as observer of the oxidation 
reactive progress. The 4-CBA content should be 
controlled in an interval. Excessive content level 
may lead to over-oxidation and loss more acetic 
acid, whereas low level represents under- 
oxidation and insufficient for PX convert to TA. 
 
The concentration of 4-CBA is related with 
oxidation process. Therefore, the variables affect 
the oxidation process as well as the 
concentration of 4-CBA. In the oxidation reactor, 
the affect variables of the reactive system mostly 

are the residence time of reaction, the ratio of 
PX to acetic acid, the ingredient and the 
concentration of catalyst, reaction temperature 
and pressure, the partial pressure of oxygen and 
water content in the reactor. After the 
comparison of these variables and process 
variables, 10 process variables are selected as 
input variables of the model, which shown in 
Table 1. 
 
The schematic layout of PTA oxidation process 
in Fig. 2 shows that there are exist substantial 
time delay between the different process 
variables and the quality variable. Every tank 
has residence time from 15 minutes to 71 
minutes. The total time delay of the process is 
about 200 minutes. The sample frequency of 
4-CBA from the crude TA dryer is 3 times a day 
by laboratory. While the process data pick 
periodic is 30 seconds by DCS. 
 
The preliminary work of process modeling is to 
collect the process data and corresponding 
quality data as many as possible. Here the 
‘corresponding’ mean both the time delay and 
sample frequency of the two kinds of data are 
considered.

 

Table 1. The all variables of the process model. 

 
3. ANALYSIS AND MODELING OF 

INDUSTRIAL PTA OXIDATION PROCXESS 
 
According to the industrial process, the model is 
composed of two series CSTR ideal models. The 
two ideal CSTR models denote the oxidation 
reactor and the first crystallizer, respectively. 
Each of them follows with the mechanism model 
developed by Wang (Wang, 2001). The feed 

component of the first crystallizer is the effluent 
of the oxidation reactor.  
 
Due to many factors, the plant data contain much 
gross error and not corresponded to each other 
well. Some for the measure instruments are often 
not well calibrated, for the process is not stable 
enough or the inaccuracy of quality data caused 
by artificial sample and analysis. In order to 

No. Variable Time delay(min) Sample frequency 

 Inputs   

1 Paraxylene to feed mixing tank  205 30 s 

2 Feed to reactor  180 30 s 

3 Catalyst concentration  185 30 s 

4 Reactor temperature  110 30 s 

5 Level of reactor 110 30 s 

6 Reactor condenser to water withdraw  95 30 s 

7 Vent O2 concentration from the reactor  95 30 s 

8 Total water withdrawal  90 30 s 

9 First crystallizer temperature  75 30 s 

10 Vent O2 concentration from the first crystallizer  70 30 s 

 Output   

11 4-CBA concentration in the crude TA 0 8 hours 



  

utilize plant data to build the industrial process 
model, it is necessary to screen the data using 
statistical methods. By these techniques some of 
the inherent characteristics of the data can be 
incorporated into the model thereby, increasing 
the model accuracy.  
 
3.1 Preprocessing industrial data 
 
For the oxidation process comprises nearly 10 
tanks shown at Fig. 2, the residence time of the 
all tanks is about 200 minutes. Therefore it is 
reasonable to expect that not the current values 
of these variables, but more so the historical 
values of the variables over the last 200 minutes 
are likely to have a profound effect on the output 
variables at the present time. To take care of the 
historical effect of these variables a weighted 
moving average method is used to define the 
model input variables (Radhakrishnan, et al. 
2000) 
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where )(tX is the value at time t , )( itx −  is 
the value at time it −  of each input variables 
and dt  is time delay value of the variable, 
which is given in Table 1. 
 
That is, the process variables at time t are the 
combination values of their historical data at 
time point dt2.0 , dt5.0 , dt , dt2.1 , dt5.1 and dt2  
before current. All of the process variables were 
defined in this manner as the input of the model. 
The weights values were decided on the basis of 
a residence time distribution study from the 
investigation on the operators and engineers and 
the analysis of process history data. 

 
3.2 Analyzing the oxidation process 
 
PLS and PCA are used to extract the information 
in the data by projecting them onto low 
dimensional spaces defined by the latent 
variables or principal components. For they are 
capable of tracking the progress of process and 
detecting the occurrence of observable upsets, 
PLS and PCA are widely applied in process 
analysis, monitor, fault diagnosis and statistical 
process control (Kourti, et al., 1995, MacGregor, 
et al. 1995).  
 
The projection of the first two latent variables of 
PLS and Hotelling's T-squared statistic value of 
PCA to analysis historical data are illustrated in 
Fig. 3 and Fig. 4 from 133 sets of data of 
industrial PTA oxidation process. 
 
It is obviously that there are two operating 
regions of the industrial data involved. Region I 
has the most number of points and the highest 
density, which belong to normal operating region 
and identified by the factory. Region II is a little 
away from region I and includes 6 points. This 
region is characterized as periodically load down 
and load up process for purging the dryer 
operation and adjusting the buffer tank, which 
the operating region is widely compared with 
region I. 
 
The two operating regions have significant 
differences intrinsically. Thus, it is reasonable to 
divide the process model into two parts: normal 
operating part and load down and load up 
operating part, and be treated in different plant 
factors. 
 
3.3 Setting the plant factors 
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by PLS of PTA oxidation process data 
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In the PTA oxidation process, many other factors 
are also effect the reaction but be hard to 
described in the mathematical model. For 
instance, the design of feed inlet of air flow, the 
existing of foam in the vapor phase, the effect of 
crystallized product to main oxidation reaction, 
the occurrence of subsidiary reaction and its 
product, the effects of other process parameters 
from the second crystallizer to the dryer 
sampling valve, etc.  
 
To correct the deviation between the laboratory 
condition and industrial condition, six plant 
factors are set in the principle model. They 
correct the oxidation reactor’s reactive kinetics 
parameters, k, the residence time, r, the feed 
concentration of PX, and the first crystallizer’s 
reactive kinetics parameters, k, the residence 
time, r and the final discharge concentration of 
4-CBA, respectively. 
 
3.4 Regressing the plant factors 

 
In this section, 6 sets of normal operating data 
from 127 total and 3 sets of load down and load 
up operating data from 6 total are selected as 
standard industrial process data to regress the 
two sets of plant factors, respectively. The 
regression algorithm is the modified Levenberg 
-Marquardt algorithm (Gao, 1995). It uses 
differential approximate the Jacobian matrix and 
the initial damped factor set to 40000, the adjust 
coefficient set to 2. To control the rate of 
convergence not less than a certain value, the 
damped factor should be larger than a threshold 
value. The enlarging damped factor procedure is 
limited to run 2 times continuously at one time 
and the initial value is set to initial damped 
factor at every time the procedure be called. 
 
The result of plant factor regression is given in 
the table 2. After obtained the plant factors, the 
model is determined and able to predict the 
concentration of 4-CBA in the crude TA as a 
kernel part of on-line soft sensor.

 

Table 2. The two sets of plant factors regress results from each operating data. 

 F1 F2 F3 F4 F5 F6 

Normal operating 1.5911� 0.8701� 0.9838� 0.1215� 1.2705� 0.3529�

Load down and load 

up operating 1.1807� 0.7677� 0.5197� 0.6395� 1.0532� 0.8768�

 

4. RESULTS & DISCUSSION 

 
The comparison of predictive results of the 
proposed model, Amoco empirical model 
(Lindahl, et al., 1989) and observed 
concentration of 4-CBA is given in Fig. 5. It is 
obviously illustrate that the predictive result of 
the proposed model follows to the tracks of the 
observed value quite well, especially at the 
normal operating part, whereas the predictive 
result of Amoco model only lie near the mean 
value of observed in normal operating region and 
can’t well follow the observed change trend. This 
feature is important in applying to industrial 
online soft sensor, which the qualitative tendency 
is the preference. Though the predictive mean 
error of our model is %54.1±  and the 
maximum error is %03.6± , which are both a 
little worse than those of the Amoco model, 

%49.1±  and %67.4± . 
At the points 7, 88 and 105, the observed quality 
value is badly higher than its neighbors. But its 
associated process variables have not marked 
changes compared with others. Similarly, the 
observed values at points 25, 26, 54 and 65 are 

less than the corresponding points of the model 
predict values extraordinary. Thus, these points 
can be regarded as outliers that their process data 
are anomalous. The predict result of load down 
and load up operating part are not very well as 
that of the normal operating part, which 
contributes to most predictive error for the whole 
MSE, because it is not operated at steady state 
that both the process variables and their residence 
time are under largely dynamic change. But the 
predictive trend of load down and load up 
operating is quite well, which was also confirmed 
by the engineers. 
 
On the whole, the proposed model predictive 
accuracy is satisfied with the requirement of 
online soft sensor. 
 

5. CONCLUSION 
 
This paper proposed a practical mathematic 
model to predict the concentration of 4-CBA in 
PTA oxidation process. The model is based on a 
first principle model and modified according to 
the industrial practice. Several technologies are 



  

applied to cope with the problems in process data. 
Firstly, considering the exact estimation of the 
time delay between variables and quality variable 
is difficult, a weighted moving average method is 
used to combine 6 values at different time point 
from the 0.2 times estimated time delay to double 
time delay in the past as the model input 
variables. Then the projection on latent variables 
and Hotelling's T-squared statistic are made to 
identify two operating regions, which are also 
confirmed by the engineers. For many of factors 
in the industrial process are hard to considered in 
the mathematics model, six plant factors are used 
to correct the deviation between the laboratory 
model and the industrial process model. Robust 
nonlinear least square method, modified 
Levenberg-Marquardt method is applied to 
regress the six plant factors. Finally, the 
satisfactory predict results prove that the 
proposed model is inspiring in applying to 
industrial online soft sensor. 
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