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Abstract 
 
Principal component analysis (PCA) has been used successfully for fault detection and identification in processes with highly 
correlated variables. The fault detection decision used depends solely on the current sample though the results of previous samples 
are available and is based on a clear definition of normal operation region, which is difficult to define in reality. In the present 
work, a novel statistical testing algorithm is integrated with PCA for further improvement of fault detection and identification 
performance. We use the idea to decompose the scores space and residual space generated by PCA into several subsets so chosen 
that in each subset the detection problem can be solved with an efficient recursive change detection algorithm based on χ2-
generalized likelihood ratio (GLR) test. Copyright  2003 IFAC 
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1. INTRODUCTION  

 
Today’s chemical processes are becoming heavily 
instrumented to measure a large number of process 
variables and data are being recorded more 
frequently. These process measurements are highly 
correlated. Identifying and troubleshooting abnormal 
operating conditions are difficult task with these large 
amounts of data. The most commonly used technique 
is principal component analysis (PCA). Process 
monitoring using PCA is widely based on ‘snap shot’ 
Shewhart type control charts, such as T2- and SPE-
statistic control charts.  The decision depends solely 
on the current sample though the results of previous 
sample are available. The implementation of this test 
is quite simple, but, as one might expect, one pays for 
this simplicity with rather severe limitations on 
performance. First, subtle failures are much difficult 
to detect with this simple scheme. Second, it is 
difficult to get a tradeoff between false alarm and 
quick fault detection. 
 
Several extended methods have been proposed for 
fault detection and identification based on PCA 
algorithm. Ku et al. (1995) proposed dynamic PCA 
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for process monitoring. Bakshi (1998) combined PCA 
and wavelet analysis (multiscale PCA) for fault 
detection. Kano et al. (2001) proposed moving PCA 
for process monitoring.  Kano et al. (2002) described 
process monitoring based on dissimilarity of process 
data.  
 
Several problems are not yet solved in these 
algorithms. First, a clear definition of normal 
operating condition is needed. This is not the case in 
reality. In general, there are large gray areas where 
incipient or small faults occur, while normal process 
can go to this region by chance. Second, multivariate 
CUSUM charts, which can detect small changes, are 
only available for scores. The monitoring of residuals 
is also very important. Third, though algorithms, 
which can detect small changes that affect the 
correlation structure such as Kano’s dissimilarity 
based process monitoring scheme, have been 
proposed, such schemes cannot detect the variables 
that are responsible for the fault when the fault 
occurs.   
 
In this paper, we describe an approach, which 
integrate PCA with efficient statistical testing 
algorithm which can solve the problems mentioned 
above. The outline of the paper is as follows. First, we 
give a brief introduction of PCA for process 
monitoring and fault detection.  Then, we review 



 

     

several statistical testing algorithms. The integration 
of PCA with an efficient statistical testing algorithm 
is then presented. Case studies to demonstrate the 
proposed approach are provided. The paper is 
concluded with summary. 

 
2. PCA FOR PROCESS MONIOTRING AND 

FAULT DETECTION 
 
PCA technique is used to develop a model describing 
the expected variation under normal operating 
conditions (NOC).  An appropriate reference m-
dimensional data set X with n samples and m variables 
is chosen which defines the NOC for a particular 
process. After the data has been properly scaled, PCA 
can be used to divide the measurement space into two 
subspaces, one principal component subspace and one 
residual subspace as, 
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where X is the normal operating condition data and E 
represents residual error matrix.  
 
The variance of each principal component is 
determined by the eigenvalues associated with the 
principal component. T2 statistic is a Shewhart type 
chart defined based on principal component subspace 
as, T
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diagonal matrix containing the eigenvalues associated 
with the A principal components retained in the 
model. Statistical confidence limits for T2 can be 
calculated by means of the F-distribution as follows. 
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SPE-statistic is another Shewhart type chart defined 
on the residual subspace. A general assumption is that 
the variance is same in all directions, so SPE-statistic 
is defined as, 
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The statistical confidence limits of SPE-statistic can 
be calculated from its approximate distribution. We 
can also approximate it as, 
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When a vector of new data is available, T2-and SPE-
statistic can be calculated based on the model 
generated and are compared with the corresponding 
confidence limits.  If either of the confidence limits is 
violated, a fault situation is detected. 
 
Contribution plots (Nomikos, 1996) are a PCA 
approach to fault identification that takes into account 
the special correlation, thereby improving the 
univariate statistical techniques. PCA separates the 
observation space into two subspaces – the reduced 
space defined by the principal components of the 
model and the residual subspace. If T2-statistic or 
SPE-statistic is out of limit, the contribution plots can 
be used to indicate the variables which are responsible 
the deviation. 

 
3. STATISTICAL TESTING STRATEGIES 

 
We assume that the measurement of the process 
follows an independent Gaussian multivariate 
distribution. For the measurement sequence, {Xi}, a 
vector of parameters θ, which is typically the process 
mean, describes the stochastic behavior of the 
process. Under the desirable conditions, this vector 
belongs to the set Θ0. A control procedure is applied 
to this process for fault detection and monitoring. If a 
control procedure triggers a signal under desirable 
conditions, it is classified as false alarm. At some 
point in time, the parameters abruptly change to some 
value that belongs to a rejectable set, Θ1. The control 
scheme is then supposed to detect this change as soon 
as possible.   
 
The criteria of performance of a control scheme are 
usually related to the behavior of some characteristics 
of its distribution, most typically the average run 
length (ARL), which is the average number of 
observations required for the algorithm to signal that 
θ has changed. Ideally, the ARL should be large when 
the process is in control and small when the process is 
out of control.  

 
An important tool used for fault detection is based on 
the logarithm of likelihood ratio. It is defined as 
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provided a good discussion on log-likelihood ratio 
strategy for fault detection. Under some general 
conditions, log-likelihood ratio schemes possess 
optimality properties in the sense that they provide the 
best sensitivity for a given rate of false alarms. 
 
3.1 Page’s CUSUM algorithm 
 
To improve the sensitivity of the Shewhart charts, 
Page (1954) modified Wald’s theory of sequential 
hypothesis testing to develop the CUSUM charts that 
have certain optimality.  In this algorithm, post 
change parameter θ1 is assumed known and the 
unknown change point is estimated by maximum 
likelihood in CUSUM scheme. The CUSUM criterion 
can be expressed recursively as 

}:1inf{ hgn n ≥≥=τ  

0,)
)(

)(
log( 01

0

1 =+= +
− g

Xp

Xp
gg

n

n
nn

θ

θ  

where a+ =a.I (a≥0), pθ(.) is the distribution density 
function depending on parameter θ. 
 
Moustakides (1986) has shown that Page’s CUSUM 
scheme is optimal in the minmax sense: let h be so 
chosen that E0(N) = γ and let Fγ be the class of all 
monitoring schemes subject to the constraint E0(N) 
≥γ, where E0(N) is the expected ARL when the 
process is in control. Then the above CUSUM 
minimize the worst-case expected delay over all rules 
that belong to Fγ. 
 



 

     

3.2 GLR algorithm 
 
The parameter θ1 after change is generally unknown. 
An obvious way to modify the CUSUM rule for the 
case with unknown post change parameter θ is to 
estimate it by maximum likelihood, leading to the 
Generalized Likelihood Ratio (GLR) rule. 
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Siegmund and Venkatraman (1995) give asymptotic 
approximations to the ARL of the GLR under θ0 and 
under θ≠θ0, which shows that the GLR rule is 
asymptotically optimal in the minmax sense.  For 
normal distribution with mean θ and variance 1, they 
have shown that hNE ~)(log 0

 as ∞→)(0 NE  for 
the GLR rule. This formula provides an estimation of 
h given )(0 NE . 
 
Unlike CUSUM rule, the GLR rule doesn’t have 
convenient recursive forms and the memory 
requirements and number of computations at time n 
grow to infinity with n.  
 
3.3 χ2-GLR algorithm 
 
If we know the post change parameter magnitude but 
not the direction, we can design an optimal recursive 
algorithm for the change detection.  Here, the process 
is an independent Gaussian multivariate (r>1) 
sequence and its mean vector θ changes at an 
unknown time ν. 
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We know the post change magnitude 
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01 )()( bT =−Σ− − θθθθ . It has been shown that χ2-
GLR can be calculated in recursive form, which 
greatly reduce the computational burden. The 
stopping time of GLR algorithm for this situation can 
be formulated in recursive form as  (Nikiforov 2001), 
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In this algorithm, the magnitude after change is 
assumed known, which is not true in practice. To deal 
with this problem, the GLR algorithm can be used. 
However, this algorithm is computationally 
expensive. Nikiforov (2001) proposed a suboptimal 
scheme to solve the computational burden problem. 
The idea is to decompose a given parameter space 
into several subsets so chosen that in each subset the 
detection problem can be solved with loss of a small 
part, ε, of optimality by a recursive change detection 
algorithm. 
 
3.4 ε-optimality algorithm 
 
This algorithm is designed for detection of changes 
over a domain  
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collection of L-parallel recursive tests. Each subset is 
so chosen that the detection problem can be solved by 
a recursive χ2-GLR algorithm.  
 
The ε-optimality algorithm is summarized below. 
1) Given the tuning parameters hbb ,,, 10ε , calculate 

the number of parallel tests L, which is the 

smallest integer 1
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2) For l = 1,…, L compute 
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initialize the L parallel tests. 
3) Take the next observations. For l = 1,.., L, 

compute )( ln aS . 

4) Check if haSaS Lnn ≥)}(,),(max{ 1 K  then declare 
alarm. Otherwise, go to step 3. 

 
4. PCA WITH EFFICIENT STATISTICAL 
TESTING ALGORITHM FOR PROCESS 

MONIOTIRNG 
 
In all the above algorithms, an inverse of covariance 
matrix Σ is needed for the fault detection procedure. 
However, when lots of process variables are measured 
and they are correlated, Σ can be singular or near 
singular.  In such case, PCA can be used to divide the 
measurement space into two subspaces—a score 
subspace and a residual subspace. 

 
Based on the PCA model, T2-statistic is designed to 
detect abnormality in the scores subspace while SPE-
statistic is for the residual subspace. In the 
conventional PCA procedure using T2 and SPE for 
fault detection, the overall type I error is controlled by 
the level of α. The type II error will be dependent on 
the post change parameter. Therefore, it is difficult for 
the procedure to detect small changes whose T2 and 
SPE statistics is inside the confidence limits. It is also 
difficult to get a good tradeoff between false alarm 
and quick detection based on this procedure. It has 
been shown that ε-optimality GLR algorithm can be 
used to detect small faults without increasing the false 
alarm rate. Here we proposed an algorithm to 
integrate PCA and ε-optimality GLR statistical testing 
algorithm for fault detection. 
 
First, capability to detect changes of extremely high 
magnitude can frequently be improved by introducing 
an additional signal criterion, which calls for a signal 
at the moment k if testing statistic of a single 
observation xk exceeds c, which is a predefined value. 
Here we choose 99.99% confidence limit for T2 and 
SPE-statistics as the c value for T2 and SPE statistics, 
respectively. We define the area between 68% and 
99.99% confidence of T2- and SPE-statistic as gray 
area in the scores and residuals subspace, 
respectively.  Several parallel recursive tests based on 
ε-optimality algorithm can be designed for the gray 
area. The following is a summary of the proposed 
algorithm. 



 

     

 
Offline stage 
1) Collect normal operating condition (NOC) data X 

and build PCA model based on NOC data 
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A

i
ii += ∑

=1

, where A is the number of 

principal components used in the model. 
2) Based on the PCA model, calculate the 68% and 

99.99% confidence limits for T2-statistic as 

68T and 
99.99T , and for SPE-statistic as 

68SPE  and 

99.99SPE .  

3) Given ε, calculate the number of parallel test for 

scores as ))
1
1

(log(log 1

68

99.99 −

−
+

=
ε
ε

T
T

ceilLT
and 

the number of parallel test for residuals as 

))
1
1

(log(log 1

68

99.99 −

−
+

=
ε
ε

SPE
SPE

ceilLSPE
, where 

ceil(x) rounds the elements of X to the nearest 
integers towards infinity. 

4) Calculate the L optimal subdivisions for the test 
of scores and residuals. For l  = 1,…, L,  compute 
optimal subdivisions for T2-statistic as 
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5) Given E0(N), which is the expected ARL when 
the process is in control, calculate the threshold 
for the parallel tests. For parallel tests of scores, 

))}({log( 0 NEAhT = . For parallel test of residuals, 
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eigenvalue of covariance or correlation matrix of 
X. 
 

Online stage 
1) When new measurements ix  are available, 

calculate scores it and residuals ei as 

PtxePxt iiiii −== , . 
2) Calculate the T2 and SPE-statistic for the new 

data based on scores and residuals as 
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3) Otherwise, calculate the testing statistic for each 
parallel test for scores and residuals.  
For each l = 1,…, L, compute )( li TS  as 
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For each l  = 1,…, L, compute )( li SPES  similarly 
as, 
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If 
TLii hTSTS ≥)}(,),(max{ 1 K  and/or  

SPELii hSPESSPES ≥)}(,),(max{ 1 K , then an alarm 
is triggered. 

 
If an alarm is triggered, variable contribution can be 
used to determine the process variable(s) that are 
responsible for the alarm. PCA divides the variable 
space into the score subspace and the residual 
subspace. Therefore, the variable contribution to T2 
should just use the information in the subspace 
captured by PCs. According to our knowledge, all of 
the definition of variable contribution to T2 uses the 
information in the whole variable space. Here we 
provide a new definition of variable contribution to T2 
which using only the information in the subspace 
spanned by PCs. Given that xPt = , TtPx =ˆ where x̂  
is the prediction based on PCA model, 
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so we can define the variable contribution to T2 as  
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If the alarm is triggered by T2-statistic out of 99.99% 
confidence limits, the new definition of variable 
contribution to T2 can be used to determine the 
variables that are most affected by the fault.  If the 
alarm is triggered by one of the parallel tests in scores 
space. The following variable contribution definition 
to cumulative scores can be used.  
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If the alarm is triggered by SPE-statistic out of 
99.99% confidence limits, variable contribution to 
SPE statistic can be used for fault identification. If the 
alarm is triggered by one of the parallel tests for 
residuals, we can define variable contributions based 
on the cumulative residuals as follows and use them 
for fault identification.  

22
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If 
TLii hTSTS ≥)}(,),(max{ 1 K , and 2

,2 kT
V  is large 

compare to others, then the kth variable is heavily 
affected by the fault. Similarly, if 

SPELii hSPESSPES ≥)}(,),(max{ 1 K  and 2
,kSPEV  is large 

than the others, then the kth variable is heavily 
affected by the fault. 
 
When the proposed scheme detects a fault, it also 
provides a rough estimation of the fault magnitude 
based on the information which test is above the 
confidence limit. 
 
Note that the proposed scheme is different from L-
parallel tests of T2- and SPE-statistic. In this scheme 
the multivariate nature of the process is considered 
during the design of the algorithm. 
 

 



 

     

5. CASE STUDIES 
 

5.1 AR process 
 
In this section, we will demonstrate the use of the 
proposed algorithm for process monitoring of a 
simple multivariate process. The simple process is 
used to obtain statistically meaningful results. The 
data for this example are generated from a model 
suggested by Ku et al. (1995). 
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The input w is a random noise with zero mean and 
variance 1. The output y is equal to x plus the random 
noise v(k), with zero mean and variance 0.1. Both 
input u and output y are measured but v and w are not. 
Normal operating condition data consists of 200 
measurements. 2 principal components are used to 
build the monitoring model. For the proposed 
algorithm, ε = 0.05, E0(N) = 10,000. 4 parallel tests 
are used for scores space and residuals space, 
respectively. 
 
Case 1: This case is to monitor the normal process. 
1000 normal operating condition data are simulated 
and used for monitoring based on the conventional 
PCA model and the proposed algorithm. T2- and SPE- 
statistic for the conventional PCA model is shown in 
Figure 1. Though the process is normal, 36 samples 
are above the warning limit (95%) of T2-statistic and 4 
are above action limit (99%). For the SPE-statistic, 43 
samples are above warning limit and 6 are above 
action limit. The proposed algorithm is used for the 
normal data. The results are shown in Figure 2. No 
alarms are generated for those samples. 
 
Case 2: This case is to simulate the mean of w1 shift 
from 0.0 to 0.5 introduced at sample 100. T2- and 
SPE-statistic for conventional PCA model are shown 
in Figure 3. The conventional PCA cannot detect the 
fault effectively. The results of the 4 parallel tests for 
the scores and residuals subspace are shown in Figure 
4. The fault is detected at sample 135 by tests in  
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Figure 1. T2 and SPE-statistic for conventional PCA. 
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Figure 2. 4 parallel tests for scores and residuals 

subspace. 
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Figure 3. T2 and SPE-statistic for conventional PCA. 
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Figure 4. 4 parallel tests for scores and residuals 

subspace. 
 
scores subspace and  at sample 132 by tests in 
residuals subspace. This scheme can also provide an 
estimation of the magnitude of the fault. 
 
5.2 Tennessee Eastman Process  
 
The Tennessee Eastman challenge problem is a 
simulation of a real chemical plant provided by the 
Eastman Company (Downs and Vogel, 1993). The 
process has five major units: the reactor, the product 
condenser, a vapor-liquid separator, a recycle 
compressor and a product stripper. The control system 
used for dynamic simulations is the decentralized PID 
control system designed by McAvoy and Ye (1994). 
A total of 16 variables, selected by Chen and McAvoy 
(1998) for monitoring purposes, are used for 
monitoring in this study.  PCA model is built based on 
48 hours of steady state simulation data. The sampling 
interval of the process variable is 3 min. 11 principal 
components are used to build the model.  For the 
proposed algorithm, ε = 0.05, E0(N) = 10,000. 2 and 3 
parallel tests are used for scores subspace and 
residuals subspace, respectively. 
 



 

     

Case 1: This is the 3rd process disturbance designed in 
the original paper. It is to simulate a step change in 
the D feed temperature. The total simulation time is 
48 hours and the disturbance is introduced into the 
system after 36 hours of steady state simulation. 
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Figure 5. T2 and SPE-statistic for conventional PCA. 
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Figure 6. 2 parallel tests for scores subspace and 3 for 

residuals subspace. 
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Figure 7. Variable contributions to the cumulative 

residuals. 
 

T2 and SPE-statistic for conventional PCA are shown 
in Figure 7. For the 36 hours of steady state 
simulation, 20 samples are above the warning limit 
(95%) of T2-statistic and 2 are above action limit 
(99%). For the SPE-statistic, 54 samples are above 
warning limit and 10 are above action limit. 
Conventional PCA cannot detect the fault effectively. 
Results using the proposed algorithm are shown in 
Figure 8. There is no false alarm during the 36 hours 
of steady state simulation. The fault is identified at 
sample 781 by parallel tests of residuals subspace. 
Variable contribution to SPE based on cumulative 
residuals is shown in Figure 9. Based on this plots, we 
can find that variables 21 (Reactor cooling water 
outlet temperature), 18 (Stripper temperature) and 9 
(Reactor temperature) contribute most to the out of 
control situation.  
 

6. SUMMARY 
 

An approach to integrate PCA with efficient statistical 
testing algorithm for process monitoring and fault 
detection has been presented. The fault detection 
decision depends not only on the current sample but 
the results of previous sample. A clear definition of 
normal operating condition is not needed. PCA can 
separate the observation space into a score subspace 
and a residual subspace. The two subspaces are 
divided into several subsets so chosen that in each 
subset the detection problem can be solved with an 
efficient recursive change detection algorithm based 
on χ2-GLR test. Simulations show that the proposed 
algorithm can effectively suppress the false alarm and 
detect small changes in the process. 
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Abstract: The performance of a control chart in statistical process control is often quantified 
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1.  INTRODUCTION 
 
In Statistical Process Control (SPC), a variety of 
control charts have been applied including Shewhart, 
CUSUM and EWMA (e.g. Montgomery, 1991; 
Wetherill and Brown, 1991).  Each method has 
associated advantages and disadvantages that have 
been reported in the literature. Control chart 
performance is traditionally quantified in terms of the 
Average Run Length (ARL).  Run length is defined 
as the number of observations from the start of the 
control chart to the first out-of-control signal.   
 
Except for simple cases (e.g. Brook and Evans, 1972; 
Schmid, 1995), Monte Carlo simulations have been 
used to determine the ARL.  This involves the 
realisation of a vector containing a random signal and 
then applying the control scheme and measuring the 
run length (time to the first alarm).  This is repeated 
many times, each time a different random vector is 
generated, and finally the ARL is computed.  The 
main issue with this method is the trade-off between 
computer time and accuracy of the results.  A large 
number of realisations are necessary if the results are 
to be precise (Lowry et al, 1992; Wardell et al, 1994).   
 

Therefore it is believed that an analytical method for 
the computation of the ARL would be desirable. The 
density function of the run length of a control chart is 
first constructed based on the in-control probability 
of an observation.  This approach is similar to that of 
Wetherill and Brown (1991).  They assumed that the 
in-control probability was constant for every 
observation.  In contrast, in this work, this constraint 
is relaxed.  This allows the computation of the ARL 
for more complicated SPC monitoring strategies, and 
ultimately for correlated data. 
 
The ARL is investigated in more detail for three case 
studies.  The first case study looks at the ARL of a 
Shewhart control chart based on independent data 
and is derived for both the in-control and out-of-
control situation. This example demonstrates the 
validity of the approach.  The impact of serial 
correlation on the performance of control charts is 
well known (Alwan and Roberts, 1988; Montgomery 
and Mastralango, 1991).  One solution is to estimate 
an ARMA model (Harris and Ross, 1991) for 
univariate systems, or a VAR model (Mulder et al, 
2001) for multivariate systems, and to monitor the 
residuals, which are free of serial correlation. In the 
second case study, the focus is on the residuals of a 



     

first order AutoRegressive, AR(1), time series model 
as defined by Box et al, (1994). 
 
For the third case study, the ARL of a correlated time 
series generated by an AR(1) model is computed.  
Schmid (1995) claimed that an explicit solution does 
not exist for the ARL of correlated data, and that only 
general statements about the ARL are possible.  In 
this study it will be shown that although there is not 
an explicit solution for the ARL, there is a numerical 
approximation.  The analytical results are compared 
with the results of Monte Carlo simulations for each 
of the three case studies.   
 
 

2.  CONTROL CHARTS 
 
The run length of a control chart is defined as the 
number of observations until the first observation 
moves outside of the control limits.  After this 
observation, the control chart is stopped and 
calculation of the run length is recommenced from 
the next in-control observation.  In this section, the 
density function of the run length is constructed.   
 
The probability that an observation, kX , is in control 
at time point, k, is given by: 
 

( )LCLXUCLP k >>  (1)
 
and the probability that at point, k, observation, kX , 
is out-of-control is defined as: 
 

( )LCLXorUCLXP kk <>  
=1- ( )LCLXUCLP k >>  

(2)

 
Also it is assumed that an observation is either in-
control or out-of-control.  In a control chart, an 
observation is only recorded if the previous point was 
in-control.  That is an observation can only be 
deemed to be in-control at time point k if the 
observations at 1,,2,1 −k…  were in control: 
 

( ) ( )
( ) ( )LCLXUCLPLCLXUCLP

LCLXUCLPLCLXUCLPP

kk

kIC

>>⋅>>⋅

⋅>>⋅>>=

−1

21, …

(3)
 
Also an observation at time point k in a control chart 
is out-of-control if: 
 

( ) ( )
( ) ( )LCLXorUCLXPLCLXUCLP

LCLXUCLPLCLXUCLPP

kkk

kOC

<>⋅>>⋅

⋅>>⋅>>=

−1

21, …

(4)
 
Based on equations 3 and 4, the Average Run Length 
is the expectation of the out-of-control run length and 
is given by: 
 

( ) ( )∑ <>=
∞

=
−

1
1,,

k
kkkICkOC LCLXorUCLXPkPkPE (5)

 
Based on the following definition 
 

( ) kk LCLXUCLP β=>>  (6)
 
Equation 2 is given as: 
 

( ) kkk LCLXorUCLXP β−=<> 1  (7)
 
and equation 5 is redefined as: 
 

( ) ( )∑ ∏ββ−==
∞

=

−

=1

1

1
, 1

k

k

j
jkkOC kkPEARL  (8)

 
This is as described by Wetherill and Brown (1991), 
except that β  in equation 8 can differ for each time 
point, k. 
 
 
2.1 Case 1 - Independent Data 
 
For independent data, the value of an observation is 
independent of its previous value, thus ββ =k  for 

1,,2,1 −k… , and equation 8 becomes: 
 

( )
β−

=∑ ββ−=
∞

=

−

1
11

1

1

k

kkARL  
(9)

     
This result agrees with that of Wetherill and Brown 
(1991). 
 
 
2.2 Case 2 - Residuals from an AR(1) Model 
 
An AR(1) time series model is given by: 
 

ttt

ttt

e
y

+αξ=ξ
η+ξ=

−1

 
(10)

  
where yt is the observed data, ξt is the underlying 
correlated time series, with α as its autoregressive 
parameter, and et is a white noise vector with 
variance 2

eσ , which is assumed to have a Normal 
distribution, and ηt is the mean shift applied to the 
data vector yt (Kaskavelis, 2000).  The one-step 
ahead prediction errors of an AR(1) model are: 
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When a process is in-control, 0=tη , for all t, then 
the probability that at time point k, the process is in-



     

control is constant, ββ =k , k≥1.  Therefore the in-
control ARL is given by: 
 

( )
β−

=∑ ββ−=
∞

=

−

1
11

1

1

k

kkARL  
(12)

 
From equation 12 and for the desired in-control ARL, 
the control limits for the Shewhart control charts can 
be derived.  For the out-of-control case, it is assumed 
that a constant mean shift is applied to yt, η=ηt  for 
all 1≥k .  Thus according to equation 11, at 1=k , 
the probability that, when a mean shift is applied to yt, 
the process is in-control is 1β  and for 2≥k , 

ββ =k .  The mean shift in the residuals for 1=k  is 
different to that for 2≥k . Apley and Shi (1999) 
termed this the fault signature of a step change in the 
residuals for univariate systems.  This issue was not 
considered by Harris and Ross (1991) or Kaskavelis 
(2000).  They assumed that the mean shift in the 
residuals is identical for all k.  The probability that 
the control chart will give an out-of-control signal at 
some point in the future is: 
 

( ) ( )

( ) ( ) 111
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11
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2
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since ( ) 11 −∞
−=∑ ββ

k

k  for 10 <≤ β .  The out-of 

control ARL is given by: 
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When ββ =1 , it can be seen that equation 14 is 
equivalent to equation 9 and 12.   
 
 

2.3 Case 3 - Serially Correlated Data  
 
In this section it will be shown how kβ  can be 
computed for AR(1) processes via the probability 
distribution function.  It is assumed that observations 

kX  are monitored using a Shewhart control chart 
with an Upper Control Limit (UCL) and a Lower 
Control Limit (LCL).  The cumulative distribution 
function of observation kX  at time point k is defined 
as (Papoulis, 1991): 
 

( ) ( )∫=
∞−

x

kk dzzfxF  
(15)

 

where fk is the probability density function of 
observation kX  at time point k.  The time series 
structure is defined as in equation 10, where α  has 
variance 21 α− .  A condition of the control chart is 
that an observation at k is only plotted if the 
observation at 1−k  is in-control:  
 

LCLXUCL k >> −1  (16)
 
otherwise the control chart would have been 
terminated at 1−k .  The conditional distribution 
function of X  at 1−k  is given by: 
 

( ) ( )
( ) ( )LCLFUCLF

xf
xf

uncondkuncondk

k
condk
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1
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−
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(17)

 
The probability distribution function of the term 

1−kXα  is defined as (Papoulis, 1991): 
 

( ) ( )xfxg condkk ,1
1

−⋅=
α

 
(18)

 
The white noise term et is normally distributed with 
variance 21 α−  so that the unconditional X has unit 
variance.  The probability distribution function of et 
is denoted as ( )xNk .  Since 1−α kX  and et are 
independent, the probability distribution function of 
their sum, the probability distribution function of Xk, 
is given by the convolution product (Papoulis, 1991): 
 

( ) ( ) ( )∫
∞−

−=
x

kkk dzxznzgxf  
(19)

 
The in-control probability is thus the probability that 
observation  kX  lies between the control limits: 
 

( ) ( ) ( )∫=−=β
UCL

LCL
kkkk dzzfLCLFUCLF  

(20)

 
At the start of a control chart, no other observations 
are known.  Therefore X1 can be regarded as the 
unconditional observation of X, and subsequently 1β  
is computed from equation 15.  For 1>k , kβ  can be 
computed recursively by the procedure described 
above, equations 17 to 19. 

 
 

3.  RESULTS 
 
In this section, the theoretical relationships derived in 
the previous section are compared with the results 
from Monte Carlo simulations.  For all Monte Carlo 
simulations 10,000 realisations of the control charts 
were computed.  Each realisation comprised 10,000 
observations and the first observation outside the 



     

control limits was taken to define the run length for 
that realisation. Since the ARL is the mean value of 
the run lengths of the realised control charts, the 
standard error of the ARL is: 
 

N
ARL

ARL =σ  
(21)

 
where N is the number of realisations.  Error bars will 
thus indicate the standard error of the Monte Carlo 
simulations.  For the three cases it is assumed that the 
metric, the data in case 1 and 3, and the residuals in 
case 2, are monitored using a Shewhart control chart.  
For each case it is assumed that the metric used in the 
control chart is normally distributed and that the 
desired in-control ARL is equal to 370.  This 
corresponds to a Shewhart control chart with control 
limits at σ3−  and σ3+ .   
 
 
3.1 Case 1 - Independent Data 
 
The observations, X, are drawn from a population 
with a normal distribution that are offset by a mean 
shift, η.  The mean of the distribution is equal to η 
and its variance is 2

Xσ :  
 

( )2,~ XNX ση  (22)
 
The probability that X lies between the control limits 
is given by: 
 

( ) ( ) ( )∫=−=
UCL

LCL
dfLCLFUCLF ξξβ  

(23)

 
where f is the probability distribution function of X, 
the normal distribution.  Subsequently the ARL can 
be computed from equation 15. 
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Fig. 1. Performance of Shewhart control chart for 

independent data.  
 
The ARL as a function of the mean shift is shown in 
Fig. 1. The dots represent the results of the Monte 
Carlo simulation with error bars that indicate –3/+3 
standard error of the mean and the solid line is the 
theoretical computation. It can be seen that the 

theoretical results correspond with those from the 
Monte Carlo simulations.  
 
 
3.2 Case 2 - Residuals from an AR(1) Model. 
 
The desired in-control ARL is 370.  It is assumed that 
a step function of size η is superimposed on the time 
series yt: 
 

0
00

>η=η
≤=η

t
t

t

t  
(24)

 
From equation 24, for 1=k , ( )2,~ˆ ek Ne ση  and for 

1≥k , ( )( )2,1~ˆ ek Ne σα−η .  Together with Equation 
15, this allows the computation of β for all k. The 
ARL is computed from equation 14.   
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Fig. 2. Performance of Shewhart control chart for the 

residuals of an AR(1) model.  
 
The ARL as a function of the mean shift for several 
values of alpha is shown in Fig 2, together with the 
results from the Monte Carlo simulations.  The error 
bars indicate the results of the Monte Carlo 
simulations with –3/+3 standard error of the mean.  
The solid line indicates the theoretical calculation. 
Again it can be seen that the theoretical results 
correspond to those from the Monte Carlo 
simulations. 
 
 
3.3 Case 3 - Serially Correlated Data. 
 
The ARL as a function of the mean shift was 
determined in the previous two cases.  In this case 
study, the influence of serial correlation on the in-
control ARL was investigated. In contrast to cases 1 
and 2, there is no direct analytical relationship for the 
ARL.  Therefore a numerical approach was used.  It 
is assumed that the probability distribution function 
of X for the first observation is that of the normal 
distribution with mean zero and unit variance.  Based 
on equations 17 to 20, the probability distribution 
function of the second observation is computed.  
Then 2β  is computed from equation 15.  These steps 
are repeated until kβ  converges.  The values of kβ  



     

are then used in equation 8 to compute the ARL.  
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Fig. 3. The in-control ARL of Shewhart control 

charts for serial correlated data.  
 
The ARL as a function of α is given in Fig. 3, 
together with the results from the Monte Carlo 
simulations. The dots represent the Monte Carlo 
simulations and the error bars indicate –3/+3 standard 
error of the mean and the solid line indicates the 
theoretical calculation. Again it can be seen that the 
theoretical results correspond to those from the 
Monte Carlo simulations.  

0 0.5 1 1.5 2 2.5 3
0

50

100

150

200

250

300

350

400

450

500

Control Limit (σy)

A
R

L

α=0
α=0.7
α=0.9

 
 
Fig. 4. The in-control ARL as function of the control 

limit for a selection of values for α. 
 
As can be observed in Fig. 3, the in-control ARL 
only depends on the absolute value of α.  It also can 
be seen that for increasing α, the in-control ARL 
increases. This means that on average it takes longer 
to detect a false alarm.  Although this might appear 
advantageous, in practice the in-control ARL can be 
considered as a design parameter since it is implied 
by the choice of significance level δ.  For 
independent and identical data, the in-control ARL is 
1/δ, but for serially correlated data this relationship is 
not valid.  Kaskavelis (2000) proposed an alternative 
philosophy which was to treat the in-control ARL as 
an explicit design parameter. The above method 
allows the rapid computation of the ARL for a range 
of values for the control limits. In Fig. 4, the ARL as 
a function of the control limit is shown for selected 
values of α. The control limit is given in terms of the 
standard deviation of yt. From this figure the control 
limits for an AR(1) process can be determined. 

Table 1 Control limits to guarantee an in-control 
ARL of 370 for AR(1) process 

 
 α  Control Limit  α Control Limit  
 0  3.00  0.5 2.98 
 0.1 3.00  0.6 2.96 
 0.2 3.00  0.7 2.93 
 0.3 3.00  0.8 2.86 
 0.4 2.99  0.9 2.71 
 
Since the calculations of the ARL closely match the 
results of the Monte Carlo simulation, Fig. 5, the 
impact of the mean shift on the ARL is investigated 
in greater detail without further comparisons being 
undertaken with simulations. In Fig. 5 the solid line 
refers to the theoretical calculations and the dots with 
arrow bars are the Monte Carlo simulations with the 
associated three standard errors of the mean  
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Fig. 5. The ARL as a function of alpha with adjusted 

control limits, with various mean shifts applied 
on the time series yt.  

 
The ARL of a Shewhart control chart with the control 
limits as given in Table 1 are shown in Fig. 5 where 
various mean shifts are applied to the time series data, 

ty .  In this situation, the control limit for negative α 
is equal to that of its positive counterpart.  The 
calculations are in agreement with the Monte Carlo 
simulations.  When no mean shift is applied, which 
corresponds to the in-control situation, the 
calculations do not give exactly 370, because of the 
rounding of the control limit to two decimals in Table 
1. Compared with Fig 3, the in-control ARL does not 
deviate from 370. 
 
In Fig. 6, the ARL is shown as a function of the mean 
shift and α. It can be observed that the ARL is only 
dependent on the mean shift and not on α, except for 
large positive values of α. Thus a Shewhart control 
chart with control limits adjusted to ensure the 
desired in-control ARL will exhibit the same 
sensitivity for equal sized mean shits regardless of 
the value of α.  In practice the autoregressive 
parameter, α, is determined by either matching the 
autocorrelation function (Kaskavelis, 2000) or 
through estimation of the autoregressive parameter of 
an AR(1) process from the data. 



     

 
 
Fig. 6. The theoretically computed ARL as a function 

of alpha and the mean shift. 
 
 

4. CONCLUSIONS 
 
Within the paper, it is shown, based on the in-control 
probability at individual points in a control chart, 
how the density function of the run length of control 
charts can be determined.  The density function can 
consequently be used to calculate the Average Run 
Length (ARL) of a control chart.  The ARL is a 
widely used metric for comparing between 
monitoring strategies in SPC.  The proposed 
approach is more generic than that described by 
Wetherill and Brown (1991). 
 
The theoretical ARL for in-control data and out-of 
control data with step changes in the mean were 
calculated for three cases, independent data, the 
residuals of AR(1) models and serially correlated 
data.  The theoretical results corresponded to the 
ARL obtained through Monte Carlo simulations.  It is 
also shown that, in contrast to the claim of Schmid 
(1995), the ARL of serial correlated data in-control 
charts can be computed. 
 
The in-control ARL’s were computed as a function 
of the magnitude of the control limits. The control 
limits for Shewhart charts that realise an in-control 
ARL of 370 were determined for various values of 
autoregressive parameter for an AR(1) process.  The 
impact of mean shifts on the performance of the ARL 
was subsequently investigated. It was found that the 
ARL depends only on the mean shift and not on α, 
except for large positive values of α. 
 
The outcome of this work is that time consuming 
Monte Carlo simulations can now be replaced by the 
approach proposed for the assessment of the 
performance of control charts.  This work can also be 
extended to more complicated SPC monitoring 
schemes, such as multivariate systems.  However for 
multivariate problems, the problem is compounded 
by the fact that the parameter space may be large 
making the problem computationally intensive.   
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Abstract: Multivariate statistical process control (MSPC) based on principal
component analysis (PCA) has been widely used in chemical processes. Recently, the
use of independent component analysis (ICA) was proposed to improve monitoring
performance. In the present work, a new method, referred to as combined MSPC
(CMSPC), is proposed by integrating PCA-based SPC and ICA-based SPC. CMSPC
includes both MSPC methods as its special cases and thus provides a unified
framework for MSPC. The effectiveness of CMSPC was demonstrated with its
applications to a multivariable system and a CSTR process. Copyright c©2003 IFAC
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1. INTRODUCTION

The successful process operation often depends on
the effectiveness of fault detection. On-line process
monitoring plays an important role in detecting
process upsets, equipment malfunctions, or other
special events as early as possible. In chemical
processes, statistical process control (SPC), which
is a data-based approach for process monitoring,
has been used widely and successfully. Well-known
SPC techniques include Shewhart control charts,
cumulative sum (CUSUM) control charts, and
exponentially weighted moving average (EWMA)
control charts. Such SPC charts are well
established for monitoring univariate processes,
but univariate SPC (USPC) does not function well
for multivariable processes. In order to extract
useful information from multivariate process data
and utilize it for process monitoring, multivariate
statistical process control (MSPC) based on
principal component analysis (PCA) has been
developed (Jackson and Mudholkar, 1979). In the
last decade or so, many successful applications
have been reported and various extensions of

MSPC have been proposed (Kresta et al., 1991;
Kano et al., 2002a).

PCA-based SPC (PCA-SPC) and its extensions
have been widely accepted in process industries.
However, their achievable performance is limited
due to the assumption that monitored variables
are normally distributed. Recently, to further
improve the monitoring performance, a new
MSPC method based on independent component
analysis (ICA), referred to as ICA-SPC, was
proposed by Kano et al. (2002b, 2003). They
demonstrated the superiority of ICA-SPC over
conventional methods.

ICA-SPC, however, does not always outperform
PCA-SPC. ICA-SPC should be selected
when process variables do not follow normal
distribution. On the other hand, ICA-SPC likely
will not improve the performance in comparison
with PCA-SPC if process variables are normally
distributed. In a practical case, where some
variables follow normal distribution and others
do not, which monitoring method should be
selected? In the present work, to answer this



question and propose a new framework for
MSPC, combined MSPC (CMSPC) is developed
by integrating PCA-SPC and ICA-SPC. The
performance of CMSPC is evaluated with its
applications to monitoring problems of a linear
multivariable system and a CSTR process.

2. PCA-BASED MSPC

PCA, which is a tool for data compression and
information extraction, finds linear combinations
of variables that describe major trends in a data
set. For monitoring a process by using PCA-SPC,
control limits are set for two kinds of statistics, T 2

and Q, after a PCA model is developed. T 2 and
Q are defined as

T 2 =
R∑

r=1

t2r
σ2

tr

(1)

Q =
P∑

p=1

(xp − x̂p)2 (2)

where tr is the r-th principal component score and
σ2

tr
is its variance. xp and x̂p are a measurement of

the p-th variable and its predicted (reconstructed)
value, respectively. R and P denote the number of
principal components retained in the PCA model
and the number of process variables, respectively.
The T 2 statistic is a measure of the variation
within the PCA model, and the Q statistic is a
measure of the amount of variation not captured
by the PCA model.

3. ICA-BASED MSPC

ICA (Jutten and Herault, 1991) is a signal
processing technique for transforming measured
multivariate data into statistically independent
components, which are expressed as linear
combinations of measured variables. In this
section, an ICA algorithm and ICA-SPC are
briefly described.

3.1 Problem Definition

It is assumed that m measured variables
x1, x2, . . . , xm are given as linear combinations
of n (≤ m) unknown independent components
s1, s2, . . . , sn. The independent components and
the measured variables are mean-centered. The
relationship between them is given by

x = sA (3)

x =
[
x1 x2 . . . xm

]
(4)

s =
[
s1 s2 . . . sn

]
(5)

where A is a full-rank matrix, called the mixing
matrix. When k samples are available, the above
relationship can be rewritten as X = SA.

The basic problem of ICA is to estimate the
original components S or to estimate the mixing
matrix A from the measured data matrix X
without any knowledge of S or A. Therefore,
the practical objective of ICA is to calculate a
separating matrix W so that components of the
reconstructed data matrix Y , given as

Y = XW , (6)

become as independent of each other as
possible. The limitations of ICA are: 1) only
non-Gaussian independent components can be
estimated (just one of them can be Gaussian), and
2) neither signs, powers, nor orders of independent
components can be estimated.

3.2 Sphering with PCA

Statistical independence is more restrictive than
uncorrelation. Therefore, for performing ICA,
measured variables {xi} are first transformed into
uncorrelated variables {zj} with unit variance.
This pretreatment can be accomplished by PCA
and it is called sphering or prewhitening.

By defining the sphering matrix as M , the
relationship between z and s is given as

z = xM = sAM = sBT (7)

where BT = AM . Since si are mutually
independent and zj are mutually uncorrelated,

E
[
zT z

]
= BE

[
sT s

]
BT = BBT = I (8)

is satisfied. Here E[·] denotes expectation. It is
assumed here that the covariance matrix of si,
E

[
sT s

]
, is an identity matrix, because signs

and powers of si remain arbitrary. Equation (8)
means that B is an orthogonal matrix. Therefore,
the problem of estimating a full-rank matrix
A is reduced to the problem of estimating an
orthogonal matrix B through the sphering.

3.3 Fixed-Point Algorithm for ICA

The fourth-order cumulant of zero-mean random
variable y is defined as

κ4(y) = E[y4] − 3E[y2]2 (9)

By minimizing or maximizing the fourth-order
cumulant κ4(zb) under the constraint of ‖b‖ =
1, columns of the orthogonal matrix B are



obtained as solutions for b. Finding the local
extrema of the fourth-order cumulant is equivalent
to estimating the non-Gaussian independent
components (Delfosse and Loubaton, 1995). In the
present work, a fixed-point algorithm (Hyvarinen
and Oja, 1997) is used to obtain b that minimizes
or maximizes the fourth-order cumulant.

For estimating n independent components that
are different from each other, the following
orthogonal conditions are imposed.

bT
i bj = 0 (i �= j) (10)

Thus, the current solution bi is projected on the
space orthogonal to previously calculated bj(j =
1, 2, . . . , i − 1). By defining

B =
[
b1 b2 . . . bn

]
, (11)

independent components Y can be obtained from

Y = ZB = XMB = XW . (12)

This means that the separating matrix W can be
calculated from W = MB.

The sphering matrix M uncorrelates x and
scales it so that uncorrelated variables z have
unit variances. Uncorrelated variables can be
derived by using PCA. Therefore, the sphering
matrix M can be decomposed into two parts: an
uncorrelating matrix P and a scaling matrix Λ.
The uncorrelating matrix P is the same as the
loading matrix of PCA. Therefore, Eq. (12) can
be rewritten as

Y = XMB = XPΛB. (13)

Both P and B are orthogonal matrices.

3.4 Monitoring of Independent Components

The procedure of ICA-SPC is the same as USPC.
The only difference lies in the variables to be
monitored. That is, independent components are
monitored in ICA-SPC while correlated measured
variables are monitored in USPC.

A separating matrix W in Eq. (12) and control
limits must be determined in order to apply
ICA-SPC to monitoring problems. For this
purpose, the following procedure is adopted.

(1) Acquire time-series data when a process
is operated under a normal condition.
Normalize each column (variable) of the data
matrix, i.e., adjust it to zero mean and unit
variance, if necessary.

(2) Apply ICA to the normalized data,
determine a separating matrix W , and
calculate independent components.

(3) Determine control limits of all independent
components.

For on-line monitoring, a new sample of monitored
variables is scaled with the means and the
variances obtained at step 1. Then, it is
transformed to independent components through
the separating matrix W . If one or more of
the independent components are outside the
corresponding control limits, the process is judged
to be out of control.

4. COMBINED MSPC

ICA-SPC does not necessarily outperform
PCA-SPC. ICA is based on the assumption
that each measured variable is given as a linear
combination of non-Gaussian variables that
are independent of each other. Independent
components, even if they can be calculated, are
meaningless and ICA-SPC does not function
well when this assumption is incorrect. In
the present work, a new advanced MSPC
method is proposed for further improving the
monitoring performance by combining ICA-SPC
and PCA-SPC. The proposed method is referred
to as combined MSPC (CMSPC).

4.1 CMSPC Algorithm

The basic and important fact of PCA-SPC
is that uncorrelated variables, i.e., principal
components, are monitored. On the other
hand, independent components are monitored
in ICA-SPC. Since statistical independence is
more restrictive than uncorrelation, ICA-SPC
can outperform PCA-SPC. However, if process
variables are normally distributed, the monitoring
performance would not necessarily be improved
by using ICA-SPC. Ideally, ICA-SPC should be
used for monitoring non-Gaussian independent
variables, and PCA-SPC is used for monitoring
uncorrelated Gaussian variables. This conclusion
motivates us to integrate PCA-SPC and ICA-SPC
into a new MSPC method. For realizing this
integration, non-Gaussian variables and Gaussian
variables have to be distinguished.

In the present work, the fourth-order cumulant
is used to evaluate the non-Gaussianity of
components {yl} derived by using ICA. The
fourth-order cumulant of any Gaussian random
variable is zero. In addition, the absolute
value of the fourth-order cumulant increases
as the non-Gaussianity increases. Therefore,
non-Gaussian independent variables can be
selected from {yl} based on their fourth-order
cumulants. When the fourth-order cumulant of
an independent component is larger than the



threshold determined in advance, it is judged to
be non-Gaussian and independent.

Consider a data matrix X ∈ �k×m, where k and
m are the number of samples and that of variables,
respectively. All variables are mean-centered.
When r of m components {y1, y2, ..., yr} are
judged to be non-Gaussian, these r independent
components should be monitored independently.
In other words, ICA-SPC should be applied to
these r independent components. However, since
the other m − r components {yr+1, yr+2, ..., ym}
are Gaussian, these m − r variables should be
monitored by using PCA-SPC. In practice, the
ICA algorithm might not converge if more than
one component is Gaussian. Therefore, a part
of X, which is explained by {yr+1, yr+2, ..., ym},
needs to be derived without calculating these m−r
components.

From Eq. (13), the first r non-Gaussian
independent components are given as

Y r =
[
y1 y2 · · · yr

]
= XPΛBr. (14)

A part of X, which is explained by the first r
non-Gaussian independent components, can be
reconstructed from Y r or X.

Xr = Y rB
T
r Λ−1P T

= XPΛBrB
T
r Λ−1P T (15)

As a result, Xm−r, which cannot be explained by
Y r, is calculated as follows:

Xm−r = X − Xr

= X(I − PΛBrB
T
r Λ−1P T ). (16)

Since Xm−r does not include significant
non-Gaussian components, it can be monitored
successfully by using PCA-SPC.

4.2 CMSPC Procedure

The procedure of CMSPC is summarized as
follows:

(1) Acquire time-series data when a process
is operated under a normal condition.
Normalize each column (variable) of the data
matrix, i.e., adjust it to zero mean and unit
variance, if necessary.

(2) Apply ICA to the normalized data X, and
calculate independent components {yl}.

(3) Calculate the fourth-order cumulant of
independent components.

(4) Adopt independent components
{y1, y2, · · · , yr} with the fourth-order
cumulant larger than the threshold (e.g. 0.1)
as non-Gaussian independent components.

(5) The other components are regarded as
Gaussian, and those variables are projected
onto the original space through Eq. (16).

(6) Apply PCA to the reconstructed data
Xm−r, and calculate principal components
{z′1, z′2, · · · , z′m−r}.

(7) Calculate T 2 and Q statistics.
(8) Determine control limits of independent

components {y1, y2, · · · , yr} and those of T 2

and Q.
(9) Monitor {y1, y2, · · · , yr}, T 2, and Q on-line.

CMSPC includes both PCA-SPC and ICA-SPC
as its special cases. In fact, CMSPC is the same
as PCA-SPC when no independent components
are adopted in step (4), because PCA is applied
to Xm−r = X in such a case. On the other
hand, CMSPC is the same as ICA-SPC when r =
rank(X). Therefore, CMSPC provides a unified
framework for MSPC.

5. APPLICATION 1

In this section, USPC, PCA-SPC, ICA-SPC,
and the proposed CMSPC are applied to fault
detection problems of an eight-variable system:

x = sA + v (17)

A =




0.95 0.82 0.94 0.14
0.23 0.45 0.92 0.20
0.61 0.62 0.41 0.20
0.49 0.79 0.89 0.60
0.89 0.92 0.06 0.27
0.76 0.74 0.35 0.20
0.46 0.18 0.81 0.02
0.02 0.41 0.01 0.75




T

(18)

s =
[
s1 s2 s3 s4

]
(19)

where {si} are uncorrelated random signals
following uniform or normal distribution with
unit variance (σs = 1). The output x is
corrupted by measurement noise v following
normal distribution (σv = 0.1). For evaluating the
monitoring performance, mean shifts of {si} or
{xj} are investigated.

One data set, including 100,000 samples, obtained
from a normal operating condition was used to
build a PCA model, to determine a separating
matrix, and also to determine control limits. To
evaluate the monitoring performance, average run
length (ARL) is used. ARL is the average number
of points that must be plotted before a point
indicates an out-of-control condition. To calculate
ARL, 10,000 data sets were generated by changing
seeds of the random signals s and v in each case
shown in Table 1.

The control limit of each index or variable is
determined so that the number of samples outside



Table 1. ARL Comparison.

Case 1

si : uniform distribution
fault : �1

Shift USPC PCA-SPC ICA-SPC CMSPC
size x5 T 2

4 y3 y3

0 98.1 99.0 101 101
0.2 82.5 84.0 59.6 59.6
0.5 42.2 43.2 18.0 18.0
1.0 16.5 12.3 5.5 5.5

Case 2a

si : normal distribution
fault : �1

Shift USPC PCA-SPC ICA-SPC CMSPC
size x5 T 2

4 y3 T 2
4

0 96.0 101 97.3 101
0.2 91.9 96.0 91.7 96.0

1.0 33.5 36.6 37.6 36.6
2.0 8.9 8.1 10.8 8.1

Case 2b

si : normal distribution
fault : �2

Shift USPC PCA-SPC ICA-SPC CMSPC
size x5 T 2

4 y4 T 2
4

0 103 97.5 99.8 97.5
1.0 32.3 37.4 51.6 37.4
2.0 8.3 8.5 18.5 8.5
3.0 3.2 2.7 8.0 2.7

Case 3

s1, s2 : uniform distribution
s3, s4 : normal distribution
fault : �5

Shift USPC PCA-SPC ICA-SPC CMSPC
size x5 Q4 y8 Q2

0 96.8 96.1 98.9 102
0.1 79.9 55.4 54.1 48.3
0.2 50.3 21.1 20.2 14.8
0.5 12.6 2.5 2.5 1.6

the control limit is 1% of the entire samples while
the process is operated under a normal condition.
The monitored indexes for PCA-SPC are T 2

4 and
Q4. The subscript 4 means that four principal
components are retained in the PCA model. In
ICA-SPC, however, each independent component
is independently monitored. In CMSPC, the
number of independent components and that
of principal components retained in the PCA
model depend on the cases. Four independent
components and no principal components are
retained in case 1, no independent components
and four principal components in case 2, and
two independent components and two principal
components in case 3.

Fault detection results are summarized in Table 1.
ARL decreases as the shift size increases,
irrespective of the type of monitoring method.
In case 1, the results have clearly shown the
advantage of ICA-SPC and CMSPC over both
USPC and PCA-SPC, and the ARL of ICA-SPC
is the same as that of CMSPC because all
original variables follow uniform distribution. On
the other hand, in case 2, PCA-SPC and CMSPC
are superior to ICA-SPC, and they achieve

the same performance because all variables
follow normal distribution. The difference between
case 2a and 2b is the variable where the
mean shift occurs. In case 2a, the monitoring
performance of all four SPC methods is similar,
and the advantage of using PCA-SPC over
ICA-SPC is not clear. In case 2b, however,
PCA-SPC outperforms ICA-SPC. Therefore, it
is concluded that PCA-SPC functions better
than or as well as ICA-SPC when all measured
variables are Gaussian. Although PCA-SPC is
better than ICA-SPC in case 2, these two
methods do not outperform USPC. Even when
measured variables are mutually correlated,
USPC sometimes outperforms MSPC. In case 2b,
USPC gives better performance than the others
because a52, which is the coefficient from s2 to x5

in A, is larger than the others in the same row
and thus the mean shift can be easily detected by
monitoring x5.

In case 3, two of four original variables follow
uniform distribution and the other two variables
follow normal distribution. In this case, CMSPC
can detect the mean shift of x5 earlier than
the other methods. This result clearly shows the
advantage of CMSPC over other SPC methods.

ICA-SPC functions well for generating and
monitoring non-Gaussian independent variables,
while PCA-SPC is suitable for monitoring
Gaussian variables. Therefore, the answer to the
question “Which MSPC method should be applied
to our process?” depends on the process. However,
the proposed CMSPC combines the advantages of
both PCA-SPC and ICA-SPC, and thus it enables
us to select the best solution automatically.

6. APPLICATION 2

In this section, four SPC methods are applied
to monitoring problems of a CSTR process
(Johannesmeyer and Seborg, 1999). The objective
of this section is to show the usefulness of CMSPC
with its application to a more realistic example.

The CSTR process used for dynamic simulations
is shown in Fig. 1. The reactor is equipped with a
cooling jacket. The process has two manipulated
variables (valves) and five process measurements.
A total of nine variables used for monitoring
are listed in Table 2. Process data are generated
from a normal operating condition and eight
abnormal operating conditions listed in Table 3.
All variables are measured every five seconds.

The control limit of each index or variable is
determined in the same way as the previous
section. Five principal components are retained
in the PCA model for PCA-SPC. The number
of non-Gaussian independent components is five,



Fig. 1. CSTR with feedback control.

Table 2. Process variables.

x1 reactor temperature
x2 reactor level
x3 reactor outlet flow rate
x4 coolant flow rate
x5 reactor feed flow rate
x6 MV of level controller
x7 MV of outlet flow controller
x8 MV of temperature controller
x9 MV of coolant flow controller

Table 3. Disturbances and faults.

Case Operation Mode

N normal operation

F1 dead coolant flow measurement
F2 bias in reactor temp. measurement
F3 coolant valve stiction
F4 feed flow rate - step
F5 feed concentration - ramp
F6 coolant feed temperature - ramp
F7 upstream pressure in coolant line - step
F8 downstream pressure in outlet line - step

Table 4. ARL Comparison (CSTR).

Case USPC PCA-SPC ICA-SPC CMSPC

N 94.7 115 96.6 95.4
F1 1.0 1.4 1.1 1.1
F2 7.9 8.7 8.8 8.8
F3 7.0 2.6 1.4 1.4
F4 49.5 23.1 1.0 1.0
F5 52.4 60.1 57.6 57.6
F6 60.0 61.8 55.8 55.8
F7 79.3 86.2 2.5 2.5
F8 61.7 6.6 1.0 1.0

and the other four components are monitored
together by using T 2 in CMSPC. The results
are summarized in Table 4. In this application,
there is little or no difference of ARLs among
four monitoring methods except F4, F7, and
F8. In those three cases, ICA-SPC and CMSPC
can detect the faults considerably earlier than
USPC and PCA-SPC. In addition, ICA-SPC and
CMSPC achieve the same performance in almost
all cases because the faults tend to be detected
at non-Gaussian independent components. The
results clearly show the effectiveness of CMSPC
as well as ICA-SPC.

7. CONCLUSIONS

A new advanced MSPC method, referred to as
combined MSPC (CMSPC), was developed by
integrating conventional PCA-SPC and recently
proposed ICA-SPC. CMSPC includes both
PCA-SPC and ICA-SPC as its special cases,
and thus it provides a unified framework for
MSPC. The application results show that CMSPC
functions very well and it combines the advantages
of both PCA-SPC and ICA-SPC.
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1.  INTRODUCTION 
 
Over the last decade the emphasis in process 
manufacturing has changed. Quality and product 
consistency have become major consumer decision 
factors and are key elements in determining business 
success, growth and competitive advantage. 
Manufacturing products that meet their quality 
specifications first time result in higher productivity, 
reduced manufacturing costs through less re-work, 
give-away and waste. This all contributes to reducing 
the impact of the process on the environment by 
minimising raw materials and energy usage. The 
achievement of right first time production requires a 
reduction in process variability and thus the 
monitoring of process behaviour over time to ensure 
that the key process/product variables remain close to 
their desired (target) value is essential. This has led to 
a significant increase in the industrial application of 
statistical methods for interrogating the process to 
obtain an enhanced understanding of the process and 
the implementation of Statistical Process Control 
(SPC) for process monitoring and the early warning of 
the onset of changes in process behaviour.  
 
An area of rapidly growing interest for the monitoring 
of processes is that of Multivariate Process 
Performance Monitoring (MPPM). MPPM schemes 
have typically been based on the statistical projection 

techniques of Principal Component Analysis (PCA) 
and Projection to Latent Structures (PLS) and their 
multi-way extensions for batch processes.  Reported 
practical applications of MPPM have focused on the 
production of a single manufactured product i.e. one 
grade, one recipe, etc. with separate models being 
used to monitor different types of products 
(Kosanovich and Piovoso, 1995, Kourti et al, 1995, 
Rius et al, 1997, Martin et al, 1999). However, in 
recent years, process manufacturing has increasingly 
been driven by market forces and customer needs 
resulting in the necessity for flexible manufacturing to 
meet the requirements of changing markets and 
product diversification. Thus with many companies 
now producing a wide variety of products, there is a 
real need for process monitoring models which allow 
a range of products, grades or recipes to be monitored 
using a single process representation.  
 
The elimination of between group variation is a 
prerequisite for statistical process monitoring, so that 
interest can focus on within process (product) 
variability.  This normally requires constructing 
separate control charts for each type of product or 
grade to be monitored. In many process monitoring 
situations this may be impractical because of the large 
number of control charts required to monitor all the 
products being manufactured and the limited amount 
of data available from which to develop a process 



representation. An extension to multi-way PCA and 
multi-way PLS that allows the construction of a 
multiple group model is proposed based on combining 
the variance-covariance matrices of each of the 
individual groups. The loadings for the latent variables 
are then calculated from the pooled variance-
covariance matrix of the individual groups. Previous 
work has been published on the multiple-group PCA 
algorithm, Lane et al, (2001) and thus the paper 
focuses on the multi-group PLS algorithm. 
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where is the matrix of scaled process data for 
group i, Y

isX
is is the matrix of scaled quality data for 

group i, ni is the number of observations in group i, 
and g is the total number of groups. 

 
2. Construct the pooled kernel matrix: 
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2.  PROJECTION TO LATENT STRUCTURES 

 
A brief overview of the PLS algorithm is presented. A 
more detail discussion of the methodology can be 
found in Garthwaite (1994). The objective of PLS is to 
determine a set of latent variable scores that “best” 
describe the variation in the process data set (X) data 
set that is most influential on the quality data set (Y) 
data set. Using these latent variables it is then possible 
to construct a set of latent variable scores for the 
process data i.e. T = XW, where T is the matrix of 
latent variable scores and W is the matrix containing 
the latent variable loadings. A number of different 
algorithms have been proposed to derive the loadings 
for the latent variables associated with PLS.  One 
approach is based on the extensions to the NIPALS 
(Non-linear Iterative Partial Least Squares) method, 
which regresses the columns of X on Y directly. As a 
consequence, it is not feasible to combine a number of 
different data sets into a single model. 
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3. Calculate the loading vector (wk) for the process 

variables, where (wk) is the first eigenvector of the 
pooled kernel matrix (Rp). 

 
4. Once (wk) has been estimated, the latent variable 

scores for each group (tik) can be calculated: - 
 

kisik wXt =  (3) 
 

where tik is the matrix of principal component 
scores for group i and dimension k, wk is the 
common latent variable loading for dimension k 
and isX  is the scaled data matrix for group i. 

  
Lindgren et a,l (1993) presented a kernel algorithm for 
determining the latent variables that is based on the 
eigenvector decomposition of the variance-covariance 
matrix, . By adapting the kernel 
algorithm, a multiple group model can be constructed 
by pooling the individual variance-covariance 
matrices (R

XYYXR TT=

i). In this way the formal statistical basis 
for the multiple group model, as given by Flury 
(1987), can be extended. The variance-covariance 
approach is based on the hypothesis that the first a 
eigenvectors of each of the individual variance-
covariance matrices span the same common subspace. 
Although the model introduced by Flury (1987) 
related to common principal components, the 
hypothesis is also appropriate for PLS, since it is the 
variance-covariance matrices that are of interest. 
Krzanowski (1984) had previously shown that the 
common loadings for the latent variables could be 
extracted from a weighted sum of the individual 
variance-covariance matrices.  

5. The loading vectors (pi) and (qi) are then 
calculated as: 
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where is the matrix of scaled quality data. isY

 
6. The process and quality data matrices are then 

deflated:  
 

T
iikisnewis ptXX −=    
T
iikisnewis qtYY −=  

(5) 

  
The next (k + 1)th latent variable is then calculated:  

 
11 ++ = knewisik wXt  (6) 

   where wk+1 is the first eigenvector of the updated 
pooled kernel matrix: 3.  THE MULTIGROUP PLS ALGORITHM 

  The algorithm for constructing the multiple group 
model based on the kernel algorithm is as follows: 
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The iteration process continues with new values for pi 
and qi being calculated. Finally the data matrices 
Xisnew and Yisnew are deflated. The iteration process 
steps (1 to 6) are repeated until the required numbers 
of latent variables have been extracted.  
 
 
4. MPCA AND MPLS FOR MONITORING BATCH 

DATA 
 
Batch processes differ from continuous processes in 
that each variable, j, is measured at k time intervals for 
a total of I batches. The data set is thus three-
dimensional (I x J x K). As a consequence interest is 
in both the “between” and “within” batch variability. 
The application of MPCA or MPLS to the three-
dimension data array associated with batch 
manufacturing is equivalent to performing standard 
PCA or PLS on a large two-dimensional data matrix 
formed by unfolding the original three-dimensional 
array. The unfoding approach adopted in this paper is 
that proposed by Kourti et al, (1995) and demonstrated 
in Fig. 1. This approach allows the variability between 
batches to be analysed by summarising the variability 
in the data with respect to both variables and their 
time variation. The data contained in the two-
dimensional matrix is mean centred and scaled prior to 
applying either MPCA or MPLS. By subtracting the 
mean of each column from the two-dimensional data 
matrix the non-linearities are effectively removed 
from the data. 
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Fig. 1. Data unfolding 
 
 

5.  MULTIPLE GROUP MPCA AND MPLS 
 

As described in Section 3, the pooled correlation 
(variance-covariance) approach is based on the 
existence of a common eigenvector subspace spanned 
by the first a eigenvectors of the individual correlation 
(variance-covariance) matrices. A formal statistical 
model was given by Flury (1987), who computed the 
common principal components using Maximum 
Likelihood Estimation (MLE). Krzanowski (1984) had 
previously demonstrated that the common principal 
components derived using the pooled correlation 
(variance-covariance) matrix were almost identical to 
those computed from MLE. In practice the pooled 

correlation (variance-covariance) approach proposed 
by Krzanowski (1984) is simpler to apply than the 
MLE approach, which requires the implementation of 
an iterative algorithm. The pooled correlation 
(variance-covariance) approach compares the 
subspaces defined by the eigenvectors associated with 
the largest eigenvalues. No conditions are placed on 
the MLE proposed by Flury (1987). This is a major 
consideration when determining the method to be used 
for calculating the latent variables for process 
monitoring. In process monitoring, it is convention to 
construct the process models using the eigenvectors 
corresponding to the largest eigenvalues. As a 
consequence determining the common latent variables 
from the pooled correlation (variance-covariance) 
matrix is more appropriate for industrial applications. 
 
 

6.  V2 CONTRIBUTION PLOTS 
 

The contribution plots introduced by Miller et al, 
(1998) are formulated from the weighted contribution 
of each variable to the principal component (latent 
variable) score at the sample points of interest. In the 
batch monitoring approach adopted in this paper there 
are a large number of variable contributions (variable 
x sample points) to analyse. In some situations this 
can make the contribution plots difficult to interpret.  
Furthermore the deviations usually impact on the 
manufacturing process over a number of sample 
points. As a consequence the development of a 
contribution plot that indicates the cumulative 
contribution of each variable to the principal 
component (latent variable) scores at each sampling 
point is desirable. The cumulative contribution of each 
variable is better related to the latent variable scores, 
whose deviation from the centre of the control region 
is usually caused by the cumulative affect of small 
deviations from the mean batch trajectory.  
 
The V2 statistic is an extension of the U2 statistic of 
Runger (1996) and Runger and Alt (1996) and is 
proposed as a technique for examining the cumulative 
contribution of each variable individually or as a 
group of variables, at each sample point.  The V2 
statistic is calculated as the difference between two T2 
statistics.  The first includes the entire variable set and 
the second excludes the variable or groups of variables 
whose contribution is of interest. To examine the 
cumulative contribution to the batch scores, a V2 
statistic is calculated at each sample point this 
requiring the calculation of: 
 

2
1

22
1 TTV −=  (9) 

 
where  excludes the variable or variables of 
interest at the first sample point. At the second sample 
point (V ) is calculated from:   
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where T2
2 excludes the variable(s) of interest at both 

the first and second sample points. The calculation is 
repeated at each sample point to obtain V3

2 , V4
2, etc. 

until the end of the batch run. Each individual V2 
statistic can then be plotted as a bar graph, which 
shows the cumulative contribution of each variable or 
group of variables at each sample point. 
 
 

7.  PROCESS PERFORMANCE MONITORING 
 

7.1 Case Study 1 
 
To demonstrate the application of multiple group 
multi-way PCA, three sets of data from a metal etcher 
process were considered (Wise et al, 1999). Data was 
supplied from an A1-stack etching process that was 
being performed using a Lam 9600 plasma-etching 
tool. The objective of the process is to etch the 
NiN/A1-0.5% Cu/TiN/oxide stack with an inductively 
coupled BCI3/CI2 plasma. The standard manufacturing 
process consists of a series of six steps. The first two 
are for the achievement of gas flow and stabilisation. 
Steps 3 and 4 are the brief plasma ignition step and the 
main etch of the A1 layer terminating at the A1 
endpoint respectively. The next step acts as an over 
etching for the underlying TiN and oxide layers whilst 
the final step is associated with the venting of the 
chamber.  
 
Etching of an individual wafer is analogous to a single 
batch in a chemical process. Changes in the process 
mean are a result of a residue building up on the inside 
of the chamber following the cleaning cycle, 
differences in the incoming materials resulting from 
changes in the upstream process and drift in the 
process monitoring sensors themselves.  As a result of 
the changes in the process mean there are three 
distinct operating levels identified in the data set. 
When the data is combined into a single data set, the 
scores of principal component 1 and principal 
component 2 identify the discrete operating levels as 
seen in Fig. 2.  
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Fig. 2. Bivariate scores plot (Mixed covariance model) 
 
In this case the major source of variation explained by 
the individual principal components is the variation of 
each variable from the overall mean of the data set and 
thus identifies the different operating conditions of 
each variable. This between group variation present in 
the data set causes the principal component scores to 

cluster according to which operating region, or grade 
of product, they represent. When such clustering 
occurs there are two issues that impact on process 
monitoring: (i) the control limits may be conservative 
and assignable cause process events may not be 
detected and (ii) an assignable cause reflected in the 
movement of a principal component score into another 
cluster when the operating conditions have not been 
changed may result in the real process event not being 
detected. As a consequence of the clustering observed 
and due to the changing mean levels, the process data 
was divided into three subsets one for each of the 
operating levels. The composition of each of these 
data sets is presented in Table 1. 
 

Table 1. The Metal Etcher Data Sets 

Operating 
level 

Observations Variables Batches 

1 90 17 17 
2 90 17 16 
3 90 17 18 

 
A reference model for the multiple group application 
was then constructed using the three data sets.  By 
analysing each of the data sets, it was inferred that the 
different operating levels share common 
characteristics that determine the process behaviour 
and as a consequence the use of the multiple group 
modelling approach was validated. Ten principal 
components were selected from cross-validation 
explaining 68%. A bivariate scores plot for principal 
components 1 and 2, Fig. 3, shows that the scores are 
independent and identically distributed. As a result it 
was inferred that the multiple group monitoring model 
provided a good representation of the overall etch 
process. 
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Fig. 3. Bivariate scores plot (Pooled covariance 

model) 
 
To evaluate the detection and diagnostic capabilities 
of the multiple group model, a data set containing an 
increase in the TCP power was projected onto the 
reference model. This was done in a manner so as to 
simulate an on-line monitoring situation. Each 
observation that is projected onto the monitoring chart 
represents the status of an ‘on-line batch’ at successive 
sampling points during the etch process. The bivariate 
scores plot of principal components 1 and 2 (Fig. 4) 
detects the change in the operating conditions as a 
slow drift away from the centre of the control region. 



At the beginning of the etch run, the principal 
component scores lie in the centre of the control 
region. After the first few sample points the scores 
gradually drift away from the centre towards the 
control limits. An out-of-statistical-control signal is 
flagged as the scores cross the action limits. In this 
particular example no remedial action was taken and 
the scores continue to drift away from the control 
region until the conclusion of the process run. 
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Fig. 4.   Bivariate scores plot  
 
The V2 contribution plot, Fig. 5, identifies the variable 
indicative of the out-of-statistical-control signal. For 
clarity only the contribution from a single variable is 
plotted and it can be seen that the contribution from 
the variable follows a similar profile to the principal 
component scores shown in Fig. 4. These results 
demonstrate the power of the multi-group modelling 
approach and confirm the findings of Wise et al, 
(1999). 
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Fig. 5. V2 Contribution Plot 
 
7.2 Case Study 2 
 
The industrial process used to demonstrate the on-line 
application of the multiple group multi-way PLS 
model is a polymer film manufacturing process. The 
manufacture of polymer film can be considered as a 
series of unit operations that are applied to convert 
polymer pellets to a rolled film product (e.g. Weighell 
et al, 2001). A number of different film types are 
manufactured using the same process equipment 
through changes in the operating conditions being 
made and the types of polymer pellets used. Following 
the production of each roll of film, a number of quality 
attributes are measured at the end of the roll. As a 
consequence each roll of film can be considered as a 
separate batch of product. In this example, 105 
process variables and 3 quality variables are included 
in the model. These provide a description of the “well 

being” of the process and its manufacturing 
performance, although at present the process operators 
only monitor a few “key” process variables.  
 
Separate performance monitoring charts were 
constructed for each unit within the manufacturing 
process. In this example the unit of interest is the sheet 
forming process. Two grades of film manufactured 
using two different production lines were used to 
construct the multiple group model. In this particular 
plant there are a number of different lines 
manufacturing polymer film and as a consequence 
there is both between line variation in the data as well 
as the between polymer grade variation. The 
composition of each data set is shown in Table 2.  
Again as in the previous Case study, initially all the 
data was combined into a single data matrix. For 
comparative purposes, standard single group MPLS 
was carried-out on the combined data matrix. 
 

Table 2. The Films Production Line Data 
 
Data 
Set 

Line Grade Obs. Proc 
Vars 

Qual 
Vars 

Btch’s 

1 1 1 100 19 3 23 
2 1 2 100 19 3 23 
3 2 1 100 19 3 19 
4 2 2 100 19 3 19 

 
Inspection of the bivariate scores plot of latent 
variables 1 and 2 showed, as expected, the scores to be 
clustered into four distinct regions (not shown). 
Combining the data into a single matrix and applying 
standard multi-way PLS does not result in a 
satisfactory model for on-line process monitoring 
(Lane et al, 2001). Inspection of the bivariate scores 
plot of latent variables 1 and 2 for the multiple group 
model showed the latent variable scores to be 
independent and normally distributed (not shown), 
implying that the multiple group model was 
appropriate for monitoring the polymer film 
manufacturing process.  
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Fig. 6.  Bivariate scores plot of latent variable 3 versus 

latent variable 4 
 
A data set containing a process fault, a reduction in the 
pressure, was projected onto the reference model. Fig. 
6, represents the on-line status of the batch at 
successive sample points during the manufacturing 
process. The bivariate scores plot of latent variables 3 
and 4, Fig. 6, detects a process disturbance. As with 
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Abstract:
Partial Least Squares (PLS) is a technique used to perform regression between
blocks of explanatory variables and dependent variables. PLS uses projections of
original variables along directions which maximize the covariance between these
blocks. It has been popular due to its data-reduction property and its ability to
handle collinearity within the data blocks. In this paper some issues which arise in
the the development of multivariate static models of industrial processes using PLS
regression are studied. An industrial example of the application of PLS regression
for the development of inferential sensors to predict the Bitumen Recovery in a
separation cell is shown. Some of the challenges encountered in the development
and online implementation of the inferential sensors and the proposed solutions
are presented.
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1. INTRODUCTION

In many chemical engineering applications, con-
trol variables may not be available as frequently as
would be desired for satisfactory closed-loop con-
trol. For example, key product quality variables
are available after several hours of lab analysis. Of-
ten, it is possible to estimate the quality variables
using other process variables which are measured
frequently. The relationship or the model that is
used to predict quality variables using other pro-
cess variables is often called a “soft-sensor”. The
quality-variable estimator is called a soft-sensor
since it is based on software calculations rather
than a physical instrument. The soft-sensors de-
veloped in this way can be used for inferential
control or process monitoring. Discussions on in-
ferential control can be found in (Kresta et al.,

1994; Parrish and Brosilow, 1985; Amirthalingam
et al., 2000; Li et al., 2002).

Multivariate statistical techniques such as Princi-
pal Components Analysis (PCA) and PLS have
been applied for process monitoring, fault detec-
tion and static modelling in chemical processes
(Kresta et al., 1991; Qin and McAvoy, 1992;
Qin, 1993; Nomikos and MacGregor, 1995; Ricker,
1988). In addition, extensions of these approaches
for handling dynamic and auto-correlated data
have been proposed (Ku et al., 1995; Lakshmi-
narayanan et al., 1997). In particular, PLS regres-
sion is a popular technique used in the develop-
ment of soft-sensors in the form of static models
for multivariate processes. The main advantage
of using PLS for process modelling comes from
its ability to decompose the problem of obtaining



model coefficients from multivariate data into a
set of univariate regression problems. Univariate
regression is performed on latent variables ob-
tained by projecting the input and output data
onto directions along which the covariance be-
tween these variables is maximized. The models
obtained through this exercise can then be used
for monitoring the current state of the process.
The advantages in using static models for mon-
itoring include the simplicity of the models and
the ease of implementation and maintenance.

2. PLS REGRESSION

The commonly used procedure for PLS is as
follows:

Consider the zero-mean, unit variance data ma-
trices X ∈ <N×m and Y ∈ <N×p where N is
the number of observations, m is the number of
process variables and p the number of quality vari-
ables. A linear static model explaining Y based on
X is given as follows:

Y = XC + E (1)

Using the well known Ordinary Least Squares
regression (OLS) we obtain the solution:

Ĉols = (XT X)−1XT Y (2)
However, because of the high degree of correlation
among the variables within the predictor space the
matrix XT X may be ill-conditioned. In addition
we may be interested in obtaining the directions
along which the common (second-moment) infor-
mation between these blocks is concentrated. To
satisfy these objectives, the following procedure
is adopted in PLS regression. The matrix X is
decomposed into a score matrix T ∈ <N×a and a
loadings matrix P ∈ <m×a, where a is the num-
ber of PLS components used. Hence the following
decomposition is achieved:

X = TPT + E (3)

where E is a residual matrix. Similarly Y is
decomposed as

Y = UQT + F (4)

To obtain the loadings vectors the following algo-
rithm is used:

(1) Initialize, Y1 = Y and X1 = X and i = 1.
(2) Perform SVD on XT

i Yi and calculate ji,
the left singular vector corresponding to the
largest singular value ωi and qi the corre-
sponding right singular vector. This SVD
calculation corresponds to capturing the di-
rection (ji,qi) which maximizes covariance
between Xi and Yi.

(3) Let ti and ui be the corresponding scores.
Perform a univariate regression between ti

and ui to obtain bi.
(4) The loadings vector for Xi is given by

pi =
XT

i ti

tT
i ti

(5)

(5) Deflate Y and X according to

Yi+1 = {Yi − bitiqT
i } (6)

Xi+1 = {Xi − tipT
i } (7)

(6) Set i = i + 1.
(7) Go to step 2.

After a stages the approximations are

X≈ t1pT
1 + t2pT

2 + · · ·+ tapT
a (8)

Y≈ u1qT
1 + u2qT

2 + · · ·+ uaqT
a (9)

Hence we get the PLS estimate of the model
coefficients as:

Ĉpls = J(PT J)−1BQT (10)

where, the columns of J and Q contain the singu-
lar vectors of the SVD’s carried out at each stage,
the columns of P contain the loadings vectors of
the X matrix and B is a diagonal matrix contain-
ing the latent variable regression coefficients from
each stage.

3. PROCESS DESCRIPTION

An industrial example of the application of PLS
regression is presented in this section. Soft-sensors
were developed to predict the Bitumen Recov-
ery in a separation cell. These soft-sensors have
been implemented online at Suncor Energy’s Ex-
traction facility at Fort McMurray in Alberta,
Canada. The separation cell is used in the ex-
traction of bitumen from oil sands. Oil sands
are deposits of bitumen, that must be treated to
convert them into crude oil which can then be
refined in conventional refineries. The main pro-
cesses in converting the oil sands to crude oil are
Mining, Extraction and Upgrading. In the mining
stage, the oil sands are mined using trucks and
shovels. This is followed by the extraction stage in
which bitumen is separated from the sand using
processes such as froth-flotation. The bitumen is
then converted to crude oil in the upgrading stage.

The extraction operations can be briefly described
as follows: The oil sand is first passed through a
slurry preparation stage. The main operation in
this stage is to form a slurry using hot water,
oil sands and caustic. Heat is used to reduce
the viscosity of the bitumen. Caustic helps in
the attachment of bitumen to the air in the



froth formation while releasing it from the sand
particles. The bitumen then forms small globules
that are important in the formation of froth.
Agitation also aids in the breaking up the oil sand.
The slurry passes through a series of vibrating
screens that separate and reject any rocks or
clumps of clay still present in the slurry. It is then
pumped into separation cells.
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Fig. 1. Process Flow-sheet for Separation Cell

A schematic of a separation cell is shown in Fig.
1. The separation cell allows the slurry to settle
out into its various layers, the most important
layer being the froth layer which rises to the top.
The tailings sand sinks to the bottom. The middle
layer is called the middlings layer and consists of
bitumen, clay and water. The middlings remain
suspended between the sand and the bitumen
froth until it is drawn off and sent through the
secondary separation cell. The secondary separa-
tion vessel extracts the remaining bitumen from
the middlings. The main objective in the oper-
ation of the separation cell is to maximize the
amount of bitumen in the froth and minimize
the amount of bitumen lost in the tailings and
middlings streams. A measure of the efficiency
of operation of the separation cell is given by
the Bitumen Recovery which can be calculated
from the predictions of quality variables using the
following equation:

Rec =
FfrρfrCfr

FfrρfrCfr + FtρtCt + FftρftCft
(11)

where, Rec is the Bitumen Recovery in the cell,
Ffr, Ft & Fft refer to the Froth, Tailings and
Flotation Tailings flows, ρfr, ρt & ρft refer to the
Froth, Tailings and Flotation Tailings densities
and Cfr, Ct & Cft refer to the concentrations
of Bitumen in the Froth, Tailings and Flotation
Tailings in wt% respectively. Hence the quality
variables of interest are concentrations of Bitu-
men in the Froth, the Tailings and the Flotation
Tailings. In our soft-sensor development, we used
25 process variables, measured every minute, to
predict these 3 quality variables. Of the three
product variables, one was available through lab
analysis every 12 hours and the other two were
available every 2 hours.

4. CHALLENGES IN SOFT-SENSOR
DEVELOPMENT

While there have been other reported applications
of PLS regression for developing soft sensors, we
consider the current application to be especially
challenging. Monitoring the extraction of bitumen
from oil sands is a problem which poses some
unique challenges. These include, in the words of
a practicing engineer from this industry, “chang-
ing process conditions, wide operating regions, bad
data and lack of good software resources”. In addi-
tion we have encountered other challenging prob-
lems for which we have some suggested solutions.
The challenges and the proposed solutions for
bitumen recovery estimation are discussed below.
Many of these solutions may also apply to other
applications.

4.1 Sample consolidation

One of challenges encountered while developing
these soft-sensors is due to the practice of physical
consolidation of samples of the quality variables.
It involves mixing a number of physical samples
of the product collected at different time instants
before performing lab analysis. For the process
under consideration, consolidation is achieved us-
ing a flow totalizer and a triggering mechanism.
When the cumulative flow in a line exceeds a
set point it sets off a mechanism which leads to
the collection of a sample in a container. The
consolidation mechanism is illustrated in Fig. 2.
This process continues for about 12 hours at the
end of which, the container has a mixture of the
samples collected over this period. This liquid is
then stirred for homogeneity and the consolidated
sample is used for analysis. In order to build
realistic models using such samples, it is impor-
tant that the modelling methodology including
the data pre-treatment mimic the process as much
as possible. Hence we resorted to time-averaging
of the input data as dictated by the sample con-
solidation mechanism before the actual regression
was performed.
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Product flow
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Fig. 2. Sample Consolidation mechanism

Let us assume that k + 1 samples were collected
at times T1, T1 + t1, T1 + t2, ..., T2 = T1 + tk, where
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Fig 3. Predictions of Froth Bitumen using PLS Regression

T1 and T2 refer to times when the vessel was
removed for analysis and t1, t2, . . . , tk, refer to the
times when the trigger mechanism was engaged.
Then, assuming that equal volumes of the product
were sampled at the sample instant, the following
equation holds approximately:

Yav ≈ 1
k

tk∑
ti=t1

Y (ti)

Under the assumption that the process can be
represented well using a linear static model of the
form:

Y (ti) = a1u1(ti − td1) + a2u2(ti − td2)

+ . . . + amum(ti − tdm)

where, a1, . . . , am are the static regression coeffi-
cients of the m input variables u1, . . . , um and the
di is the time delay between the ith input and the
output, we get the expression:

Yav ≈ 1
k
{a1

tk∑
ti=t1

u1(ti − td1) + . . .

+am

tk∑
ti=t1

um(ti − td1)}

Hence time-averaging can be used to mimic the
sample consolidation mechanism.

4.2 Large sampling intervals and effect on data
size

Another challenge is in the large sampling times
for the quality variable. The sampling time for the
froth bitumen is 12 hours. This means that even
data collected over the course of a few months
would yield very few values for the froth bitumen.
For example we obtained only 60 samples over
30 days. In addition the ratio of sampling time
of the process variables to that of the quality
variable is 720. Developing multi-rate models with
such large sampling ratios given that we have
25 inputs, is not practical. For static regression

problems where we are interested in capturing
spatial relationships between different variables
rather than temporal relationships, we can use
the data at the slow sample rates. This is the
procedure adopted in the models developed in
this exercise. As pointed before this reduces the
number of samples available for modelling.

4.3 Using interpolated process data while identifying
dynamic models

In problems where dynamic models are required,
it has been pointed out in chemical engineering
literature that one can use simple interpolation
devices such as linear interpolation provided the
measurements are not very noisy (Amirthalingam
et al., 2000). However, it is important to real-
ize the potential dangers in using such interpo-
lation devices. These interpolation devices intro-
duce additional data where there is none. Hence
the identification problem becomes one of iden-
tifying “correct” models from “wrong” data. The
problem with ZOH interpolation is that, when the
ZOH interpolation device is used, the output re-
mains flat till the next sample arrives even though
there might be changes in the inputs. The use of
linear interpolation is generally accepted in the
modelling phase even though it is a non-causal
operation because it is carried out as an off-line
exercise. However, the use of linear interpolation
could lead to the identification of non-causal mod-
els for the particular input-output set considered.
This is because the output starts to move in the
direction of the next value even before the input
starts moving. When using routine operating data
for identification, there may be feedback induced
(controller) correlations hidden in the data. In
these correlations, the output is the cause and
the manipulated input is the effect. Hence the
coefficients being identified may be those of the
controller rather than those related to the process.
One may be further misled by the fact that the
predictions of these models are quite good. Hence
it is important to supplement and validate the
results of “black-box” identification approaches
using process knowledge of gain directions.
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Fig 4. Predictions of Tailings Bitumen using PLS Regression
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Fig 6. Online prediction of Bitumen Recovery

4.4 Estimating time delays in industrial processes

The problem of time-delay estimation was found
to be particularly challenging. This is tackled in
the identification literature using correlation anal-
ysis or by looking at cross-correlation between
variables at different lags. However these are very
difficult to apply in practice because of the non-
stationarity of the signals, the multivariate nature
of process data and correlations induced by oper-
ational and control strategies. In practice, using
transport lags obtained from process knowledge
or specific tests gives more reliable results. In this
exercise we estimated the time delays using our
knowledge of the physical locations of the sensors
while making sure that material recycles were
taken into account. We have assumed the trans-
port delays to be constant. Hence, the variation
in these transport lags due to varying throughput

is of concern. It is not easy to fix this problem
in the current framework and hence we have not
attempted it here. However the problem of time
delay estimation from routine operating data is an
important problem which needs to be addressed
by the chemical process community.

4.5 Nonlinear transformations

While developing models of systems using linear
regression it is desirable to have normally dis-
tributed errors affecting the system and a linear
relationship between the variables in the system.
However, in practice these conditions may not
hold. For example, the presence of a nonlinear
relationship between the dependent and indepen-
dent variables, or non-normality of the indepen-
dent variables or the errors manifests itself as non-
normality of the dependent variable. Hence it is



important to check whether it might be inappro-
priate to identify a standard linear model using
a given set of data. If non-linearity is suspected,
we may need to use suitable transformations of
the variables to coax the dependent variable to
normality or to produce a linear relationship be-
tween X and Y. A dependent variable may not
be normally distributed if its values are bounded,
creating a skewed distribution. When it comes to
inference of parameters from regression, it is im-
portant to ensure that the errors are normally dis-
tributed. A non-normal dependent variable does
not necessarily mean a non-normal distribution of
errors. However, the converse is often encountered.
This argument is also supported by the common
practice of drawing conclusions about the error
distribution from the distribution of the resid-
uals. When the dependent variable is found to
be non-normal, one may consider using transfor-
mations to normalize the dependent variable. A
few common transformations that can be used for
dependent variables, include the logarithmic (Z =
log(Y )), exponential (Z = eY ), power (Z = Y p)
and logistic (Z = log(Y )

1−log(Y ) ) transformations.

For the Bitumen recovery separation cell, the dis-
tributions of two of the quality variables show
significant deviation from normality. They are
the Bitumen concentrations in the Tailings and
Flotation tailings. These quality variables take
non-negative values which are generally low, ex-
cept during upsets, which are characterized by
large spikes in these variables. Performing linear
regression without transformation leads to poor
prediction of these spikes. Due to the nature of the
distribution a specific nonlinear transformation
was applied on these dependent variables which
led to a significant improvement in the quality of
the predictions.

5. ONLINE RESULTS

The results of the predictions are shown in Fig. 3,
4 and 5, from which it is clear that there is great
potential for the use PLS regression for predicting
bitumen recovery.

The soft sensors developed using PLS regression
have been implemented online in Suncor Extrac-
tion’s Distributed Control System (DCS) and
their Plant historian (Fig. 6) and the results are
encouraging. These predictions are being used for
monitoring the bitumen recovery in the separation
cell. The plant personnel are happy to have a
simple tool which gives them advance warning of
a fall in the recovery and are satisfied with the
performance of the soft-sensors.

6. CONCLUDING REMARKS

An industrial application of PLS regression tech-
niques for developing soft-sensors for predicting
infrequently measured quality variables in a Bitu-
men extraction process has been described. Some
of the challenges in applying these techniques
to industrial problems have been presented with
some proposed solutions.
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