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Abstract: In situ Near Infrared spectroscopy is used to monitor and control the
concentration of monomer in solution polymerization processes. The Partial Least Square
optimization technique is used to correlate the NIR spectrum with the concentrations of
monomer and polymer in the reactor. Non linear input-output linearizing geometric
control is then designed to control the concentration of monomer in the reactor.
Controlling the concentration of monomer has a direct influence on the product quality
and is very important to ensure the process safety. The control strategy is validated on-
line during the solution polymerization of acrylic acid in an industrial pilot-scale reactor.
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1. INTRODUCTION

Recently, NIR (Near InfraRed) spectroscopy has
found a wide spread use in the monitoring of
polymerization processes since it presents several
significant advantages. First of all, the fibre optic
probe inserted in an existing reactor is directly in
contact with the reaction medium, which ensures
rapid measurements, without requiring any sample
preparation. In aggressive industrial environments,
fibre optics allow the spectrometer to be placed far
away from the reactor and ensure rapid and accurate
data transmission. Furthermore, a set of
characteristics of the reacting medium can be
evaluated in-line from the NIR spectrum by
developing calibration models that can be transferred
easily to other instruments.

The quality of the results of the NIR analysis
depends on a number of arguments. In order to
ensure good results, the impact of the required
properties in the selected NIR region must be
important. Moreover, the off-line measurements
used for the calibration must be accurate and reliable.
Finally, the performance of the instrument and the

mathematical treatment of the spectrum have to be
adapted to the process.

Many applications of NIR spectroscopy in
polymerization processes deal with the on-line
monitoring of the concentration of monomer in
reactors. Long et al. (1993) employed the NIR
spectroscopy to estimate the conversion of styrene in
solution polymerizations. On-line monitoring of the
conversion of methyl methacrylate was studied by
Chabot et al. (2000) and Aldridge et al. (1993) in
emulsion polymerization systems.

NIR spectroscopy can also be used to estimate
physical properties in real time. Gossen et al. (1993),
applied the NIR spectroscopy to estimate the
concentration of styrene and the particle size in an
emulsion polymerization. Santos et al. (1998) used
the NIR to estimate the particle size distribution in
suspension polymerizations of styrene. They used the
PLS (Partial Least Square) and Neural networks to
correlate the absorbance with the particle size. These
results allowed the authors to develop a technique for
controlling the particle size distribution in a batch
process (Santos et al., 2000).

In this work we are interested in controlling the
concentration of acrylic acid in an industrial solution



polymerization reactor. In this case, the
polymerization reaction is very fast and exothermic.
Controlling the concentration of monomer is
therefore essential to ensure the process safety
through the mastery of the heat release of the
reaction. Moreover, the concentration profile of the
monomer in the reactor strongly influences the
product quality — mainly the polymer molecular
weight — during homopolymerization reactions, and
the polymer composition during copolymerization
processes so that suitable and reproducible
concentration trajectories are required to ensure
satisfactory and reproducible polymer properties.

In order to ensure such control, a calibration model
based on the NIR spectra was developed and
validated to estimate the concentrations of monomer
and polymer in the reactor. The measurement
strategy is presented in the first part of the paper. In a
second part, an estimator of the reaction rate is
designed which is necessary to apply closed loop
control strategies. Finally, a non linear geometric
approach is developed to control the concentration of
monomer during the reaction.

2. NIR MEASUREMENT STRATEGY

2.1 Experimental setup

The polymerization process is carried out in a 30 L
jacketed well mixed reactor equipped with internal
reflux condenser. The stirrer is equipped with a
Rushton turbine, the stirring rate being 150 rpm. The
reactor is operated under semi batch conditions: four
volumetric pumps are used to feed the reactor with
solvent, homogeneous catalyst, radical initiator and
monomer. The four corresponding flow rates can be
controlled on-line through the measurement of the
mass of reactants and the manipulation of the set
point flow rates of the pumps. The reactants initially
fed in the load of the reactor are first heated using the
jacket. After the starting of the reaction, the fluid in
the jacket is used as a coolant since the process is
very exothermal. The main temperatures of the plant
are measured using Pt100 Q probes. The acquisition
and storage of the measurements (Temperatures and
flow rates) is performed using a first computer
equipped with Labview®. The state observer and the
control law described below, which use the NIR
measurements of the concentration of acrylic acid,
are computed and applied using the same computer.
The NIR transmission probe is immersed in the
reactor, it is connected through fibre optics to a
FOSS NIRSystems® industrial spectrometer; and the
spectral data are acquired and processes by a second
computer. Both computers are connected in order to
exchange data.

With the process in question, the production of poly-
acrylic acid is performed following a rather complex
operating policy including various heating, feeding
and curing periods. The overall processing time is of
the order of 2 hours. For the sake of confidentiality,
no more details will be given about the operating
procedure.

2.2 In-line NIR measurements of the conversion of
acrylic acid

The NIR spectrum reflects the energy absorbed or
reflected by the molecules present in any chemical
medium crossed by a NIR light beam. For any
wavelength, the energy absorbed by the molecules
depends on the chemical and physical nature of the
constituents, on their concentrations and on the
volume of transmission. Some energy is also partly
reflected without absorbance.

The near infrared spectral region, which covers the
range from 700 to 2500 nm, expresses much of the
chemical and structural information on the reaction
medium, but the information tends to be in broad and
overlapped bands. The processing of NIR spectral
data was shown to allow the real-time evaluation of
key parameters such as monomer concentration(s) or
potential fluctuations of the quality of raw materials
or to evaluate more specific variables such as the
acid value during polyester production, density and
melt index of polyethylene, the average particle
diameter  during emulsion or  suspension
polymerization processes; or the polymer composi-
tion during extrusion processes. Due to the variety
and the complexity of the NIR spectral data, it is
necessary to use "black-box" and multivariate data-
processing models in order to extract the criterion of
interest among the whole of the information
contained in the recorded spectra. The "parameters"
of such models are computed from a calibration data
set and should be validated thereafter. The success of
further on-line predictions depends on various
criteria: the sampling technique, the off-line
measurement method which was used and finally, the
processing algorithm applied to the spectrum in order
to draw the appropriate criterion.

It appeared that the main time variations in the
spectrum  during the polymerization under
investigation can be observed between 1600 and
1900 nm. Fig.1 shows the difference between the
spectrum obtained at the beginning of a semi-
continuous polymerization of acrylic acid and that
obtained 2 hours later. A PLS model was developed
to correlate the spectrum with off-line measurements
of the concentrations of acrylic acid, obtained
through HPLC (High Pressure Liquid Chromato-
graphy) and of polyacrylic acid, obtained after
heating the polymer solution at 140°C.
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Fig. 1. NIR spectrum obtained at the beginning of a
semi-continuous polymerization of acrylic acid
and spectrum 2 hours later.



The “calibration model” was validated through the
measurement of additional samples which were not
taken into account during the calibration procedure.
Fig. 2 displays the concentration values predicted
using the calibration model against the calibration
data set. Despite significant differences in the
operating conditions involved during the acquisition
of these data, the “measurements” appear to be rather
reliable.

For validation purposes, NIR measurements were
then performed during semi-batch and continuous
polymerization reactions. Fig. 3 shows the in-line
measurements obtained during the validation
experiments.

The same calibration strategy was also applied to
estimate the concentration of polymer in the reactor.
In this case, the off-line calibration measurements
were obtained through the gravimetric evaluation of
the dry content. Figs. 3 and 4 display the validation
results which were obtained, using the PLS model,
during two polymerization operations. Samples were
withdrawn from the reactor to assess the accuracy of
the NIR estimates. As one can see, the in-line
measurements of both acrylic acid concentration and
polymer content were found to be really satisfactory.
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Fig. 2. Validation of the NIR calibration model.
Estimation of the concentration of monomer
during both semi-continuous and continuous
reactions.

3. IN-LINE ESTIMATION OF THE
POLYMERIZATION RATE

3.1 Simplified kinetic modeling of the polymerization
reaction

The radical polymerization of acrylic acid is
performed in aqueous solution. For the sake of
confidentiality, the reactants which are used as co-
solvents, catalyst and chain transfer agents will not
be revealed in the present paper. The consumption of
acrylic acid (AA) during the process can be
described as follows:

dN ,,
dt
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where N, is the number of moles of AA, Qua" is
the inlet molar flow rates of AA (mol/s), Rp is the
reaction rate (mol/cm’), k, is the propagation rate
constant (cm*/mol/s), and [R] is the concentration of
radicals (mol/cm’).
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Fig. 3. Validation of the NIR calibration model:
measurement of the concentration of monomer
during both semi-continuous and continuous
reactions.
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Fig. 4. Validation of the NIR calibration model:
measurement of the polymer content during both
semi-continuous and continuous reactions.



Expression (1) appears as a very simple, first order
(with respect to AA), kinetic equation. However,
whatever the reaction medium, it is well known that
the polymerization in question is far from being
simple as both the propagation rate constant and the
concentration of radicals are likely to be significantly
time varying, according to the concentration of
reactants and products, complex pH variations and
temperature.

For control purposes, and from an industrial point of
view, it is not necessarily relevant to try a complex
knowledge-based chemical modelling of the reacting
system. Indeed, in the industrial context, efficient
control can be designed without time-consuming and
expensive theoretical studies. This is the reason why
the reaction rate was estimated on-line, rather than
predicted using any advanced model of the reaction.

3.2 A non linear high gain observer of the reaction
rate of acrylic acid

The measurement of the concentration of monomer
obtained by the NIR analysis allows us to estimate
the reaction rate and, if the reaction rate constant is
known, to estimate the concentration of radicals in
the reactor [R']. In order to estimate the reaction rate
of monomer, we set the following system where Rp
is considered as a state variable with unknown
dynamics:

ML -
R, | |0 0 0|R, | |e
%K_J

A
€ represents the unknown dynamic of Rp.

A change of coordinates is required to put the system
under a canonical form of observability. As the
number of moles of acrylic acid is measured, we can
use a high gain observer (see e.g., Farza et al., 1997,
McKenna et al., 2000) to estimate the reaction rate as
follows:

N | Ton] T =1TNL] [26].
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The rate of convergence of the observer is very easy
to tune using the single positive parameter 0.

The estimation results are shown on Fig. 5 for a
semi-continuous reaction. Due to the operating
conditions involved, it appears that the reaction rate
is equal to the flow rate of monomer. This means that
the monomer inlet feed rate in the reactor can be
increased to allow improved productivity: the
reaction is so fast that there is no monomer
accumulation during the reaction. Moreover, the
propagation rate coefficient is constant since pH does
not change during the reaction. Consequently, the
concentration of radicals is found to be constant
during all the reaction time.
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Fig. 5. State estimation of Rp in a semi-continuous
reaction based on the on-line NIR measurement
of the number of moles of acrylic acid, Naa.

4. FEEDBACK CONTROL OF THE
CONCENTRATION OF ACRYLIC ACID

Controlling the concentration of acrylic acid in the
reactor allows us to maximize the process
productivity by decreasing the reaction time while
ensuring the process thermal safety. Actually, the
polymerization of AA is very exothermic and fast.
The amount of monomer in the reactor must
therefore be calculated in a way that the cooling
system remains able to evacuate the heat produced by
the polymerization and allows to maintain the desired
reaction temperature. Again, the amount of monomer
in the reactor can be obtained using on-line NIR
analysis and can be controlled by manipulating the
inlet flow rate of monomer. The whole control
system is schematically presented in Fig. 6.
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Fig. 6. Closed-loop system for the control of the
monomer concentration during the semi-batch
polymerization of acrylic acid, with state
estimation of the polymerization rate Rp.




In order to design the controller, the following
system is considered:

N =04 —Rp(N ) )
y=N,
Since system (4) is nonlinear, a differential

geometric nonlinear controller was designed in order
to control Nas. The adaptation of differential
geometry for the analysis and design of nonlinear
control systems was proposed by Herman and Krener
(1977), Hunt et al. (1983) and Isidori (1989). The
results generalize concepts and tools from linear
control theory for a class of nonlinear systems, such
as the state feedback.

The GLC framework is the calculation of a static-
state feedback, under which the closed-loop /O
system is exactly linear. The state of the model need
not to be transformed into linear one. Once the inner
loop is closed, the controller design reduces to the
design of an external linear controller with integral
action.

The relative order, or the linearizability index r, of
nonlinear systems can be calculated, as for linear
systems, by calculating the derivative of the output.
The relative order is the smallest order of derivative
that depends explicitly on the input (Qaa). For
system (4), the relative order is equal to one. A
geometric nonlinear input/ output linearizing control
can therefore be constructed as given by the
following system :

" =R, + K, (N serremt — NAA) (5)

g=error

We notice that controlling N requires the
estimation of Rp that we obtain from the high gain
observer.

A set of experiments with different set-points was
performed in order to validate the controller
robustness. During experiment 170 the set point
varies smoothly. Fig. 7 shows that N,, takes some
time to converge to the desired value. This dynamic
behaviour is mainly due to the fact that there is no
monomer in the initial charge. The delay in the
convergence can therefore be improved by
introducing an amount of monomer in the initial
charge. However, this can be critical during the
heating phase, especially in an industrial reactor. On
the other hand, the delay in convergence is amplified
by the inhibition during the few first minutes of the
reaction and the rapid change in the reaction rate
when the reaction starts. Moreover, the convergence
time is influenced by some inaccuracies of the NIR
measurements, especially when the amount of
monomer is small at the beginning of the reaction.
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Fig. 7. Control of N during experiment n°170.
Tracking of trajectory for Nss. The manipulated
input is the inlet flow rate of AA.

In order to demonstrate that the convergence time is
mainly due to physical limitations, and not to the
controller itself, two experiments (referred to as run
173 and run 174 below) were performed with stiff
changes in the set-point during the reaction. A step
change of 1 and 1.5 moles are imposed during
experiments 173 and 174, respectively. These
experiments allowed us to assess the robustness of
the controller under hard conditions even though
such conditions are not supposed to occur during real
industrial processing.

The obtained results are shown in Figs. 8 and 9.
From these figures, it can be observed that
performances and closed-loop response of the
controller are not the same at the beginning of the
reaction compared with the rest of the polymerization
process. The number of moles of acrylic acid Naa
converges more satisfactorily (i.e. fast convergence
without oscillations) to the set-point during the
reaction even with an important change in the set-
point. This is due to the fact that once the reaction
started, the reaction rate varies smoothly and allows
the NIR measurements to be more precise.
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moles of AA and controlled flow rate of AA.

CONCLUSION

The control strategy developed in this work has been
validated on an industrial pilot-scale reactor, taking
into account real industrial constraints, in terms of
aggressive environment and complex operating
strategies). The control strategy gave good results
even under hard conditions. In particular, it allowed
to maintain the concentration of monomer in the
reactor at a predefined value, which was calculated
in such a way such the heat produced by the
polymerization reaction did not affect the reaction
temperature. Controlling the concentration of
monomer in the reactor also allowed improving the

mastery over the obtained polymer molecular
weights, which is a key product property in this
process. Such mastery, notably in terms of improved
reproducibility, represents a major economical issue.
It is worth noting that such application was made
possible thanks to the availability of new in situ NIR
sensors, which are certainly destined for numerous
future industrial applications in the field of chemical
processes.
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Abstract: A one dimensional grid of interdependent linear models obtained from
operation data is proposed for modeling repeated finite horizon, nonlinear and non-
stationary process operations. Such finite horizon process operations include start-
ups, grade transitions, shut-downs, and of course batch, semi-batch and periodic
processes. The model grid is identified from data using a novel interpretation of
generalized ridge regression that penalizes weighted discrepancies between one
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as on-line, for prediction, monitoring, control, and optimization. Among these
representations is a linear time-varying state space model which may be used for
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1. INTRODUCTION

Batch processes are experiencing a renaissance as
products-on-demand and first-to-marked strate-
gies impel the need for flexible and specialized
production methods. Furthermore, industries such
as food, biochemical, and pharmaceutical depend
on the confinement of faults and contaminations
to single batches. This renaissance propels the
need for modeling and control tools, which can
facilitate optimal and reliable operation of batch
processes. However, the traditional linear model-
ing and control tools are inadequate, when applied
to the often highly nonlinear and time-varying
behavior of batch processes.

In section 2 it is thus proposed to model batch
processes with a time-varying grid of linear models
and it is demonstrated how such model grids may
be applied to both off-line and on-line monitoring,
prediction, control, and optimization. Identifica-

tion of these model grids is addressed in section
3 and it is proposed to use model property based
regularization to overcome excessive variance. The
methods proposed in sections 2 and 3 are applied
to an industrial case study in section 4 and finally
conclusions are given.

2. TIME-VARYING MODELS

Most often the complex and nonlinear dynamics
of continuously operated processes can be approx-
imated with a moderate set of local Linear Time-
Invariant (LTI) models, each of which describes
a characteristic region in the operation window.
These regions described by local models will often
be characterized by a set of active constraints.
For batch and semi-batch processes (from here
on, batch will cover both batch and semi-batch
processes) however, the set of active constraints
will change as the batch progresses. In fact, to



operate a batch process in an optimal fashion, a
specific sequence of constraints is tracked during
operation. This means that local approximations
of characteristic regions are not sufficient to de-
scribe batch operation. The transitions between
these locally approximated characteristic regions
are also needed to provide a complete description
of batch operation. Furthermore, even if specific
sets of constraints were active for longer peri-
ods; local LTI models can not be expected to
describe the time variation due to changing hold-
ups and/or compositions.

The periodic nature and the finite horizon of batch
processes however, make it possible to model the
evolution from each sample point to the next
in a batch with one grid-point LTI model. In
this fashion, both the time variation within the
characteristic regions and the transitions between
these may be approximated with a grid of grid-
point models. Thus, such a model set gives a
complete description of a batch. The finite horizon
of batch processes means that the model set will
be finite. The periodic way in which the same
recipe is repeated batch after batch means that
several measurements from the individual sam-
ple points are available for identification. That
is, the time evolution of a process variable is
measured /sampled at specific sample points dur-
ing the batch operation and as the batch oper-
ation is repeated, several measurements are col-
lected from every sample point. With multiple
data points/measurements from one specific sam-
ple point a grid-point model can be identified for
this sample point. Explicitly, in addition to the
time dimension, data from batch processes also
evolve in a batch index dimension.

2.1 Model Parameterization

Given the discussion above, batch processes are
modeled with sets of dynamic grid-point LTT mod-
els. Such a set of grid-point LTI models could also
be referred to as a Linear Time Varying (LTV)
batch model. These grid-point LTI models can
be parameterized in a number of ways — e.g. as
Output Error (OE) models, AutoRegressive mod-
els with eXogenous inputs (ARX), State Space
(SS) models, etc. In the present contribution the
ARX model parameterization was chosen. This
choice of parameterization offers a relatively good
multivariable system description with a moderate
number of model parameters.

As operation of a batch progresses, different in-
puts and outputs may be used depending on the
current phase of the batch and hence in order to
model batch operation it is convenient to define
the following variables and references for each
time step t: Input variable u;, € R™ (") with refer-

ence i; € R™®) output variable v, € R™®) with
reference g € R™®) and disturbance variable
w, € R™®, Using an ARX model parameteri-
zation, the output deviation g; — y; at time ¢ may
be given as a weighted sum of n4(t) past output
deviations and np(t) past input deviations

Yt — Yt = — Qg1 (gtfl - ytfl) — ...

— At t—na(t) (gt—nA(t) - yt—nA(t)>
+bt,t—l(at—l *Ut_l) + ... (1)

+ bt t—np (1) (atan(t) - utan(t))
+ wy

where n4(t),np(t) € [1,...,t] are the grid-point
ARX model orders and a;; € R™®m() and
bi; € Rw()muli) are the grid-point ARX model
parameter matrices. Note, as the grid points
are modeled with individual grid-point models,
the sample points ¢ do not have to be equidis-
tantly spaced in time. Let N be the batch
length(/number of samples) and define the input
u, output y, shifted output 3°, and disturbance
w profiles as

w=[upuy ... uy_,]
y=[vivh ... yn] @
Y=y vl -y

Cwhy ]

Note, not all initial conditions yo are measur-
able and/or physically meaningful — e.g. off-gas
measurements. Thus the ARX model set may be
expressed in matrix form

7-y=—A@F"-y)+Ba—u)+w (3)

where A, B are structured lower block triangular
matrices. The profile w is a sequence of distur-
bance terms caused by bias in the reference input
profile u, the effect of process upsets, and the
modeling errors from linear approximations. This
means that the disturbance w contains contri-
butions from both batch wise persistent distur-
bances, such as recipe/input bias, model bias,
and erroneous sensor readings, as well as from
random disturbances, which occur with no batch
wise correlation. It thus seems resoanble to model
the disturbance profile w with a random walk
model with respect to the batch index &

Wy = Wi_1 + Uy (4)

where vy represents a sequence of batch wise
non-persistent disturbances that are assumed to
be zero-mean, independent and identically dis-
tributed. The assumption of v, being white is
rather crude, but necessary if one whishes to
keep the parameter estimation problem linear.
Considering the difference between two successive
batches



Ay, =y — Y, = AAy] — BAuy + v, (5)

A Dbatch ARX model (5) that is independent
of the reference profiles (y,u) and batch wise
persistent disturbances has been obtained. With
such a batch ARX model the path is prepared for
multivariable, model-based monitoring, control,
optimization, and of course simulation.

During the model derivation above it was assumed
that the outputs are known. This is however not
the case in practice, where only a sequence zj of
noisy observations of the outputs is available

Zp = [yff,o y%]l+€k (6)

where €, is a sequence of measurement noise terms
that are assumed to be zero-mean, independent
and identically distributed.

2.2 Application Specific Models

Depending on the task the batch ARX model (5)
is to be applied to, it is convenient to convert the
batch ARX model into different representations.
If the task at hand is to predict (or simulate)
the behavior of a batch before it is started the
following form is convenient

Ayk = HAyk,O — GAuy + Evg, (7)

Note that the disturbance matrix E models the
propagation of batch wise non-persistent distur-
bances — including batch wise non-persistent
model-plant mismatch.

The form (7) above is also convenient for the task
of classification/monitoring (e.g. normal or not) of
a batch after it has been completed. Furthermore,
the form (7) can be used to determine open-
loop optimal recipes in the sense of optimizing
an objective for the batch. If such an objective
is to minimize the deviations e from a desired
trajectory g, then (7) can be modified into

er=Y—yYp=er_1—HAy, o+ GAu,—Ev; (8)

There are two important points to be made about
the trajectory tracking model form (8). First of
all, as the error profile e; in batch k£ depends on
the error profile e _; from batch k — 1, the effects
of the batch wise persistent disturbances are in-
tegrated with respect to batch index. This means
that a properly designed controller can reject the
effects of the batch wise persistent disturbances
asymptotically with respect to batch index — e.g.
removing the effects of recipe and model bias.
Secondly, given the above mentioned asymptotic
behavior and as the control moves/actions gen-
erated by such a controller are deviations from
the control/input profile realized in the previous
batch, the control actions due to batch wise persis-
tent disturbances will converge asymptotically to

zero with respect to batch index. In literature it is
said that the controller learns to reject the batch
wise persistent disturbances — i.e. the resulting
controller is an Iterative Learning Control (ILC)
scheme. A more accurate formulation would be
that both output and input errors are modeled
using integrators with respect to batch index. The
trajectory tracking model representation (8) is
similar to that of Lee et al. (2000), but the rep-
resentations differ significantly since (8) includes
the effect of initial conditions (HAyy ) and dis-
turbance propagation (Ewvy). Another important
difference is that (8) does not have double depen-
dence on the batch wise persistent disturbances —
i.e., the trajectory tracking model representation
(8) only include the batch wise persistent distur-
bances as represented by er_; and not as both
the part of egx_; caused by the batch wise per-
sistent disturbances and the batch wise persistent
disturbances themselves.

The two forms (7) and (8) of the batch ARX
model above are applicable to off-line or inter-
batch type applications. For on-line estimation,
monitoring, feedback control, and optimization
however, it is convenient to use a state space
realization of the batch ARX model. To achieve
such a realization it is necessary to simplify the
batch ARX model structure with the assumption
that the number of outputs is constant n,(t) =
ny for t =1,..., N. In an observer canonical form
the state space realization is given as

Tt = Aexp -1 + BeAug t—1 + Evpt (9)

Ayk,t = ka,t
with the initial condition xy o = [Ay;,o, o,...,07.
Just as (7), the SS model form (9) is convenient
for prediction, monitoring, and optimization type
applications, but also facilitates on-line implemen-
tations of these. Furthermore, the SS model form
(9) is particularly well suited for closed-loop or
feedback control applications. For tracking con-
trol applications the SS model form (9) can be
modified into

Tt = A -1+ BrAug -1 + Evg e (10)
Cpt = Ck—1,t — Cil?k,t
Following the discussion above, a multivariable
feedback controller properly designed using the
trajectory tracking SS model form (10), will re-
ject the effects of the batch wise persistent dis-
turbances asymptotically with respect to batch
index. That is, due to the output and input error
integration in the model framework, a controller
designed to reject disturbances with respect to
time in one batch at a time will also asymptot-
ically reject the effects of batch wise persistent
disturbances with respect to batch index.



3. MODEL IDENTIFICATION

With the batch ARX model (5) derived above,
the parameterization of the batch model is in
place, however the model orders and the model
parameters still need to be determined from pro-
cess data. One major drawback of the proposed
parameterization is the immense dimensionality
of the resulting set of models — in practice
this immense dimensionality will render any stan-
dard Least Squares (LS) identification problem
ill-conditioned. It turns out however, that as the
grid-point models are progressively constrained by
the smoothness of the model grid, the condition-
ing of the identification problem improves.

8.1 Data Pretreatment

In industry, the process variables Z; ;(p) € R are
most often logged individually at times T(k‘, t,p),
giving N:(k,p) + 1 observations of variable p in
batch k. What is needed however, is up to N + 1
noise free observations of the variables at times
T'(t) in the Ng batches available for identification.
These noise free or expected observations can be
estimated using local polynomial regression and
If the profile of process variable p in batch £ is
defined as Zj,p, then the estimation problem can
be given explicitly (Hastie et al., 2001) as

gk,t(p) = Sk,p,ték,p (11)

where sy, ,; is a smoothing vector. If it is further
assumed that process variable p will be used
throughout the batch, then the estimated profile
of variable p in batch k is given as

S li
zk(p) = [s;c,pﬁ S;c,p,l s S;CJLN] zk(p) (

" 12)
= Skpzk(p)

Let the true observation z; € Rw®+nu(®) he
given as

Zp = %k + wi (13)
where Zzj, is the estimated observation and wy, is
a sequence of estimation errors. The estimation
error wy, will consist of both systematic errors such
as the height of a characteristic peek being un-
derestimated due to excessive smoothing and/or
trimming the hills and filling the valleys due to
too low local regression order, and random errors.
Thus the estimation error wy is modeled with a
random walk with respect to the batch index k

WE = Wk—1 + Vi (14)

where vy, represents a sequence of batch wise non-
persistent estimation errors that are assumed to
be zero-mean. Consider the expected difference
between two successive batches, then

E{Azy} = 2, — Zp—1 + E{vi} = Az, (15)

is given as the difference between their respective
estimates. The expected output and input differ-
ence profiles which are all contained in AZy, are
thus given as

E{Ay,} = Ay,
E{Auk} = Aﬁk

B{AYY =880 (g

3.2 Parameter Estimation

Several suggestions to how (sets of) LTI or (pe-
riodic) LTV models should be identified from
data can be found in literature. All these au-
thors employ some or other coefficient shrinkage
or subspace method to improve the condition-
ing of the identification problem and hence lower
the variance of the model parameter estimates.
Simoglou et al. (2002) suggested estimating a set
of independent, overlapping local LTI SS models
using Canonical Variant Analysis (CVA). Instead
the present contribution proposes estimating a
grid/set of interdependent grid-point LTT ARX
models using a novel interpretation of generalized
ridge regression.

The batch ARX model (5) can be formulated as
linear regression

Ay, = Axpb + vy (17)

where Az, = Azg(AyY, Auy) is a structured
regressor matrix with past outputs and inputs and
6 = 0(A, B) is a column parameter vector with
the model parameters from the batch ARX model.
Taking the expectation of the linear regression
(17) and recalling (16) we find that

A:l;[k = E{Awk}e + E{’Uk} = Az, 0 (18)

with Ay, = Az (AgY, Ady,). This means that, if
the process variable estimation error model (14) is
a valid approximation, then estimation of model
parameters from the pretreated data will give
unbiased model parameter estimates. Although
unbiased, model parameter estimates based on
data from a single batch would have excessive
variance. Thus to lower the variance of model
parameter estimates, all available data should be
used for the model parameter estimation

Y = [A4; A% .. Agl, ]
= [Az) Az} ... Adly, ] 0=X6

The linear system (19) would however, most likely
still be rank-deficient and solving it in a Least
Squares (LS) sense would still produce estimates
with low bias, but excessive variance. Such exces-
sive model parameter variance would despite the
low bias, yield poor model predictions (Larimore,
1996). Hence, to improve the predictive capabil-
ities of an estimated model the variance of the
estimated model parameters must be further re-
duced.

(19)



A possible approach to reducing the variance of
model parameter estimates is to enforce that the
estimated model possesses some desired model
properties. One such model property could be that
neighboring grid-point models are analogous in
the sense that they exhibit similar behavior. In
fact, without this property, the model would be a
set of independent models and not a grid of in-
terdependent models. Enforcing model properties
however, inevitably introduce bias into the model
parameter estimates. There will thus be a trade-
off between the bias and variance of the model
parameter estimates and this trade-off will deter-
mine the predictive capabilities of estimated mod-
els. A parameter estimation method that could
incorporate model properties into LS estimates is
generalized ridge regression, which also is referred
to as Tikhonov regularization. We thus propose
to estimate the model parameters by solving the
extended LS problem

O(A) = argmm[ (Y - X0) (Y - X6)

+ (ALB) (ALB) (20)

= (X'X +L'A’L)' X'Y
where the penalty AL is a column vector of
weighted differences between parameters in neigh-
boring grid-point models. In this fashion, the
structured penalty matrix L maps the parameter
vector @ into the desired parameter differences
and the diagonal regularization matrix A weights
the parameter differences. The estimated parame-
ter vector @(A) is a function of the regularization
matrix A, which determines the shrinkage and
hence the trade-off between bias and variance.
This means that the regularization matrix A can
be used to tune the predictive capabilities of the
model estimate. Through the particular choice of
penalty matrix L, the regularization matrix A
also determines the interdependency between the

grid-point models in the model grid.

3.3 Model Orders and Regularization Weights

Several methods for choosing (optimal) regular-
ization weights can be found in literature (Hansen,
1996), but all of these consider either scalar reg-
ularization weights or diagonal penalties. In the
present work it is proposed to simply select a
regularization matrix from a finite set A € Qjy,
that yield near minimum mean squared prediction
error, when the estimated model is cross-validated
through “pure-simulation”. That is, given the
“pure-simulation” prediction error profile ¢ (A)
from cross-validation batch k

Cu(A) = AGP" = H(A)AGLE +G(A)AG™ (21)

the regularization matrix A is the solution to the
discrete optimization problem

Ngal
p— 1 P /
A= arg min v(A) = Z Cr(A)'Cr(A)
k=1 (22)
st. AeQp
(X'X + L' A*L) nonsingular

where N};,“l is the number of batch difference pro-
files available for cross-validation. In this fashion,
the computational burden of solving (22) is deter-
mined by the number of elements in the finite set
Q4.

Thus far only estimation of a specific batch ARX
parameterization, i.e., a batch ARX model with
model orders n4(t) and ng(t) for t = 1,...,N
has been considered. These model orders are how-
ever unknown and will also have to be identified
from data. This means that in addition to the
regularization weighting matrix A also the model
orders can be used to tune the predictive capa-
bilities of the model estimate. Traditionally, ARX
model orders are selected based on minimization
of measures such as Final Prediction Error (FPE)
or Akaike’s Information Criterion (AIC) both of
which are proportional to the optimal value of the
LS objective being minimized as part of the iden-
tification, to prevent modeling noise/disturbance
characteristics, i.e., overfit. Overfit is however also
prevented if the ARX model orders are selected
based on minimization of the mean squared pre-
diction errors from cross-validation of the esti-
mated models. This means that the ARX model
orders can be selected based on minimization of
N
|: {nA (t)}t=1 :| _ minN ['Y(A)}
{nA(t>}fN:1 (23)

{nB(t)};=1
s.t. A given by (22)
If the ARX model orders are assumed constant

throughout the batch na = na(t) and ng = ng(t)
for t =1,..., N, then (23) simplifies to

{np(t)}L,

(na,n5) = min [1(A)

(24)
s.t. A given by (22)

4. APPLICATION

To demonstrate the capability of the proposed
data-driven models, an industrial, production
scale Bacillus protease fermentation has been
modeled from historical data (Novozymes A/S).
The modeling objective was prediction of the on-
line measured variables used to supervise the fer-
mentation as well as the product activity which
is measured sparsely off-line. That is, the ob-
jective was to obtain a model that can predict
the course and outcome of a batch given the
batch recipe and its initial conditions. For this
Bacillus protease fermentation the batch recipe
consists (essentially) of reference profiles for two
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Fig. 1. Example of cross-validation of an industrial Bacillus protease fermentation model. The five
outputs, Dissolved Oxygen (DO), Carbon dioxide Evolution Rate (CER), Oxygen Uptake Rate
(OUR), pH, and product activity, are predicted given information about their initial conditions and
the batch recipe (assuming perfect control) — i.e., pure-simulation prediction. The thin solid lines
(or ‘x’ for the product activity) are the historical measurements as logged, the bold solid lines are the
pretreated data (as the data from which the model was identified, but not used in the identification),

and the dotted lines are the model predictions.

substrate feeds, an alkaline feed, pressure, and
temperature — i.e., these reference profiles are
the inputs of the model. For most of these inputs
the current practice is however, that the reference
profile is either not logged or not manipulated
from batch to batch. As a temporary workaround,
perfect control was assumed and the reference
profiles were replaced by the realized profiles. As
is common practice in supervision of fermenters,
Dissolved Oxygen (DO), Carbon dioxide Evolu-
tion Rate (CER), Oxygen Uptake Rate (OUR),
and pH were chosen as process indicators. Along
with the product activity these process indicators
makeup the outputs of the model.

The historical data was smoothened and re-
sampled to 30 minutes intervals. The product
activity was re-sampled using linear interpola-
tion, while the remaining inputs and outputs were
smoothened using local constant regression and
bandwidths ranging from 6 to 73 nearest neigh-
bors. Before identification the batch difference
profiles were normalized. The model was identified
using data from 29 batches and cross-validated us-
ing data from 9 batches, one of which is shown in
figure 1. The identified model orders ranged from
0 to 20 and the total number of model parameters
estimated was 12,135. The mean cross-validation
prediction error was 0.13.

5. CONCLUSION

In the present paper it is proposed to model finite
horizon, time-varying and nonlinear process oper-
ations with 1-dimensional grids of interdependent

ARX models. Such model grids can be used for
both off- and on-line monitoring, prediction, con-
trol, and optimization applications. It is further
proposed that these model grids are identified
from historical process data using ridge regression.
By identifying all the ARX models in a model
grid simultaneously, the interdependency of the
ARX models can be used to reduce the variance
of their estimates and thereby improve the predic-
tive capabilities of the estimated model grid. The
proposed data-driven modeling scheme has been
demonstrated through modeling of an industrial
fermentation process.
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TWO-DIMENSIONAL POPULATION BALANCE MODELLING OF SEMI-BATCH
ORGANIC SOLUTION CRYSTALLIZATION
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Abstract: A population balance model simulates the time variations of two characteristic
sizes of hydroquinone particles during crystallization. The population balance equations
combined with kinetic models and mass balance equations allowed the simulation of the
crystallization of hydroquinone characterized by a rod-like habit. Semi continuous
isothermal operations were performed at the lab-scale in the presence of various additive
concentrations. Both the experimental supersaturation trajectory and the final bi-
dimensional Crystals Size Distribution (CSD) were correctly predicted by the model. The
simulated elongation factor characterizing the crystal shape was therefore in agreement
with the experimental one. For secondary nucleation, indirect effects were assumed to
occur and satisfactory predictions of the final number of fine particles were obtained. A
major interest of the two-dimensional model lies in its ability to relate the time variations
of the crystal habit : the particles lengthen in the first moments of their growth and then
progressively get thicker until the end of the process. Copyright © 2002 IFAC

Keywords: Modelling, Particulate Processing, Parameter Estimation, Chemical Industry,

Partial Differential Equations, Batch Processes.

1. INTRODUCTION

In the field of industrial crystallization most authors
have focused their efforts on modelling one
characteristic parameter of the particles, generally a
given equivalent size (Franck et al., 1988; David et
al.,, 1991). Nevertheless, the usual one-dimensional
approach does not suitably describe the evolution of
a population of anisotropic crystals, which is the
common case with organic products. This is why a
two dimensional population balance approach was
presented and solved numerically (Puel et al,
2003a), in order to simulate the time variations of
two sizes of crystals. Actually, the industrial
production of fine organics may lead to problems
arising from the lack of mastery of the end-use
properties of the crystals. These problems are due to
the high sensitivity of the crystal habits to the effects
of supersaturation, impurities and additives during
the crystallization operation. It is therefore useful to
analyse and predict the evolution of crystal habits
during the process.

At the solid state, hydroquinone exhibits a rod like
habit (see Fig.1), with three main dimensions: length
L,;, width L, and height, assumed to be equal to the
width. An elongation shape factor, F, is also defined
as the length to width ratio. To take into account the
two sizes and the shape of the crystals, two-
dimensional population balance equations are
required. Such modelling strategy will be applied to
determine  the kinetic parameters of the
crystallization process.

Batch experiments have rich information contents
and are therefore suitable for satisfactory parameter
estimation of the nucleation and growth mechanisms.
However the time variations of temperature require
taking into account the temperature dependency of
the kinetic parameters. Consequently, isothermal
semi-batch operation appears as a good strategy to
obtain a set of kinetic parameters since it allows
distinguishing between the various phenomena
occurring as a function of time. At the beginning, the
process is dominated by primary nucleation,
afterwards the crystal growth gets the upper hand,



and secondary nucleation takes a significant part in
the size variations when the concentration of crystals
is sufficient. The crystallization of hydroquinone was
therefore experi-mentally carried out in a semi-batch
isothermal well-mixed crystallizer. In addition to
usual kinetic investigations, the effect of various
concentrations of a tailor-made additive was also
studied. =~ The semi-batch crystallization of
hydroquinone was then simulated using a bi-
dimensional population balance approach.

Fig. 1. (a) Photographic picture of typical crystals of
hydroquinone and (b) bi-dimensional approxi-
mation of the corresponding rod-like particles.

2. EXPERIMENTAL SETUP AND OPERATING
CONDITIONS

2.1 Experimental setup
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Fig. 2. Experimental apparatus

The experimental device is shown schematically in
Fig. 2. The crystallizer (1) is a glass reactor equipped
with four baffles (2) and a Mixell TT propeller (3).
The suspension is withdrawn from the vessel using
the bottom valve (4). A constant temperature is
maintained in the crystallizer by using a thermostatic
bath (5) and a circulating pump (6). The coolant goes
through a glass jacket and a jacketed cover (7). Four
electrovalves were sequentially manipulated to
perform the withdrawal of solution samples through
a filter (8). Samples were diluted for titration. The
feed tank (11) was thermostated (12), the transfer of

the hot undersaturated solution to the crystallizer was
carried out using a peristaltic pump (14) and jacketed
pipes (16). The required temperature measurements
were obtained using Pt100 probes. Nitrogen (18) was
fed in the two vessels to prevent oxidation in
solution.

2.2 Fed-batch isothermal crystallization experiments

The crystallizer was initially filled with a saturated
solution of hydroquinone, and kept at 25°C. During
the first period of the semi-continuous operation (i.e.
the first half an hour) a ‘hot’ solution was fed to the
crystallizer. Afterwards, the suspension was kept at
25°C, under stirring, for about 1.5 hour, in order to

“ let the slurry reach the equilibrium. Samples of the

clear liquor in the crystallizer were withdrawn every
3 minutes. The solute concentration of these samples
was determined through titration. The two
dimensional crystal size distributions of final crystal
samples were measured using image analysis.

3. EXPERIMENTAL RESULTS
3.1 Supersaturation profiles

The solute concentration data allowed the compu-
tation of the degree of supersaturation , defined as
the ratio of the solute concentration to the solubility.
A semi batch run (see Fig.3) consists of three phases.
During phase 1, the solute concentration increases as
the feeding solution presents a higher hydroquinone
concentration. Phase 1 terminates when primary
nucleation occurs. During phase 2 the solute concen-
tration reaches a plateau: the feeding rate of hydro-
quinone is then constant and equal to the rate of
consumption through particles growth. Phase 3
begins when the feeding rate falls to zero. A decrease
of the solute concentration towards the solubility is
then observed.

As expected, the presented experimental data also
show that supersaturation tends to 0 at the end of
phase 3.
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Fig. 3. Semi batch crystallization of hydroquinone
Computed nucleation rates (dashed lines 1 and 2
for ry; and ryy); computed relative supersaturation
o (full line 3); measurements of the relative
supersaturation ¢ (open circles)

3.2 Evolution of crystals sizes and elongation factor

To avoid undesirable thin needle crystal habits, a
tailor-made additive was selected for its ability to
reduce the growth along the length direction. The
efficiency of such addition was clearly demonstrated

H00C



as the average length decreased with the additive
concentration. The measured coefficients of variation
are rather large: a unique period of crystals birth (i.e.
through primary nucleation) is not consistent with
such wide CSD. Consequently, secondary nucleation
phenomena have to be considered for realistic further
simulations.
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Fig. 4. Semi batch crystallization of hydroquinone
(run SC2): Comparison between computed and
measured number CSD of final crystals (a)
Length L;; (b) Width L, (Dashed lines:
Measurements using Image Analysis; Full lines:
Computed Final CSD)

Indeed, the size- and impurity-dependency of F;
cannot be expressed by any simple and obvious
relationship. For example, no satisfactory simulation
of the variations of the crystal shape can be obtained
assuming a constant elongation factor over the size
range. Therefore, considering two dimensional
population balances in the case of non-isotropic
crystals presents a real interest for predictive
modelling purposes. Obviously, the experimental
data required for such modelling cannot be obtained
through usual particle sizing techniques such as laser
diffraction methods, as they only provide one
equivalent size distribution. This is why image
analysis was used (Fig.4)

4. ESTIMATION OF THE KINETIC
PARAMETERS OF THE CRYSTALLIZATION

4.1 Kinetic modelling of the semi batch
crystallization of hydroquinone

The main mechanisms encountered in the semi-batch
crystallization of hydroquinone are primary and
secondary nucleation, and growth. In the modelling
breakage and agglomeration were assumed to be of
second order of importance.

A detailed model describing the crystallization of
hydroquinone, based on bi-dimensional population
balance equations (PBE), was developed to compute
the time variations of L; and L,. The CSD was
assumed not to depend on spatial coordinates in the
well-mixed lab-scale crystallizer. The PBEs involve

kinetics equations relating the mechanisms of
crystallization mentioned above and mass balance
equations. The whole model is presented in more
details by Puel et al. (2003a). Table 1 summarizes the
main equations which were considered in the case of
well-mixed crystallizers.

A, B are primary nucleation coefficients that can be
determined experimentally and have complex
physical meaning (see e.g. Mersmann, 1996). ky, n, k
are parameters for the kinetic modelling of secondary
nucleation. ky is generally assumed to be related to
the stirring power and to exhibit a temperature-
dependency according to Arrhenius’s law. Exponent
n lies between 0.5 and 2.5. Exponent k is generally
assumed to be of the order of 1 (Garside, 1985). k; ;,
ki, j; and j, are growth parameters for the integration
step of solute in the crystal lattice. &; ; and £;, are the
kinetic constants related to L; and L, directions,
respectively, and j; and j, (in general 1 or 2) are the
order of integration depending on the mechanism in
question. k,, is a mass transfer coefficient related to
the diffusive step of solute in the layer around the
crystal surface. n; and n, are effectiveness factors for
faces 1 and 2 allowing to calculate the real mass flux
density integrated in the crystal with respect to the
maximal mass flux density that would be obtained in
the absence of diffusive limitations (Garside, 1971).
Twelve parameters are thus involved, but the last
three ones, which are time varying, can be calculated
for every time step, using data available in the
literature. Finally, nine kinetic parameters remain to
be estimated from the experimental data through the
fitting of the measured variables to the model-
predicted ones.

4.2 Solving the bi-dimensional Population Balance
Equations (PBE)

The method of classes was used for solving the bi-
dimensional PBE, it requires the introduction of
population number function N(L;L,¢). The crystals
number function is discretized over the bi-
dimensional size domain and Nij(?) represents the
number of crystals belonging to the class denoted by
Clij. The program calculates the relative supersa-
turation o, the kinetic rates of nucleation ry; and ry;
and of growth G; and G, along the L; direction,
respectively the L,, axes. The total number and mass
of crystals and the bi-dimensional size distribution
are finally computed.

The spatial domain of crystals length and width
(respectively L; and L)) is first discretized and the
smallest class of size is assumed to fit the
characteristic nuclei represented by its two
dimensions, L, and L,".

Let L;g,..L;;, ...L;,;y be a suite of length where L ;,
is the length of the largest crystals. These lengths
define im classes quoted Cl, ;, the extent of a class is
ACl;; = L;; — L;;; and the characteristic length of
the class is S;; = (L;.; + L;;)/2. The same
discretization is performed for L,.

As Fig.5 shows, such discretization defines bidimen-
sional classes Cl;;, delimited by L;;, L;;;, and L,
L,;.; of area Ajj = ACl;; ACl;; . These classes are
fixed and of constant size. The size domain is divided



in a system of im by jm bi-dimensional classes. The
method of classes also requires the introduction of
the population number function N(L; L)) defined as
follows :

d°N(Li,Lt)

L, La,t (1)
dLidL> v L2,0)

The number of crystals belonging to the class Clj;

can therefore be expressed as :
L L
N, 0= [ [v(L,L,,0dLdL, @
LiyLi,

im by jm number functions N;;(z) are thus defined.
4.3 Application of the method of classes

To express the population balance equations, the
population number function N(L;,L,¢t) are now used,
rather than the population density function y(L;,L,,¢).
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Fig. 5. Bi-dimensional class Cl;; , inlet flows of

crystal numbers £'};;; £ 5;; and outlet flows of
crystal numbers £°;;; £ 2i5(t)

1. The balance equation (T1) (see Table 1) is first
discretized according to the bi-dimensional grid
presented above (see also Fig.5):

The PBE is integrated after combining expressions
(2) and (T1) with :

[[RydLdL, = 1y, + 7y, 3)
00

2. The population balance around the bi-dimensional

class Cl;; leads to a set of im by jm ordinary
differential equations :

1 d
VT(I)E[NL]‘ (t)VT(f)]+ Jri O+ fa,i, ;O + )
4 F([)N(LlsLZs[)7 Fin(t)Nin (L19L2at) =ry1 +rNa

V()

f1j(t) and f;;(t) are the net inlet and outlet flows of

crystals in class Cl;; , in the length and width
directions induced by growth, respectively. Each
crystals flow being divided in inlet and outlet flows
for each direction (see arrows on Fig.5)

Frii®=F %140 —f "0 and

F2ii 0 =F 230 = F 250 )
Where £ ©1;;(t), £ ©2:(t) are the outlet crystal flows
from the Cl;; class in the L; and L, directions ; and
I Ilyi,j(t), I Izﬂiyj(t) are the inlet crystal flows from the
Cc li,j class in the L; and L, directions

The calculation of these inlet and outlet crystal fluxes
are carried out using a first-order Tailor series
expansion:

F2/0=G(S,0la, N, 0+ b,N,,, 0]
(6)
_fl,]i,j(t) = Gl(Sl,i—l’ t)[al,i-le—l,j(t) + bl,i—lNi,j (t)]

with - ACh.. )
1,i ACZ]J-(ACILM +AC1,,,-)
. ACL, (19)
y ACl,, (ACL,,, +ACT)

and £7,,(0)=Gy(S, s lay N, 0 +by N, 0] ®)
A/ (0=Go(S, 0le, N, 2 (0 +d LN, 0]
with a = ACL, 9)
7 ACL (ACL, ,,, +ACL )

5 ACI

2 ACL,, (ACL,,, +ACL )
The previous expressions are valid for 2<i <im-1 and
2<j<jm-1. Only four neighbouring classes of Cl;; are
considered in the design of the algorithm. Particular
cases are considered for the classes which are set at
the boundaries of the size domain. The lower classes
can not accept growing crystals form the previous
ones: f IHJ(‘L): £ Li1(t) = 0. Crystals in the upper
classes can not grow in the next ones: f Ol,im,j(t) =f

Oz,i im(®)=0. Other numerical treatments are
necessary and are reported by Puel (1994).

2,j

Jj+l

4.4 Parameter estimation and simulation results

Data were collected after six experiments which
correspond to four concentrations of tailor-made
additive (i.e. 0, 400, 600 and 1000 ppm).

‘Usual’ optimisation procedures would obviously
lead to an excessive computational time and are
likely to converge towards local optima. The applied
estimation strategy was therefore based on the use of
mechanistic knowledge of the crystallization system
to save time and to make the convergence easier.
Such strategy was successfully applied by David et
al. (1991), it is based on the fact that different
mechanisms occur successively during this semi
batch crystallization process: as outlined above there
are 3 main periods during which each mechanism
prevails even though until the end of the process,
secondary nucleation should be considered as a
potential mechanism for the generation of nuclei. In
practice the estimation procedure is therefore driven
as follows:

Firstly, the exponents involved in the growth kinetic
are arbitrarily fixed at j;=j,=1. The CSD is computed
and the calculated and measured mono-dimensional
crystals distributions are compared, successively in
the L; and L, directions. To stress on the bi-
dimensional information, the simulated and
experimental elongation factor F; are also compared.
By this way, a precise choice of the kinetic orders n,
k ,j; and j, can be performed. The values of 4, B, ky,
k;; and k;, are then tuned using a trial and error
approach based on the physical meaning of the
parameters which have to be estimated. More details



on the parameter estimation are reported by Puel et
al. (2003b).

Run SC4. Run SC4, carried out with 600 ppm of
additive, was first selected. Fig. 3 presents the
measured and calculated relative supersaturation.
The model prediction is good wuntil the
supersaturation reaches the plateau, where the
simulation  underestimates  the steady-state
supersaturation. The obtained value of B is rather
low, leading to a large burst of primary nucleation
peak during few minutes. Actually, A and B are
strongly linked together through the total number of
crystals, a reduction of B leads to an increase of A.
Nevertheless, the maximum estimated supersa-
turation value, which corresponds to the limit of the
metastable zone, is correctly predicted. The kinetic
coefficients and orders of secondary nucleation were
then fitted to represent the population of fine crystals
in the final CSD (see Fig. 4)). Again, the four kinetic
parameters related to the two growth laws are
strongly connected. Values 1 and 2 for the orders j,
and j, lead to 4 possible combinations. Setting
Jji1=j»=2 or j;=j,=1 leads to underestimate, respect-
tively overestimate, the decrease of supersaturation
after primary nucleation. Additional information
was then obtained from the measurements of the
elongation factor F;, which is very sensitive to
differences in the growth rates along the two main
directions. Finally, setting j;=2 and j,=1 allowed the
best prediction of the particle shape. Any other value
of j; and j, leading to a maximum for F';, which was
not experimentally observed. The growth coefficients
k;; and k;, were finally set considering the main
population of crystals in the final distribution (see
Fig. 4). For the experiment in question, the length
and width of crystals were satisfactorily predicted.

8 --@-- experimental

—&— simulation

Elongation factor F; (-)

0 200 400 600 800 1000 1200 1400
Length L4 (um)

Fig. 6. Semi-batch crystallization of hydroquinone
(run SC1). Experimental and model-predicted
evolution of the elongation shape factor F; vs. L;
(Average of a sample of final crystals)

Runs SC1, SC2 and SC5. Some of the kinetic para-
meters estimated after run SC4 should be modified in
order to account for the effect of the concentration of
additive.

The orders of the growth and secondary nucleation
kinetic laws (n, k, j; , j;) were unchanged since no
modification of the two mechanisms involved was
expected from the introduction of additive. Due to
the chemical structure of the additive, it was also
assumed that the growth in the L, direction was not
altered so that k;, was kept constant. Moreover the
experiments showed that primary nucleation was

increasingly delayed by increasing amounts of
additive. Parameters A and B being linked each
other, A was assumed constant and then B fitted in
order to represent the measured maximal
supersaturation in the neighbourhood of primary
nucleation. The level of fine particles in the CSD and
the final total number of crystals is dependent on the
primary and secondary nucleations. The prediction of
the number of crystals was achieved through the
evaluation of appropriate values of the kinetic
coefficients B and ky related to the law for
nucleations. Moreover, in order to reproduce the
reduction of the experimental elongation factor with
increasing concentrations of additive — which,
indeed, is the effect expected from the use of the
selected additive — it was necessary to assess a
decreasing relationship between the value of k;; and
the concentration of additive.

The three parameters mentioned above (i.e. B, ky and
k;;) were first estimated for runs SC2 (400 ppm of
additive) and SC5 (1000 ppm of additive) by
comparing experimental and simulation results. The
fit obtained between experimental and simulated data
was correct. Unfortunately, for run SC1 (0 ppm of
additive), no supersaturation measurement was
available. Consequently, in order to extend the set of
kinetic parameter values, the missing parameters of
B, ky and k;; were extrapolated at 0 ppm. Second
order polynomial and linear relationships between
the three kinetic parameters and the concentration of
additives were established As one can see in Fig. 6,
the simulated elongation factor for run SC1 obtained
with the extrapolated parameters at 0 ppm was in
good agreement with the experimental data, the
model and the set of kinetics parameters were
therefore considered as validated.

5. GENERAL REMARKS AND DISCUSSION
OF THE RESULTS

As far as the estimation of numerous kinetic
parameters is involved, it is our opinion that, given
the limited number of experimental data and the
complexity of the crystallization phenomena, the use
of an optimization algorithm would lead to uncertain
parameters and finally to a poor predictive ability of
the model. Putting physical knowledge in the
modeling allowed more efficient and more reliable
convergence towards a satisfactory representation of
the semi-batch crystallization operations.

The main originality of the present work lies in its
two-dimensional approach for the modeling of
particle shape, and almost no such application based
on real experimental data can be found in the
literature. This work is also an attempt to relate the
effect of a specific tailor-made additive to the shape
of hydroquinone crystal.

Primary nucleation appears to be quite sensitive to
the concentration of additive as the delay of nuclei
formation increases with the additive concentration.
The molecules of additive turn out to act as
nucleation inhibitors, maybe by limiting the growth
of crystal embryos. The concentration dependency of
parameter B estimated during the present work
relates the increase of the width of metastable zone
associated to such inhibition effect. Secondary



nucleation was taken into account to explain the
fractions of fine crystals in the final experimental
CSD, even though this is not the major mechanism
for nuclei generation.

A major impact of the additive on the crystal habit
was also observed and simulated. The molecules of
additive act as efficient growth inhibitors in the
length direction so that between 0 and 1000 ppm, the
growth rate kinetic coefficient k;; is divided by a
factor of 3.2. Again, this result is consistent with
physical considerations.

6. CONCLUSIONS

A bi-dimensional population balance approach was
developed for simulating the time variations of the
habit of non isotropic crystals of hydroquinone
during solution crystallizations. The algorithm
coupled with kinetic models allowed the simulation
of isothermal semi-batch crystallization of hydro-
quinone exhibiting a rod-like habit. Despite various
experimental conditions, the supersaturation profiles
were correctly predicted, and the computed final bi-
dimensional CSD and elongation shape factors fit the
experimental data.

An inhibition effect of a tailor made additive was
clearly observed, and represented by the model. The
additive mainly affects primary nucleation and the
growth in the length direction, but secondary
nucleation mechanisms and their inhibition in the
presence of additive were also taken into account and
successfully represented, allowing a good prediction
of the final content of the slurry in fines particles.

A set of nine kinetics parameters was estimated
through the comparison between experimental and
calculated data.

the reported parameter values were partly validated
trough the prediction of a semi-batch crystallization
performed without additive. Three kinetic parameters

Table 1. Main equations of the crystallization m

were related to the concentration of additive in order
to represent the inhibition effects of the tailor-made
additive but, even though their physical consistency
was justified, the obtained relationships are simply
phenomenological.
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CALORIMETRIC ESTIMATION OF VISCOSITY AND ACID NUMBER IN ALKYD REACTORS
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Abstract: In the industrial operation of batch alkyd polymerization reactors, the process
evolution is monitored by measuring the acidity and the viscosity of samples withdrawn
from the reactor. The synthesis is stopped at the maximum yield allowed by the gelation
point of the cold product. In this work, a software sensor that estimates the C(cold)-
viscosity and the conversion of acid groups on the basis of the continuous measurement of
the heat exchange rate between a continuous stirred vessel appended to the reactor and a
cooling coil is designed and experimentally tested. The identification of the underlying time-
varying observability property yields the designs of the heat exchange devise and of the
corresponding robust nonlinear geometric observer. The resulting software sensor is
experimentally tested in a pilot plant reactor. Copyright© 2003 IFAC.

Keywords: polymer reactor, cold-viscosity, acid number, alkyd reactor, calorimetric
estimator, nonlinear observer, software sensor.

1. INTRODUCTION

Oil-modified polyesters, commonly known as alkyd
resins, have a high demand as coating resins due to
their low production cost and variety of properties
(durability, color retention, brightness, etc.).
Commonly, an industrial batch alkyd cook is
monitored, controlled and stopped on the basis of
discrete-delayed measurements of acidity and
C(cold)-viscosity. The acidity measures the
conversion of monomers into polymer, and the G
viscosity reflects the complex branched molecular
architecture of the polymer. The batch must be
stopped at a certain conversion below the gelation
point of the cold product. A drift from the prescribed
C-viscosity trajectory signifies that the polymer
structure is drifting from its nominal value, and an
abrupt change means that the cook is running away
from its nominal motion. Recently, on-line continuous
measurements of Gviscosity have been considered
(Hindel, 1996) to improve the monitoring and control
schemes via a continuous sampling-cooling loop with
a viscosimeter. However, this scheme has the
drawback of the investment and maintenance costs

associated to the in situ operation of a vis cosimeter
instrument.

Due to the lack of reliable kinetic models and the
uncertainty of the monomers structure (Patton, 1962),
the standard nonlinear extended Kalman filter and
Luenberguer model-based observer techniques
(Eligabe and Meira, 1988; Mutha et al., 1997; Alvarez
and Lopez, 1999, Ellis et al. 1994) cannot be directly
applied to alkyd reactors. To overcome this problem,
Lopez et al. (2000) designed a geometric estimator on
the basis of an uncertain kinetic model augmented
with an observable (i.e., adjustable) parameter and
discrete-delayed measurements of C-viscosity,
according to the robust geometric estimator design
presented in Herndndez and Alvarez (2003). This
study with experimental testing established the
feasibility of using a model-based observer to yield
present estimates and time-ahead predictions of G
viscosity and acid conversion, and recommended the
development of software sensors based on indirect C-
viscosity measurements to improve the estimation-
prediction scheme. On the other hand, the calorimetric
estimation technique has been extensively and



successfully used to estimate and control variables in
solution and emulsion polymer reactors Sdenz de
Buruaga et al., 2000; Othman et al., 2001; Zaldo et al.
2002 and references there in). In particular, Zaldo et
al. (2002) estimated the heat generation rate and the
heat exchange coefficient on the basis of temperature
and flow measurements.

In this paper the problem of designing and
experimentally testing a heat exchange devise to infer
the C-viscosity and the acid conversion in an alkyd
reactor is addressed. The underlying time-varying
nonlinear observability property is identified, yielding
the design of the heat exchange devise and the
construction of the corresponding nonlinear observer
with a robust convergence criterion coupled to a
simple tuning scheme.

2. SOFTWARE SENSOR DESIGN PROBLEM

Consider the alkyd reactor presented in Figure 1,
where fatty acids, polybasic acids, and polyols are
terpolymerized via an endothermic polyesterification
reaction. Since the polymerization reaction is
endothermic, heat must be added to maintain a
constant temperature (typically 240 °C), and water
product must be removed to favor the reaction
advance. In an industrial reactor, the monitoring of
viscosity and acidity is periodically executed with a
30 to 60 minutes delay period between the sample
acquisition and its analysis in the laboratory. These
results in conjunction with a calibrated C-viscosity
(referred to 25°C) versus acid group conversion chart
are employed in an advisory type control scheme to
decide on corrective additions of acid groups, to
predict the gelation point of the cold product, and to
decide the end of the batch. In principle, the overall
reactor performance should benefit from the passage
from this advisory control scheme towards one more
systematic with continuous measurements or suitable
estimates and with feedback control actions, and this
is the motivation for the consideration of an on-line
C-viscosimeter (Handel, 1996).

L
L L]

Figure. 1. Software sensor system

In this work, the main idea is the replacement of the
aforementioned on-line viscosimeter by the heat
exchange device (A) shown in Figure 1. The
proposed hardware consists of a continuous
sampling recirculation loop equipped with a heat
exchanger to cool the resin down to a suitable
temperature T, and a stirred vessel with a cooling

coil, so that the measured heat exchange rate
y = wj ¢pj (Tji — Tjo) €9

reflects the C-viscosity of the resin in the vessel. w; is
the mass flow rate of cooling water, cy; is its specific
heat capacity, and "l}i (or "1}0) is its inlet (or outlet)

temperature. From a steady-sate heat balance follows
that the total heat exchange rate between the resin in
the test vessel and its cooling coil is given by

Q=U(l, ly) (D, L) T (Ty, T, Tio) @)
=0 (c, Ty, Tji, Tjo, Po)

where D/ (or L) is the coil outside diameter (or
length), T is the log-mean temperature difference, and
U is the global heat transfer coefficient (Oldshue,
1983):

UG, By) = [1/he(, 1) + (/1) (/B! (2b)
hy(u. 1,) = 3, (/D) [R G011 ® i, 1% 20)
P =(uep/ky),  Re(l)=(D?Np/w) (2d)
T(Ty, T}, Tjo) = (Tji~Tjo)/Inl(Ty — T/(Ty = Tjo)l  (2e)
Tj=Ty - t(Ty, Tj;, Tjo) : = ? (Ty, Tj;, Tjo) (2)
Ty, = Tj - Q/[h; (nD; Lo)l:=1 (Ty, Tji, Tjo) (22)

Pe = [Cpr, ij, Di, Doa Da hJ? krs Lc3 N’ P, PJ ]’

h, is the resin heat transfer coefficient, hj is the coil-
fluid heat transfer coefficient, 5 (or » ) is the coil
outside and inside radius, D is the vessel diameter, D;
is the coil inside diameter, k; is the resin conductivity,
Tj is the coil-fluid mean temperature, | is the resin
viscosity at the vessel temperature Ty, L, is the resin
viscosity at the temperature Ty, of coil wall, P, is the

Prandtl number, and R, is the Reynolds number.

The resin viscosity depends on the temperature (T)

and the acid conversion (c) via the free volume-type

expression:

n=exp {an(T) + by(T) In[Ay(1-0)] ©)
+cn(T) [In (Aq (1-0))] *}:=ac, Ay, T, pr),

c=1-A/A, Pn = lan, by, cql’

A is the acid number (i.e., mg of KOH required to

neutralize one g of resin), A, is its initial value, and ¢



is the related conversion. py is the parameter vector
of the relationship viscosity-conversion.

Our hardware sensor problem consists in choosing
the dimension, geometry, mixing pattern, stirring, and
mass flow (w,) of the stirred vessel as well as the

material, diameter, length, and cooling fluid inlet
temperature of the coil. Our software problem
consists in designing a robust nonlinear observer
that yields estimates of the C-viscosity (1) and of the
conversion (c):

N =o(c, Ag. Ty. pr) @

Methodologically speaking, we are interested in
identifying a physically interpreting the nonlinear
time-varying observability property that underlies the
hardware and software designs of the finite-time
batch alkyd polymer reactor.

3. ESTIMATION MODEL

Phenomenological second and third apparent-order
models have been employed in alkyd kinetic studies
(Flory, 1953; Lin and Hsieh, 1977; Aigbodion and
Okieimen, 1996), and none of the existing models
apply to the entire course of the reaction. Any of
these models with an adjustable (i.e. observable)
constant leads to a third order nonlinear estimator
(Lopez et. al. 2000). To reduce the model order by one,
let us recall a well-known fact in alkyd kinetic studies
and industrial reactor operation: at constant
temperature, the Gviscosity increases exponentially
with time. It means that, in C-viscosity coordinate Eq.
(4), the third-order conversion model can be replaced
by the following second-order model:

n0) =n, (5a)

k=ug®=vi M, Ag, Ty, Ty, W, W pyc 1=0,  (5b)

n=kn,

y=hM.d.p).  c=BM. Ay Ty.py) (Se.d)

where w is a set of unmodeled variables related to the
polymer molecular architecture, p, iS a parameter

vector associated to reaction rate, and [} is the inverse
map of the map o (Eq. 4) with respect to c. It is,

B[oc(c,Ao,Tv,pn),TV,pn] =c 6)

Finally, h is the heat rate exchange measurement map
0 Eq. (2a) expressed in C-viscosity coordinate (1):

h(n,d,p)= 9[[3(11’ Ay, Ty, pn)’ ij Tjo’ pel @)

In vector notation, the estimation model (5) is given
by

x= f(x), x0) =%y, 0<t<ts (8a)
y =HI[x, d(1), pl, ¢=B(x, py) (8b)
where

x=m,ky, d=[Ty, T, T,,I, p=I[pe.pnl’

f(x) =(kn, 0), H[x, d(t), p]=h(M, d, p)
B(x, Pn) =B, Ay, Ty, Pn)

Since the maps f, H and B are continuously
differentiable, a given data triplet [x,, d(t), p] uniquely
determines a state motion x(t) and an output
trajectory y(t):

x(t) =t%[t, 0, Xy, d(t), pl, 0<t<tf (9a)

y(®) = H[x(t), d(t), p] (9b)

4. OBSERVABILITY PROPERTY

In this section is characterized the time-varying
nonlinear observability property that underlies the
solvability of the hardware and software design
problems.

From the definition of nonlinear motion observability
given in Alvarez and Loépez, (1999) and Hernandez
and Alvarez (2003), the observability property is
defined for one particular finite-time motion x(t), or
equivalently, for one particular input-output
realization [y(t)-d(t)] of the batch reactor. The reactor
motion x(t) is observable if at each time t, the state x(t)
is uniquely determined by the measurement y(t) and
its time derivative, or equivalently, if the state x(t) is
the unique solution of the algebraic equation pair at
time t:

y=hm,d,p):=¢,(,d,p), 8=(d,d) (10a)

§ = [onh(. d. p)Jkn

+[9gh(, d, p)Id := &, M, k, & p) (10b)
or

V=0x8p), ¥=(@.y) 0=@@.%) (10c)

From the local inverse theorem (Isidori, 1995), follows
that this equation has a unique solution for x if the
nonlinear observability matrix

O(x, 8, p) =00(x, 8 p)
B |:anh(n,d,p) 0 }

o(xd.p) 1 dgh(n.d.p) (h

o(x. d. p) = dndy (M. k. & p) =kIN dnqgh(n. d. p) +



Iqh(. d, p)] + [Ogqh(. d. p)] d

is nonsingular along the reactor motion x(t). The
determinant (det) of O and its §-norm) minimum
singular value (msv) s are given by

det[O(M, d, p)] = n[dnh(n. d, p)]*
msv[O(M, d, p)] :=sM, d,p) = anh(n, d, p)

Thus, the motion x(t) is locally (nominally) observable
if

anh[n(t), d®),pl#0 Vite [0,t]

Let X, and D are sets of perturbed initial and
exogenous inputs about x(t) and d(t), respectively:

Xo = (ol Byl <&}, D = {d(®) 1Id(t) - dpll < §,)

() - d(o)ll = o (o) - d(o)

> g
where Il is the norm of X, and &, (or §,) is the radius of
X, (or D). Let X be the corresponding bundle set o

perturbed motions [X(t)] about x(t)

X = (&0 =1Jt, 0, %, d(), pl.O<t<t)[%, d(t)]
€ X, xD, Ix(t)-x(®) <€ (&), §,)}, €(0,00=0

with £(8,, §,) being the radius of X. According to the

definition of practical (i.e., no local) observability
given in Alvarez et al. (2000), the (unperturbed)
motion x(t), or equivalently, its uniquely associated
input-output realization [d(t)-y(t)], is robustly
observable for X (determined by X, xD) and a given
lower bound s, for the msv of the observability matrix

if the following inequality is met
Inh (), d(V), pl > 54, V¥ [XO, dD]eXxD  (12)

The fulfillment of this robust detectability property
signifies that the reactor state motion x(t) can be
robustly reconstructed via a nonlinear observer
(Alvarez and Lépez, 1999), with a measurement error
(in y and h) propagation proportional to 1/ s,.

Once the robust observability condition is met, the
design of the corresponding geometric (i.e.,
Luenberguer-type) nonlinear observer follows from a
straightforward construction-tuning scheme. This
subject will be further discussed in subsection 5.3.

On physical grounds, the resin viscosity p(c, T)
decreases with temperature; the heat exchange rate h
increases with temperature. The dependency (dyh) of

h on the Gviscosity (at T,) n diminishes with the

increase of the vessel temperature T, meaning that
this temperature T, must be set sufficiently low to

yield an admissible sensitivity of the heat exchange
rate with respect to acid conversion changes along
the course of the reaction, or equivalently, to
adequately meet the robust motion observability
condition Eq. (12). On the other hand, the
considerations of mixing and flow through pipe
impose restrictions on the lowest resin temperature
that can be reached in the sample vessel. Thus, the
hardware design problem amounts to finding a vessel
temperature T, that represents a suitable compromise

between the fulfillment of the robust observability
condition Eq. (12) and the handling of a cold (i.e.,
viscous) resin fluid in the vessel and pipes of the
sampling circulation loop. This subject on the
hardware design will be discussed in subsection 5.1.

5. SOFTWARE SENSOR DESIGN
5.1. Experimental setting (Hardware design)

In order to calibrate the estimation model, an initial
alkyd polymerization was carried out at 210 °C in an
80 L reactor with the system shown in Figure 1. The
reactor was loaded with a mixture of fatty acids,
phthalic anhydride, glycerine, and pentaerytritol. For
industrial confidentiality reasons, the composition of
initial load cannot be revealed. Following previous
reports (Héndel, 1996), the sample vessel temperature
was set at T = 125 °C. At the reactor high temperature
(210 °C), the term 8nh in the observability condition
Eq. (12) is very small, meaning that the model
observability is very poor. Consequently, the resin
temperature had to be decreased to increase the value
of Bnh and have adequate sensitivity. It was verified
that the vessel temperature T, = 125 °C was an

adequate value to meet the robust observability
condition with a manageable flowrate in the
recirculation loop.

The kind of vessel stirrer and its revolutions per
minute N, as well as the baffles were chosen
according to standard design mixing equipment
considerations (Oldshue, 1983), enhancing the
macromixing for heat exchange purposes. The inlet
coil water temperature was fixed at T = 20 °C. The
coil diameter was fixed at D, and an initial value for
the jacket fluid flow-coil length pair (w;-Lc), was
chosen according to the aforementioned heat transfer
correlations, in the understanding that this pair will be
adjusted in order to adequately meet the robust
observability condition Eq. (12). The temperature of
the vessel and the input and output temperatures of
the coil were on line measured and the heat exchange
rate was measured. Samples of the resin were taken
from the reactor and off-line analyzed: the C-viscosity



is measured with an ICI cone-plate viscosimeter over
the temperature range of [100, 150°C, i.e., bracketing
the one of 125 °C reported by Hindel (1996)], and the
acid number was determined by KOH titration.

5.2. Model calibration

The Cviscosity at different temperatures and acid
number measurements obtained from the samples
were fed to a nonlinear regressor, yielding the
coefficients of the free-volume type (Eq. 3) nonlinear

map o (Eq. 4):

an(T) = 3477.99/(T +273) - 3.1815
by(T) = -456.961/(T +273) -1.9603
en(T) = -185.203/(T +273) +1.1656

From the measured heat exchange values, the
parameters of the heat exchange coefficient
expression (Eq. 2c) were adjusted, obtaining the
following results for this equation,

a, =1.178,b, =2/3,¢,=1/3,d,=0.14

Finally, it was found that the agitation due to the
recirculation loop amounted to an effective stirred
speed (N) of 200 rpm (i.e. 30 rpm more than in the case
without recirculation.)

5.3. Software design

Given the nonlinear nonsingular observability matrix
(Eq. 11), and having designed the hardware so that
the robust observability condition Eq. (12) is
adequately met in the light of equipment
specifications and restrictions, the construction of
the corresponding geometric nonlinear observer
follows from a straightforward application of the
procedure given in Alvarez and Lépez (1999):

k=1l% d(). p,] + GI% d(t), p.I{y — h[x d(t). p,]}
G(x, d, pe) =[0"'(%, & p)l ke (§ @)
ke (§ @) = (20w, ?)

where G is a nonlinear gain matrix, { (or ) is the
damping (frequency) adjustable parameter of the
output error response. The estimator converges if the
celerity parameter is chosen so that the following
inequality is met:

®> 28(9q%,)/(dnh)
In detailed form, the estimator is given by
fi = kN + gq[M.d®.Lwp Iy~ hiA.d®.p ]} (132)

k=gM, d®, § o p.I{y - hM, d®), p.1} (13b)

¢ =B, Ag. Ty, py) (13¢)

where

gn(M,d, § @ p) =2V [dph (M, d, § o, p,)]
gk, d, § 0, p,) = @/[Ndph (N, d, § @, p,)]

=071, o=10k*,  k*=dlnn/ot

k* is a representative value of the viscosity dynamics,
and the value of ® means that the observer is tuned
about ten times faster than the C-viscosity dynamics.
In our case (k* =0.00324 min™') this tuning yielded an
adequate compromise between reconstruction rate

and tolerance to measurement and modeling errors.

6. EXPERIMENTAL IMPLEMENTATION

The proposed software sensor Eq. (13) was tested in
the pilot plant system presented in Figure 1. In Figure
2 are shown the on-line estimated and off- line G
viscosity values. As it can be seen, the evolution of
C-viscosity is reasonably followed and there is a
good agreement between the on-line and off-line
values. In Figure 3, the evolution of the estimated and
measured heat exchange rate are presented. Finally, in
Figure 4 are presented the on-line estimated and off-
line (titration) measurements of acid number. As it can
be seen in the figures, the software sensor provides
reasonable estimates in the light of the modeling
assumptions and uncertainties. It must be pointed out
that the free-volume Eq. (3) and heat transfer (Eq. 2¢)
correlations should be occasionally calibrated,
especially when a new formulation or raw material is
to be poly merized.
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Figure 2. On-line (—) and off-line (i ) C-viscosity.
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7. CONCLUSIONS

In this work, a calorimetric software sensor to on-line
estimate the cold viscosity and acid number of alkyd
resins has been developed and implemented in a pilot
plant. The experimental testing of the resulting
software sensor shows the feasibility of drawing an
on-line estimate of the cold viscosity and acid
conversion based on the heat exchanged
measurement. The characterization of the underlying
nonlinear robust observability property enabled a
unified approach to the hardware and software design
aspects of the problem.
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STATE ESTIMATION IN BATCH
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POPULATION MODELS
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Abstract: This contribution deals with the design of an observer for state esti-
mation of a batch crystallizer, which is described by a detailed population bal-
ance model. Therefore, the rigorous model containing (partial) integro-differential
equations is first reduced by applying an integral approximation technique to a
model of moments that consists of only a few ordinary differential equations. This
reduced model serves then as the basis for the design of a Luenberger type observer.
The performance of the observer is finally demonstrated by using the rigorous
population balance model for the simulation of the crystallizer plant.

Keywords: state estimation, observer, population balance, model of moments,

model reduction, integral approximation

1. INTRODUCTION

In a lot of crystalline product manufacturing ap-
plications the product quality is determined by
the crystal size distribution. The main difficulty
in batch production is thus to accomplish uniform
and reproduceable particle size distributions. A
suitable model based technique for monitoring
each batch with respect to a reference batch is
the state estimation by an observer (Ray 1981).

Detailed descriptions of particulate processes are
usually based on population balances, which gen-
erally leads to a complex mathematical model
structure. An observer design based on such a
population balance model is thus very difficult,
if not impossible. Therefore, a model reduction
technique will be applied in this contribution,
which reduces the model formulation to a system
of only a few ordinary differential equations. With
the help of this reduced model it will then be
possible to apply standard design techniques for a

nonlinear observer (Schaffner and Zeitz 1995).
The paper is organized as follows: After a com-
pendious description of the population balance
model for the considered batch crystallizer, the
applied model reduction technique, which is based
on integral approximation, will be illustrated. An
observer will then be designed based on the de-
rived reduced model. Simulation results will fi-
nally illustrate the performance of the observer.

2. MODELING OF BATCH CRYSTALLIZERS

The batch cooling crystallizer considered in this
contribution is a two phase system, which consists
of a continuous liquid phase L and a dispersed
solid phase S, see Fig. 1. The continuous liquid
phase, which contains a binary mixture of dis-
solved crystals and solvent, is modeled by material
balances. The population of individual crystals
within the dispersed solid phase is described us-
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Fig. 1. Decomposition of a batch crystallizer.

ing the population balance approach (Ramkrishna
2000). In order to take the cooled operation of the
batch crystallizer on different temperature levels
into account, the model is completed by energy
balances for the overall crystallizer content and
for the coolant inside the cooling jacket.

In the following, the structure of the mathemati-
cal model for the considered crystallizer will be
shortly described. For more details about the
modeling of this type of crystallization processes,
the reader is referred to (Gerstlauer et al. 2002).

2.1 Modeling of the dispersed solid phase

The application of the population balance ap-

proach in order to model the dispersed solid phase

S leads to the following population balance equa-

tion for the number density function F' depending

on time ¢t and the characteristic particle length L:
OF  O0(GF)

E——BTWLFLWLF; (1)

= Fyeeq(L); F(L=0,t)=0.

The first term on the right hand side of Eq. (1) ac-
counts for crystal growth with the growth rate G.
The source due to nucleation is denoted by Fii .
The term F'% summarizes all sinks and sources
due to attrition of crystals at the stirrer. The
initially added seed crystals are denoted by Fieeq-
All considered phenomena are described using de-
tailed kinetic relations. The number of primary
nuclei is calculated following Mersmann (1996),
considering homogeneous and heterogeneous nu-
cleation. The growth rate

G(ACL,A,L) _ ACL,A kd(L)
2kd(L) - Ccs 2k,cs

[ ka(L)\? N ka(L) Acp a @

2]6,«05 k‘TCS Cs
accounting for integration and diffusion limited
crystal growth (Mersmann et al. 1992, Gahn and
Mersmann 1999) depends on the supersaturation

Acr, 4 and on the size dependent mass transfer
coefficient

1 1
Dag gL\ ¢ vr, 3

»(3)

where D 4p is the diffusion coefficient and & and
vr, denote the specific energy input and the kine-
matic viscosity. For the calculation of the attrition
rate § and the number N¢,,, and size distribution
frag of abraded fragments a very detailed model
is used, which takes the stirrer geometry and the
hardness of the crystalline material into account
(Gahn and Mersmann 1999). In the population
balance (1), this leads to a sink

Fo(L) = B(L)F(L) (4)
due to the crystals that collided with the stirrer,
to a source term F;;’l accounting for the resulting
large crystal with a length L' — AL(L') somewhat
smaller than the size L' of the original crystal and
to a source term F;g,z for all produced fragments:

Fia= (L (I — AL(LY) E (L) dL (5)

B, = / Ntrao (L) fra0 (L, I') i (L) dI'.(6)

2.2 Modeling of the continuous liguid phase

The continuous liquid phase L inside the crystal-
lizer consists of two components: the solute and
the solvent, i.e. component A and B, respectively.
The fundamental balance equations for the liquid
phase are thus a balance for the total number of
moles np,

dnL . .
W = (a + 1) : (_nnu - ngr) ’ (7)
and a component mole balance for the number of
moles ny, 4 of dissolved crystals (component A)

dnr, a . .
% = —Tpy — Ngr - (8)
Initial conditions for the balance equations (7)
and (8) are given by

np(t=0)=nro and np a(t =0) =ng a0 -

The variable a in Eq. (7) denotes the number
of solvent molecules that form a crystal hydrate
together with a single molecule of solute. The total
molar fluxes 1, and ng, on the right hand sides
of Egs. (7) and (8) describe the exchange of mate-
rial between the continuous liquid phase and the
dispersed solid phase due to primary nucleation
and crystal growth. With the nucleation rate By,
and the growth rate G these molar fluxes are given
by

. 3
Npu = kV *CS Lcrit : Bnu

oo 9
Ngr = kv-cs/O L38(8GLF) dL . ©)




The symbols ky and cs in Egs. 9 denote the
volume shape factor of the crystals and their
molar density. The minimum size, which nuclei
must have to be stable, is characterized by the
critical crystal length L..;;.

2.3 Energy balances

Besides the population balance (1) and the ma-
terial balances (7) and (8) energy balances ac-
counting for the overall crystallizer temperature
Ter and for the temperatute 7; of the coolant
inside the cooling jacket are required to complete
the crystallizer model.

With the heat capacity Cp., of the crystallizer
content, the change of the crystallizer temperature
with time is determined by

dT,
CP,c‘r —=

el AR, (Npy + figr)

+ Jcool + Wst (10)

*

depending on the heat due to crystallization Ah?,,
the energy exchange J o, with the cooling jacket
and the energy dissipation W; by the stirrer. In
a similar way, the change of the temperature T}
inside the cooling jacket is given with the heat
capacity C'p; of the coolant as

T o,
Cp,j,inTcool \ 1 j,in

CP,jE— _Tj)_Jcool-(ll)

In this equation, the symbol cp; ;, denotes the
molar heat capacity of the inflowing coolant 7.,0;
and Tj;, is the temperature of the inflowing
coolant, which is the only manipulating variable
to operate the process. Initial conditions for the
energy balances (10) and (11) are given by

Tc,«(t = 0) = Tcr,O and Tj (t = 0) = Tj’g .

This concludes the description of the rigorous
crystallizer model, which is made up of a partial
integro-differential equation (1) for F(L,t) and
of four ordinary integro-differential equations (7),
(8), (10) and (11) for nr(t), nr,a(t), Ter(t) and
T;(t). This rigorous model will be the starting
point for the following model reduction, and it
will be used to validate the subsequently designed
observer.

3. MODEL REDUCTION
With the model reduction technique described in
this section, the infinite dimensional population

balance (1) can be reduced to a set of six ordinary
differential equations for the lower order moments

uk(t)z/oooLkF(L,t) dL k=0,...,5 (12)

of the crystal size distribution F(L,t). From a
process engineering point of view, this reduction
is not really a restriction, since the knowledge of
the lower order moments is sufficient for most
practical applications, but the great advantage
of the resulting reduced model of moments is its
model structure, which finally consists of only ten
ordinary differential equations.

Such a moment based model reduction has already
been applied by Hulburt and Katz (1964), but
as mentioned by many authors, the analytical
derivation of the moment equations

dpr _ [k _0(GE) | py |
= _/OL( op t Fu+ Ely ) dL,(13)

which can be derived by differentiating Eq. (12)
with respect to time ¢, leads in general to an
unclosed set of ordinary differential equations. In
contrast to the analytical derivation (Hulburt and
Katz 1964), in this contribution a numerical inte-
gral approximation, which is based on Gaussian
quadrature rule (McGraw 1997), will be applied
to evaluate the integral on the right hand side of
Eq. (13). To illustrate this technique, the approx-
imation of the k* moment yields for example

() = / LE (L) AL~ LEQ wilt), (14)

i=1

where L; amd w; are so called abscissas and
weights (Lanczos 1956). Since the sum on the right
hand side of Eq. (14) results in the exact value of
the integral for k£ < 2n — 1, the time dependent
abscissas L;(t) and weights w;(t) can be calculated
from

wy +we +...+w, = Ug
L1w1 +L2w2++ann = M1
Liw; + Laws + ...+ L2w, = po (15)

2n—1 2n—1 —
Ll ’LU1++Ln Wp = HU2pn—1 -

For the solution of this problem of weighted mo-
ments (Lanczos 1956), several methods have been
reported, see e.g. (Sack and Donovan 1972). All
these methods are based on the fact that the
abscissas L; for the Gaussian quadrature rule can
be determined as the zeros of orthogonal polyno-
mials, which can be computed as the eigenvalues
[L;I — J] = 0 of a tridiagonal matrix

Bo a O
J=a (1 a (16)
0 a1 ,62
of sizenxn (3x3for k=0,...,5), where o; and

B; depend on the moments uy. The weights w; can
finally be obtained from the first components of
the corresponding eigenvectors v;



w; = povi(1)? . (17)

Using the abscissas L; and the weights w;, the
integrals on the right hand side of Eq. (13) and in
Egs. (9) can thus be approximated by applying

/oo L* (L) F(L,t) dL
B IVHOL A0 IORNIEY

with ®(L) being any sufficiently smooth (kinetic)
expression.

The application of this model reduction technique
leads thus to a reduced model of moments that
contains the material balances (7) and (8), the
energy balances (10) and (11) and six ordinary
differential equations for the first six moments
Ho, - - -, 5 instead of the population balance (1).
The resulting model can thus be formulated as

s — F(2)+g(u); at=0) =
y_hia) Y

with the state vector,
T
= (ng npa Tor Tj pro p1 piz p3 pia pis ), (20)

the output vector y and the control vector wu,
which in case of this batch crystallizer only
contains the temperature T} ;, of the inflowing
coolant. This form allows the derivation of a stan-
dard Luenberger type observer design (see e.g. in
(Schaffner and Zeitz 1995)), which will be subject
of the next section.

4. OBSERVER DESIGN

For state estimation, either for process monitoring
tasks or with the objective of process control, the
entire state of the batch crystallizer in terms of the
number of moles n; and nr 4, the temperatures
Ter and T; and the moments po — ps of the crys-
tal size distribution has to be reconstructed from
available measurements. Nowadays, very efficient
sensors are available for temperature measure-
ment, as well as for the online determination of
supersaturation, see e.g. the crystallizer setups de-
scribed in (Miller 1993, Neumann 2001). Besides
these sensors, also techniques are available for
determining particle size distributions, e.g. from
light scattering (MALVERN) or from chord length
(LASENTEC) measurements. However, a drawback
of these methods is that they work quite well,
if additional information about the shape of the
crystal size distribution is available, e.g. to cal-
culate the size distribution from a chord length
distribution (Ruf et al. 2000). But from these
measurements values for certain moments can be
derived, as e.g. u; from the LASENTEC FBRM

(Ruf et al. 2000) or po from the application of
the MALVERN sensor (Miller 1993). Therefore, the
following approach for an observer design will be
based on the availability of either the first moment
p1 or the second moment .

In case of the here considered batch crystallizer,
the measured supersaturation, which is equivalent
with the knowledge of the mole fraction zp 4 =
np a/nL, leads directly to the determination of
the model states ny and nr 4, since the overall
content of material keeps constant throughout the
batch time. Moreover, the knowledge of z 4 al-
lows the calculation of the third moment us using

Nseed +

1

——(n — TL AN ,(21
1—(1+a)ﬂcL,A( L,A0 — ZL,AnLp)|,(21)

with ngeeq being the number of moles of the seed
crystals Fieeq-

Thus, an output vector y can be defined con-
taining six state variables, which are measured or
directly related to measurements

T
Yy = (nL nL,A Ter Tj Hox /J'S) (22)

with u, defining either u; or ps. Based on this
output vector y, a Luenberger type observer
(Schaffner and Zeitz 1995) of the form

fl(@) +g(u) + Ly - 9); 2(t=0) = 2o 53

© &
I
®

can be established. Here, & represents the vector
containing the estimated states, f(&) + g(u) is
a copy of the right hand sides of the reduced
model, Lyps(y — ¢) the correction term, and ¢(&)
represents the estimator output vector. The initial
values & for the observer states are given by the
initial states 2¢ of the reduced model of moments,
which can be calculated from the initial conditions
of the original rigorous population balance model.
For convergence of the estimated states & against
the states of the plant, the difference y — ¢ has to
converge to zero. In order to obtain this, a matrix
L,ps has to be designed. Since the reduced model
of moments has due to the involved eigenvalue
problem a very complex nonlinear structure, it is
not possible to determine Lgs by an analytical
design method. But from physical considerations
the structure of the matrix L.y, can be identified
for the here considered batch crystallizer as

X'00000000 0\
0X20 000000 0
|l 00oXx3000000 0
Lobs = 00 0X:00000 0 (24)
000 0XX5X70 0 0
000000 0XSXJXxM0



All the entries X;; represent adequate gain val-
ues, depending on the availability of u1 or us.
These gain values can be adjusted as constant val-
ues following again physical considerations. With
this gain matrix L,p,, the lower order moments
o — pe are adjusted with the measured p; or po,
the higher order moments u3 — ps by ps. Due
to the ratio between the moments, this leads to
typical gain values of e.g. X§ = 1-1072 and
X2 =184-10"C.

As another consequence of the complex nonlinear
system used for the observer design, it is not
possible to investigate stability properties analyt-
ically. Therefore, simulation studies for different
disturbed and undisturbed operation modes have
to be carried out, in order to verify the applica-
bility of the designed observer.

5. SIMULATION RESULTS

In this section, simulation results will be pre-
sented, in order to demonstrate the performance
of the observer designed on the basis of the re-
duced model of moments. Therefore, the crystal-
lizer setup by Miller (1993) will be considered, for
which the detailed population balance model has
already been validated (Gerstlauer et al. 2002).
In this setup, a commonly used linear cooling
regime for Tj ;,(t) is applied, as depicted in Fig. 2.
All the following investigations are performed by

306
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time t [s]

Fig. 2. The applied, approximately linear cooling
rate in the crystallizer setup by Miller (1993).

using the rigorous population balance model for
the simulation of the batch plant. The population
balance is therefore discretized by a Method of
Lines approach (Schiesser 1991) using 1000 grid
points. For all simulations 10g of normally dis-
tributed seed crystals (mean: 500um; deviation
50um) are used. Both the plant model as well
as the observer are solved using a standard ODE
solver in MatLab?!.

The robustness and performance of the observer
based on the reduced model of moments and de-
scribed in Egs. (23) and (24) will in the following
be analyzed by adding disturbances to the pro-
grammed cooling profile in Fig. 2. Therefore, the

1 MatLab 5.3, The MathWorks Inc., 3 Apple Hill Drive,
Natick, MA 01760-2098, USA

considered batch process will be simulated under
rather heavily disturbed cooling profiles as can
be seen in Fig. 3. For the further investigation
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Fig. 3. Applied disturbed cooling profiles.

of the observer behavior, two state estimators
will be used, one for the availability of u; and
another for the measurement of ps. In the follow-
ing comparisons between the estimated observer
states with the states of the rigorous plant model,
only those states will be discussed, for which no
measurements are available.

In the first case, an observer based on the avail-
ability of u; is considered. As can be seen in
Fig. 4, this observer achieves very good results for
an undisturbed operation of the batch crystallizer
as well as for a disturbed cooling profile (*dist
I’ in Fig. 3). Fig. 4 shows clearly the significant
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Fig. 4. Comparison of estimated moments g,
w2, pa and ps (dashed black lines) with the
moment values calculated from the rigorous
plant model (thick grey lines) for an observer
based on the availability of p;.

consequences of the applied disturbance. The esti-
mated states (dashed black lines) follow the plant
states (thick grey lines) very well, even after the
disturbance occured.

The observer considered in the second case, which
is based on the availability of ys has some more
difficulties to follow the rigorous plant model, as
can be seen in Fig. 5. As a consequence of dis-
turbance II the estimated moments uo and
start slightly drifting away from the plant states
at about 2500s, but due to the correction term
Lops(y — 9) in Eq. (23) both po and p; converge
again and reach the plant states again after 3000s.
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Fig. 5. Comparison of estimated moments o,
p1, pa and ps (dashed black lines) with the
moment values calculated from the rigorous
plant model (thick grey lines) for an observer
based on the availability of us.

The higher moments ps and p5 are in perfect
accordance during the whole process.

As depicted in Figs. 4 and 5 observers can be
designed that achieve quite good results for both
cases, the availability of p; or us.

6. SUMMARY AND CONCLUSIONS

In this contribution, an observer is designed
for the state estimation of a batch crystallizer.
The rigorous population balance model that de-
scribes this crystallization plant consists of (par-
tial) integro-differential equations (Gerstlauer et
al. 2002). After applying a model reduction tech-
nique, which is based on integral approximation
using Gaussian quadrature rule (McGraw 1997),
this infinite dimensional model can be reduced to
a finite dimensional model that consists of only
ten ordinary differential equations. On the basis
of this reduced model of moments standard Luen-
berger type observers (Schaffner and Zeitz 1995)
can be constructed, based on the availability of
measurements of the first or the second moment
of the crystal size distribution. As a consequence
of the complex nonlinear design model, these ob-
servers are designed and tuned on the basis of
process knowledge and physical considerations.
In the finally presented results, the rigorous popu-
lation balance model is used to simulate the undis-
turbed and disturbed operation of the considered
batch crystallizer. For all performed simulation
studies, both observers behave very well, which
demonstrates the applicability of these observers
either for process monitoring or for the objective
of process control.
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