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Abstract: For using process operational data to realize process monitoring, kinds of improved PCA 
are applied to cope with complexity of industrial processes. In this paper, a novel nonlinear wavelet 
packet PCA (NLWPPCA) method, which combines input training network with wavelet packet PCA, 
is proposed. Wavelet packet PCA integrates ability of PCA to de-correlate the variables by extracting 
a linear relationship with what of wavelet packet analysis to extract auto-correlated measurements. 
Then the paper gives the methodology of process monitoring based on NLWPPCA. Finally, the 
proposed approach is successfully applied to an eight variables nonlinear process with noise and 
Tennessee Eastman process for process monitoring. Copyright  2003 IFAC 
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1. INTRODUCTION 

 
With the increase in on-line data acquisition systems 
in industrial processes, the collection of process 
operational data is becoming routine. Then process 
plants are becoming data rich but information poor. 
There is therefore a need to extract the inherent 
information within the data. Data mining techniques, 
which mining inherent useful knowledge from kinds 
of databases or data warehouses, are introduced to 
process monitoring. Then process monitoring based 
on data mining is to collect raw data from time-series 
database or data sets, reprocess data using data 
reconciliation method, mine outliers and 
classification or clustering analyze these outliers. 
Principal components analysis (PCA) as an effective 
method of data mining techniques has been widely 
applied in process monitoring. However, many 
industrial processes exhibit significant nonlinear 
behaviour and industrial data is also synonymous 
with process measurement noise. In these cases the 
application of PCA is not strictly appropriate. Then 
many improved methods are proposed and applied. 
Kramer (1991) used an auto-associative neural 
network, trained using backpropagation to produce a 
nonlinear PCA. Dong and McAvoy (1994) integrated  
 
 

principal curves with a neural network to build a 
nonlinear PCA. Tan and Mavrovouniotis (1995) 
proposed a nonlinear PCA based on input-training 
neural network. Bakshi (1998) introduced the 
principle of multiscale PCA, which combines the 
attractive properties of linear PCA and wavelet 
analysis by computing the PCA of wavelet 
coefficients at each scale and then combining the 
results at relevant scales. Chen, et al. (1999) 
combined neural networks and multiscale wavelet 
analysis in a modified version of the adaptive 
resonance theory for diagnostic system development. 
Shao, et al. (1999) proposed a nonlinear PCA 
algorithm for process monitoring based on an 
input-training neural network and also applied 
wavelet denoising and non-parametric control limits. 
Fourie and Vaal (2000) gave an on-line nonlinear 
multiscale principal component analysis 
methodology. 
 
Wavelet packet PCA integrates PCA and wavelet 
packet analysis. Wavelet packet analysis decomposes 
the high-frequency part further, which wavelet 
analysis not does, and adaptively selects relative 
frequency bond based on character of signal to be 
analyzed. To further improve denoising character of 
multiscale PCA, the paper describes a wavelet packet 
PCA, which combines the ability of PCA to 
decorrelate the variables by extracting a linear 
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relationship with that of wavelet packet analysis to 
extract autocorrelated measurements. Then, a novel 
nonlinear wavelet packet PCA is proposed by 
combining input-training neural network with 
wavelet packet. Finally, the nonlinear wavelet packet 
PCA will be used to analyze two simulated systems 
to verify its operation. 
 
 

2. WAVELET PACKET PCA 
 
In the WPPCA, signals are decomposed first using 
wavelet packet to get wavelet packet decomposition 
coefficients matrixes. Then these coefficients 
matrixes use PCA to confirm the retain number of 
principal components and compute principal 
components score matrixes and load matrixes. 
Wavelet packet coefficients are obtained by 
rebuilding the score matrixes and the load matrixes. 
These coefficients are de-noised by using wavelet 
packet de-noise limit method, Rebuild signals are 
obtained by using wavelet packet rebuild algorithm. 
Finally, These rebuild signals are analyzed by PCA. 
The steps in the WPPCA methodology are shown in 
Figure 1, and the detailed procedures are given as 
follows. 
 
(1) For each column in data matrix, select wavelet 

packet function Ψj,k,n(t) and wavelet packet 
dividing level L and compute wavelet packet 
decomposition coefficients {WL,0, WL,1, …, 
WL,2

L
-1}; 

(2) For each variable, use the same best full wavelet 

packet base algorithm to process wavelet packet 
decomposition tree and find best wavelet packet 
decomposition coefficients; 

(3) Select these coefficients as column vector to 
build wavelet packet coefficients matrixes with 
different tree nodes {XL,0, XL,1,…,XL,2

L
-1}, the 

row number of these matrix is n/2L and the 
column number is m; 

(4) For these coefficients matrixes, respectively use 
conventional PCA to confirm the retain number 
of principal components and compute principal 
components score matrixes {TL,0, TL,1,…,TL,2

L
-1} 

and load matrixes {PL,0, PL,1,…,PL,2
L

-1}; 
(5) Use retain score matrixes and load matrixes to 

rebuild wavelet packet coefficients matrixes 
{X’L,0, X’L,1,…,X’L,2

L
-1}; 

(6) For each column in {X’L,0, X’L,1,…,X’L,2
L

-1}, 
combines corresponding column vectors to get 
rebuild wavelet packet coefficients; 

(7) For these coefficients, respectively use wavelet 
packet de-noise limit method to process these 
coefficients and get de-noising coefficients; 

(8) Use wavelet packet rebuild algorithm to get 
each variable samples {x′1, x′2,…,x′m}; 

(9) Build new data matrix X’ and use PCA to select 
the retain number of principal components and 
compute score matrix T’ and load matrix P’.  

 
The WPPCA combines the ability of PCA to 
de-correlate the variables by extracting a linear 
relationship with that of wavelet packet analysis to 
extract auto-correlated measurements.
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Figure 1 Methodology of wavelet packet PCA 



 
3. NONLINEAR WAVELET PACKET PCA 

 
Nonlinear PCA is an extension of linear PCA. 
Nonlinear PCA can extract both linear and nonlinear 
correlations, while PCA identifies linear correlations 
between process variables. Neural networks have 
long been recognized as a useful tool for extracting 
features from highly nonlinear data. Some 
researchers have proposed different approaches based 
on kinds of neural networks. Malthouse (1998) 
discussed these approaches and recommended the 
techniques developed from the principal curve 
method and the input-training network to overcome 
the continuous function projection constraint. The 
nonlinear wavelet packet PCA (NLWPPCA) method 
proposed in this paper is based upon the 
input-training neural network (IT-net). In the IT-net 
each data input pattern is not fixed but adjusted in 

conjunction with the internal network parameters to 
reproduce a corresponding output pattern using the 
steepest gradient descent optimization rule. In the 
approach, the process observation data are defined as 
the output layer pattern and the nonlinear principal 
scores are identified from the input layer. The 
architecture of the IT-net is shown in Figure 2.  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

The NLWPPCA enables both nonlinear characters and 
noise characters to be analyzed. Figure 3 illustrates the 
NLWPPCA methodology. The implement steps of the 
NLWPPCA algorithm is as followed:Collect normal 
operation data matrix X; 
 
(1) For each column in X, use wavelet packet PCA 

algorithm to compute linear principal scores 
matrix T’ and principal loads matrix P’; 

(2) Let linear principal scores matrix T’ as the IT-net 
output layer pattern, let nonlinear principal scores 
matrix T as the IT-net input layer pattern, select 
input layer nodes k and determine hidden layer 
nodes q and other network initial values; 

(3) Use extend backpropagation algorithm to optimize 
network parameters and input values, then get the 
IT-net model F(.);  

(4) Let the IT-net input layer values, which be trained, 
as the forward feedback neural network output 
layer, let linear principal scores matrix T’ as the 
forward feedback neural network (FF-net) input 
layer, and select similar structure as the IT-net; 

(5) Use backpropagation algorithm to train the 
parameters, then get the FF-net model G(.); 

(6) Determine the nonlinear principal scores matrix T, 

load matrix P, and get the NLWPPCA model as 
X=F(T)PT+E, where E is an error matrix.  

 
 

4 PROCESS MONITORING BASED ON NLWPPCA 
 
Algorithm implement of process monitoring based on 
NLWPPCA is illustrated in Figure 4. It includes two 
parts: off-line model determination and on-line process 
monitoring. Where off-line model determination 
includes: select best full wavelet packet base, select 
appropriate denoising threshold, determine the retain 
principal components number, compute linear principal 
scores matrix and loads matrix, determine the IT-net 
structure and initial parameters, use extend 
backpropagation algorithm to get nonlinear principal 
scores matrix, train the forward network to get the 
NLWPPCA model, determine statistical value 
limitation to monitor process. Where on-line process 
monitoring includes: reprocess real-time operation data 
to input the normal NLWPPCA model, compute each 
statistical value SPE and T2, compare these values with 
the corresponding thresholds, determine abnormal 
situation.
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Figure 3 Methodology of nonlinear wavelet packet PCA 



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

5. CASE STUDY 
 
In this Section, the proposed process monitoring 
based on NLWPPCA is demonstrated and tested by 
applying in an eight variables nonlinear process with 
noise and a recognized chemical process tested base 
Tennessee Eastman process. We will demonstrate the 
use of NLWPPCA approach for nonlinear monitoring 
purposes first with respect to a simple multivariate 
process as well as with the much more complex and 
realistic Tennessee Eastman process. 
 
5.1 An eight variables nonlinear process with noise 
 
Consider the following process: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where wnoise is a white noise with zero mean and 
variance 1. 1000 samples are selected as normal 
operation data for analysis. The initial data matrix 
consists of as follow: 

X=[x1
T x2

T x3
T x4

T x5
T x6

T x7
T x8

T]  
For data matrix X, use the proposed NLWPPCA 
algorithm to build off-line model. Where structure of 
the IT-net is 1-3-2, and hidden layer function is 

Sigmoid function. The IT-net is trained by extend 
Levenberg-Marquardt (LM) algorithm. When train 
step is 56, train error is 0.005. Similar, select 
structure of the FF-net is 2-3-1 and use LM algorithm 
to train the FF-net. When train step is 18, the error is 
0.005. Determine the statistical limitation: 
SPEa=0.1234, T2

a=6.0060. The NLWPPCA model is 
used to monitor 200 real-time samples of the eight 
variables nonlinear process. To verify performance of 
monitoring, introduces mean error disturbance at 160 
sample time and cancels it at 180. The process 
real-time trend is illustrated in Figure 5. Figure 6 
shows the SPE plot and T2 plot.  
 
The relationship between the first principal 
component and the second one is shown in Figure 7. 
Figure 8 describes the contribution plot of the first 
and the second principal component. From Figure 5, 
it is not easy to identify the process operational 
situation because of nonlinear character. However, 
from SPE plot, SPE values before 160 times step is 
clearly below the SPE limitation and out of control 
after 160. So, SPE plot successfully finds the 
abnormity. Similarly, T2 plot also finds the abnormity. 
From scores plot, finds some outliers away from the 
clustering points, which directly shows the trend. In 
addition, some projection points are overlapped for 
wavelet packet denoising. Figure 8 shows that 
contribution of the second and 7th variables to the 
first pc is biggish and contribution of the second, 5th 
and 7th variables to the second pc is biggish. Then, it 
is inferred that the abnormity is brought by the 
second, 5th and 7th variables. The conclusion is 
consistent with process model. The simulation 
illustrates the proposed approach is valid for 
nonlinear process with noise monitoring.  
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Figure 4 Algorithm of process monitoring based on NLWPPCA 

x1=8+0.1*randn(n,1)+0.8*wnoise;  
x2=11+0.2*randn(n,1)+0.8*wnoise;  
x3=17+0.3*randn(n,1)+0.8*wnoise;  
x4=5+((-1.3*x1

3+0.2*x2
2)/(x2*x3))+0.8*wnoise; 

x5=120+0.8*(-3.8*x1
2+0.8*x2

2+0.9*x3*x4) 
+0.8*wnoise; 

x6=5+x2-0.3*x3+0.8*wnoise; 
x7=-x1+0.8*x2+x4+0.8*wnoise; 
x8=x2+x3+0.8*wnoise; 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2 Tennessee Eastman process 
 

Table 1 Process disturbance 

Case Disturbance Type 
IDV(1) A/C feed ratio, B composition 

constant 
Step 

IDV(2) B composition, A/C ratio 
constant 

Step 

IDV(3) D feed temperature Step 
IDV(4) Reactor cooling water inlet 

temperature 
Step 

IDV(5) Condenser cooling water inlet 
temperature 

Step 

IDV(6) A feed loss Step 
IDV(7) C header pressure loss – 

reduced availability 
Step 

IDV(8) A, B, C feed composition Random 
IDV(9) D feed temperature Random 
IDV(10) C feed temperature Random 
IDV(11) Reactor cooling water inlet 

temperature 
Random 

IDV(12) Condenser cooling water inlet 
temperature 

Random 

IDV(13) Reaction kinetics Slow drift
IDV(14) Reactor cooling water valve Sticking  
IDV(15) Condenser cooling water valve Sticking 
IDV(16) Unknown  Unknown

 

Tennessee Eastman process, which was developed by 
Downs and Vogel (1993), consists of five major unit 
operations: a reactor, a condenser, a vapor-liquid 
separator, a recycle compressor, and a product 
stripper. The process has 41 measurements, including 
22 continuous process measurements and 19 
composition measurements, and 12 manipulated 
variables. Some disturbances are programmed for 
researching the characteristics of the control system, 
listed in Table 1.  
 
The reference set contains 1000 samples from normal 
operation with a sampling interval of 3 min. A 
NLWPPCA model is developed from the data matrix. 
Nine principal components are selected, which 
capture 97.7% of the variation in the reference set. 
The control limits shown in every plot correspond 
approximately to the 95% confidence region, which 
is determined by using the methodology presented by 
Nomikos and MacGregor: 

 SPEa=7.1509, T2
a=75.0008. 

 
The simulation is run under the first disturbance 
IDV[1], which is loaded at the 300th time step. SPE 
plot and T2 plot are shown in Figure 9. From these 
plots, disturbance is quickly and easily detected. 
Figure 10 shows the scores plot. The figure clearly 
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Figure 7 Scores plot with mean error 
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Figure 5 Real-time trends with mean error 
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illustrates that process projection points are away 
from the normal situation. This result shows that for 

the TE process the proposed NLWPPCA will get well 
effect in process monitoring. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. CONCLUSIONS 
 
In this paper, a nonlinear wavelet packet PCA 
approach has been proposed for process monitoring. 
The advantage of this method is that both linear and 
nonlinear correlations can be extracted from the 
process data with noise. Heavy noise and data spikes 
in the industrial data sets were first eliminated 
through wavelet packet denoising method. Whilst, 
input-training neural network was introduced to 
extract nonlinear character in industrial processes. 
The results of the application of the NLWPPCA 
algorithm to an eight nonlinear process and TE 

process demonstrate the improved performance over 
that of linear methods for fault detection. 
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APPLICATION OF STATISTICAL PROCESS
MONITORING WITH EXTERNAL ANALYSIS TO

AN INDUSTRIAL MONOMER PLANT
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Abstract: The main objective of this industry-university collaboration is to develop
an on-line process monitoring system that can detect a particular malfunction in
an industrial monomer plant. The most serious malfunction is a blockage caused
by an accumulation of polymers inside a cooling unit. Since the blockage requires
shutdown maintenance, it is crucial to detect its symptom as early as possible and
properly adjust the operating condition to avoid further polymer accumulation. The
developed on-line monitoring system can detect the symptom of the blockage by
using multivariate statistical process control, distinguish it from normal changes
in operating conditions by using external analysis, and persuade operators to take
appropriate action. Copyright c©2003 IFAC

Keywords: process monitoring, fault detection, fault diagnosis, statistical process
control, principal component analysis, external analysis, industrial application

1. INTRODUCTION

Long-term stable operation is becoming
increasingly important in the chemical industry,
because 1) a trouble shutdown of one plant inflicts
a heavier loss on the company as production sites
become more consolidated, and 2) plant managers
have to get the best out of existing equipments
and maximize the production efficiency. To
achieve long-term efficient operation, one needs
to recognize that:

• It seems impossible to entirely avoid
troubles due to process upsets or equipment
malfunction.

• Unexpected trouble may happen at an
unexpected location during a high load
operation that has never been experienced.

• The integration of operating rooms and
the deployment of advanced process control

systems reduce the number of operators; each
operator’s responsibilities have increased.

In modern chemical plants, operators must
monitor a large number of process variables
one after another for safe operation. Since
measured process variables are highly correlated,
it is difficult for operators to detect every
fault without monitoring the correlation between
process variables. A more difficult task than
fault detection is to identify a real cause of the
fault and to take prompt and appropriate action.
To support operators, automation of process
monitoring is greatly desired in the industry.

Multivariate statistical process control (MSPC)
has been investigated as a data-based technique
for multivariable process monitoring (Kresta
et al., 1991; Kourti and MacGregor, 1995;
Ku et al., 1995; Kano et al., 2002). MSPC
is based on chemometric techniques such as



principal component analysis (PCA) and partial
least squares (PLS). PCA is a tool for data
compression and information extraction; it finds
linear combinations of variables that describe
major trends in a data set. On the other hand,
PLS relates output variables to latent variables,
which are given as linear combinations of input
variables. A typical application of PLS in the
chemical industry is to estimate product quality
from measurable variables (Kano et al., 2000).
These chemometric techniques are very useful
for modeling and monitoring chemical processes
where a great number of measured variables
are highly correlated. Many researchers and
practitioners have investigated MSPC to extract
useful information from process data and use it
for process monitoring.

In conventional SPC, a process is assumed
to be operated in a particular steady state,
and deviations of measurements from their
steady-state values are used for monitoring.
However, operating conditions cannot be constant
in many processes due to production rate
adjustments, product grade transitions, and so
on. Therefore, it is crucial to develop a new SPC
method that can cope with changes in operating
conditions. In order to develop a new monitoring
system for distinguishing between faults and
normal changes in operating conditions, external
analysis was proposed and integrated with MSPC
(Kano et al., 2003).

In the present work, an on-line monitoring system
is developed to detect a blockage, caused by
an accumulation of polymers, in an industrial
monomer plant. Since the blockage requires
shutdown maintenance, it is crucial to detect
its symptom as early as possible and properly
adjust the operating condition for avoiding further
polymer accumulation.

2. MSPC WITH EXTERNAL ANALYSIS

In the present work, changes in operating
conditions, which should be distinguished from
faults, are assumed to be given from the outside of
a process as changes in a feed flow rate, set-points
of controllers, and so on. Thus, variables that
are used for monitoring can be classified into
two groups. The first group consists of variables
representing operating conditions such as a feed
flow rate and a set-point, hereafter referred to as
external variables. The second group consists of
variables affected by external variables and other
unmeasured disturbances. Those variables are
referred to as main variables. Changes in external
variables are not faults. Therefore, both the
changes in external variables and their influence
on main variables should be distinguished from

faults. To achieve this goal, operation data of main
variables are decomposed into two parts: one is a
part explained by external variables, and the other
is a part not explained by them. As a result, the
influence of changes in external variables can be
removed from operation data. This technique is
called external analysis and it can be integrated
with any SPC method (Kano et al., 2003).

In this section, it is briefly shown that the external
analysis can be used for removing the influence of
external variables from operation data and it can
be integrated with PCA-based SPC.

2.1 External Analysis

Consider a data matrix X ∈ �k×m, where k
and m are the number of samples and that
of variables, respectively. For simplicity, each
variable is assumed to be normalized. When mg

of m variables are classified as external variables
and mh(= m − mg) are main variables, the data
matrix is described as

X =
[
H G

]
(1)

where G ∈ �k×mg consists of external variables
and H ∈ �k×mh consists of main variables.
The data matrix H of main variables should
be decomposed into two parts: a part explained
by the data matrix G of external variables and
the other part not explained. For this purpose,
multiple linear regression analysis can be used by
regarding external variables and main variables
as inputs and outputs, respectively. That is, a
regression coefficient matrix C ∈ �mg×mh is
determined so that the sum of squared errors or
the squared Frobenius norm of an error matrix is
minimized.

C = (GT G)−1GT H (2)

where the error matrix E ∈ �k×mh is defined as

E = H − GC. (3)

As a result, the main data matrix H can be
decomposed into two parts, GC and E. GC is
a part explained by the external variables, and
E is the other part that cannot be explained by
the external variables. Any SPC method can be
used for monitoring error variables. Equation (2)
can be used only if external variables are
linearly independent of each other. When external
variables are highly correlated to each other, a
multivariate data analysis technique such as PLS,
which can cope with a collinearity problem, should
be used instead of ordinary least squares.

When process dynamics cannot be ignored, the
influence of changes in external variables cannot



be removed from operation data by using the
static external analysis. In such a case, a dynamic
model must be built. Kano et al. (2003) have
proposed dynamic external analysis, and they
have shown that the dynamic external analysis
can be successfully applied to a chemical process.

2.2 MSPC Integrated with External Analysis

The basic statistic to monitor E in Eq. (3)
is the Hotelling T 2 statistic. The Hotelling T 2

control chart is an original Shewhart-type control
chart for correlated variables, and it is related
to PCA-based SPC. PCA-based SPC was further
investigated and a residual analysis was developed
(Jackson and Mudholkar, 1979). In recent years,
the T 2 statistic of several important principal
components and the Q statistic, which is the
sum of squared residuals or the sum of prediction
errors (SPE), are usually used for statistical
process monitoring. The T 2 statistic of principal
components is defined as

T 2 =
R∑

r=1

t2r
σ2

tr

(4)

where tr is a score of the r-th principal component
and σ2

tr
is its variance. R denotes the number of

principal components retained in the PCA model.
The score tr is defined as

[
t1 t2 · · · tR

]
= eP (5)

where e ∈ �1×mh is an error vector, which is a
row of E, and P ∈ �mh×R is a loading matrix.
On the other hand, the Q statistic is defined as

Q =
mh∑

i=1

(ei − êi)2 (6)

where ei and êi are a calculated value of the i-th
error variable and its predicted (reconstructed)
value, respectively. êi is derived from

[
ê1 ê2 · · · êmh

]
= ePP T (7)

The T 2 statistic is a measure of the variation
within the PCA model, and the Q statistic is a
measure of the amount of variation not captured
by the PCA model.

3. MONITORING A MONOMER PLANT

This section introduces an application of MSPC
integrated with external analysis to a monomer
plant of Mitsubishi Chemical Corporation. The
main objective of this collaborative research
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Fig. 1. Simplified PFD of the monomer plant.

Table 1. Process variables.

Symbol in Fig.1 Variable

F1 Raw material feed flow rate
F2 Recovery feed flow rate
P1 Equipment A inlet pressure
P2 Equipment A outlet pressure
P3 Equipment B outlet pressure
T Reactor outlet temperature

project is to develop a monitoring system that
can detect a particular malfunction as early as
possible. The malfunction to detect is a blockage
in an equipment of the monomer plant. Since
the blockage, caused by an accumulation of
polymers, requires shutdown maintenance, it is
crucial to detect its symptom as early as possible
and properly adjust the operating condition
to prevent polymers from further accumulating.
Conventional MSPC does not function well
because it cannot distinguish the blockage from
normal changes in operating conditions such as
load changes. In the present work, therefore,
external analysis is used to remove the influence
of operating condition changes from process
variables, and the error is monitored by using
PCA-based SPC.

3.1 Malfunction in the Monomer Plant

The process flow of the monomer plant is shown
in Fig. 1. The product monomers are produced in
the reactor, and then the reactant is condensed
in the equipment A. Undesirable polymerization
reactions take place under specific conditions
in the equipment A although the operating
condition is controlled to prevent monomers
from polymerizing. The accumulation of polymers
inside the equipment A blocks the flow and makes
stable operation impossible.

Several important process variables are listed
in Table 1. The symptom of the blockage
could be detected by monitoring changes in
differential pressure, P1-P2, because the blockage
affects the pressure drop in the equipment A.
The differential pressure will increase as more
polymers accumulate. This monitoring strategy
based on the differential pressure is very simple
and easy to understand, but it is useful only
when the differential pressure is not affected
by other factors. In practice, not only polymer
accumulation but also flow rates affect the



differential pressure. For efficient monitoring, it
is necessary to take into account the influence of
operating conditions on the differential pressure.

3.2 Analysis of Abnormal Conditions

Trend graphs of the measured process variables
listed in Table 1 are shown in Fig. 2. The sampling
period of each variable is one hour, and each graph
includes 7500 samples (about 10 months). All six
variables, except the differential pressure, P1-P2,
are mean-centered.

The trend of P1-P2 shows that the differential
pressure began to increase around 2000 hours.
The uptrend of the differential pressure indicates
the possibility of the polymer accumulation in the
equipment A. Finally, at 2300 hours, operators
gave up carrying on the operation and shut
down the monomer plant. The blockage caused
by polymer accumulation was found inside the
equipment A. The monomer plant was restarted
at 2800 hours after a considerable part of
accumulated polymers were removed. However,
further polymer accumulation proceeded after
3500 hours, and then the plant was shut down
again. The plant was restarted at 4500 hours after
the whole accumulated polymers were removed.
The differential pressure increased again after
the second start-up. In particular, the differential
pressure after 6500 hours is higher than that
in the period when polymers blocked the flow
(2000-2300 hours). However, polymers did not
accumulate and a blockage did not occur in that
period. This fact indicates that a rise in the
differential pressure does not necessarily mean a
blockage and the differential pressure is affected
by other factors. After 6500 hours, the recovery
feed flow rate F2 decreased and consequently the
pressures P1, P2, and P3 decreased. This change
caused the differential pressure to increase. In
addition, a load change also affects the differential
pressure. The pressure measurements P1, P2, and
P3 increased from 4500 to 6000 hours as the
feed flow rate F1 increased. In this period, the
differential pressure P1-P2 increased because of
high throughput.

3.3 Design of Monitoring System

A rise in the differential pressure is a useful
indicator for detecting the blockage, but it is also
affected by operating conditions such as a feed
flow rate. Therefore, the influence of operating
conditions has to be removed from the differential
pressure. For this purpose, the static external
analysis was used. In this application, only static
properties of the process should be taken into
account because the sampling period is one hour.
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Fig. 2. Time-series plot of process variables.

0 1000 2000 3000 4000 5000 6000 7000
0

10

20

30

40

50

T
2

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

1.5

2

2.5

Q

Time [hour] 

Fig. 3. Time-series plot of the T 2 and Q statistics.

The variables listed in Table 1 were used for
monitoring. The external variables are the raw
material feed flow rate F1 and the recovery feed
flow rate F2. Those variables represent operating
conditions. The other four variables were used as
main variables.

External analysis and PCA were applied to data
in the period when the process is operated under
the normal condition (0-2000 hours), and the
developed model was validated by the other data
(2001-7500 hours except two shutdown periods).
The number of principal components was selected
so that the Q statistic could increase markedly
when polymers accumulated. The selected number
of principal components was three, and 98% of the
variance in the reference data can be explained by
three principal components. The control limits of
two statistics are determined so that the number
of samples outside the control limit is 1% of the
entire samples while the process is operated under
a normal condition. The control limits of T 2 and
Q are 10.7 and 0.43, respectively.

3.4 Monitoring Results

The monitoring results, the trend graphs of
T 2 and Q, are shown in Fig. 3. Although the



T 2 statistic exceeds its control limit from 2300
through 4500 hours, it also exceeds its control
limit after 4500 hours. Therefore, the T 2 statistic
is not a suitable index for detecting polymer
accumulation. This result is not surprising
because the T 2 statistic is a measure of the
variation within the PCA model. The T 2 statistic
is mainly affected by operating condition changes,
which do not affect the correlation structure. As
shown in Fig. 2, the operating condition of the
monomer plant before 2000 hours is considerably
different from that after 4500 hours. For example,
the reactor outlet temperature is almost constant
before 2000 hours, but it becomes lower and
fluctuates wildly after 4500 hours. Such changes
make the T 2 statistic exceed its control limit
even though any fault does not occur. Since
changes in the reactor outlet temperature cannot
be explained by the external variables F1 and
F2, the changes affect the T 2 statistic even when
external analysis is conducted.

On the other hand, the Q statistic remarkably
increases after 2000 hours and exceeds its control
limit. The Q statistic is about 50 from 2800 to
3800 hours when polymers are blocking the flow.
In addition, the Q statistic is under its control
limit after accumulated polymers are removed.
The Q statistic after 4800 hours is similar to that
of the reference data even though the operating
conditions are quite different from each other and
the differential pressure increases considerably
in this period. This result demonstrates the
usefulness of the Q statistic for detecting polymer
accumulation. It should be noted here, however,
that conventional PCA-based SPC does not
function well in this application. It cannot
distinguish between polymer accumulation and
operating condition changes. The key to success
is to remove the influence of operating condition
changes from monitored variables by conducting
the external analysis.

Figure 3 shows that the Q statistic is a suitable
index for detecting polymer accumulation.
However, it is necessary to confirm that polymer
accumulation is the real cause of the abnormal
condition because another factor may affect
the Q statistic and make it exceed the control
limit. To identify the variables that contribute
significantly to an out-of-control value of the Q
statistic, contributions from process variables to
the Q statistic can be used (Nomikos, 1996). This
information helps operators to further diagnose
an actual cause of the fault. A contribution of
the i-th variable to the Q statistic is defined as

Ci = ei − êi. (8)

Contributions from four main variables to the Q
statistic at the 2350th step are shown in Fig. 4.
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Fig. 4. Contribution plot of the Q statistic.

It is clear from this contribution plot that the
contributions of the pressure of the equipment A,
P1 and P2, are significant. P1 is positive large,
and P2 is negative large. This result indicates
that the differential pressure P1-P2 contributes
significantly to the out-of-control value of the Q
statistic. Therefore, polymer accumulation is the
most possible cause. On the basis of this diagnosis,
the operating condition should be adjusted to
avoid a blockage caused by polymer accumulation.

3.5 On-line Monitoring

To monitor this monomer plant, in particular,
to detect polymer accumulation, an on-line
monitoring system was developed. The developed
monitoring system performs the following
procedures:

(1) Calculates the mean and the standard
deviation of each monitored (external and
main) variable, determines the regression
coefficient matrix used for the external
analysis, and builds the PCA model. This
step is conducted off-line by using the
reference data.

(2) Collects data every hour.
(3) Normalizes the data.
(4) Applies the external analysis to the

normalized data.
(5) Calculates the Q statistic.
(6) Compares the calculated Q statistic and its

control limit, and gives an alarm if Q exceeds
its control limit.

The calculated Q statistic is stored in the
database every hour, and its trend graph can be
checked with trend graphs of monitored variables
if necessary.

After the installation of the on-line monitoring
system, polymer accumulation proceeded again
in the equipment A. The external variables,
F1 and F2, and the Q statistic are shown in
Fig. 5. The recovery feed flow rate F2 was kept
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Fig. 5. On-line monitoring result.

almost constant during this period, but the raw
material feed flow rate F1 was increased stepwise
several times. The changes in the raw material
feed flow rate did not affect the Q statistic,
because the influence of the external variables
was successfully removed from the monitored
variables by using the external analysis. The Q
statistic, however, increased steadily and exceeded
its control limit after 1100 hours. This chart
helped operators to suspect polymer accumulation
and persuaded them to examine the equipment
A. It was confirmed that polymer accumulation
was proceeding. To avoid further accumulation
of polymers and also to cope with the decrease
in heat transfer efficiency, the raw material feed
flow rate was decreased after 1280 hours. This
result demonstrates that the developed on-line
monitoring system, which integrates MSPC with
external analysis, is useful for detecting polymer
accumulation and avoiding a serious blockage in
the monomer plant.

Another approach to avoid further polymer
accumulation is to increase an inhibitor feed flow
rate or a diluent water feed flow rate, which is used
for cooling the reactant. Those approaches are
useful, but they cannot remove the accumulated
polymers. In the monomer plant, the equipment A
consists of a number of parallel units. Therefore,
the equipment A can be partially shut down
and the accumulated polymers can be removed.
As a result, by detecting polymer accumulation
and avoiding a serious blockage, the developed
monitoring system enables long-term, safe, and
efficient operation of the monomer plant.

4. CONCLUSIONS

In this research project, PCA-based SPC was
integrated with external analysis and applied
to an industrial monomer plant. The developed
monitoring system can distinguish polymer
accumulation, which causes a serious blockage
of the flow, from normal changes in operating

conditions by using the static external analysis,
and thus the system can successfully detect the
polymer accumulation at its early stage. Although
the developed monitoring system focuses only
on the polymer accumulation in a particular
equipment, it can detect symptoms of the most
serious malfunction and persuade operators to
take prompt and appropriate action. In practice,
a reliable specialist is preferable to a moderate
generalist. Various MSPC methods have been
developed for general purposes in the last
decade or so, but more important problems to
investigate are how to diagnose the real cause
of a serious fault and how to help operators to
take appropriate action. Those problems seem to
remain unsolved.

REFERENCES

Jackson, J.E. and G.S. Mudholkar (1979).
Control Procedures for Residuals Associated
with Principal Component Analysis.
Technometrics, 21, 341-349.

Kano, M., S. Hasebe, I. Hashimoto, and H. Ohno
(2003). Evolution of Multivariate Statistical
Process Control: Application of Independent
Component Analysis and External Analysis.
Proc. of The Foundations of Computer Aided
Process Operations Conference (FOCAPO),
358-388, Coral Springs, US, Jan. 12-15.

Kano, M., K. Miyazaki, S. Hasebe, and I.
Hashimoto (2000). Inferential control system
of distillation compositions using dynamic
partial least squares regression. J. Proc.
Cont., 10, 157-166.

Kano, M., K. Nagao, H. Ohno, S. Hasebe,
I. Hashimoto, R. Strauss, and B.R.
Bakshi (2002). Comparison of Multivariate
Statistical Process Monitoring Methods
with Applications to the Eastman Challenge
Problem. Comput. Chem. Engng, 26,
161-174.

Kourti, T. and J.F. MacGregor (1995). Process
Analysis, Monitoring and Diagnosis,
Using Multivariate Projection Methods.
Chemometrics and intelligent laboratory
systems, 28, 3-21.

Kresta, J.V., J.F. MacGregor, and T.E. Marlin
(1991). Multivariate Statistical Monitoring
of Process Operating Performance. Can. J.
Chem. Eng., 69, 35-47.

Ku, W., R.H. Storer, and C. Georgakis (1995).
Disturbance Detection and Isolation by
Dynamic Principal Component Analysis.
Chemometrics and intelligent laboratory
systems, 30, 179-196.

Nomikos, P. (1996). Detection and diagnosis
of abnormal batch operations based on
multi-way principal component analysis. ISA
Trans., 35, 259-266.



ON-LINE MONITORING OF A COPOLYMER REACTOR: A CASCADE ESTIMATION DESIGN

Teresa Lopez (1), Jesus Alvarez (2) and Roberto Baratti (3)

(1) Instituto Mexicano del Petróleo, Programa de Matemáticas Aplicadas y Computación,
Lazaro Cardenas 152, A.P. 14-805, 07730 Mexico D.F., Mexico (mtlopeza@imp.mx)

 (2) Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma
Metropolitana - Iztapalapa, 09340 Mexico D.F., Mexico (jac@xanum.uam.mx)

(3) Dipartimento di Ingegneria Chimica e Materiali, Universita’ di Cagliari, Piazza
D’Armi, 09123 Cagliari, Italy (baratti@dicm.unica.it)

Abstract: In this work the problem of on-line monitoring of product quality and
production rate in a copolymer reactor is addressed, using an estimation scheme with
secondary measurements of density, refractive index, temperature, and volume. Three
different estimator structures are studied: (a) the nominal detectability structure that
underlines the extended Kalman filter and Luenberguer observers, (b) a passive
estimation structure with estimation degrees equal to one, and (c) a hybrid structure that
combines the detectability and passive structures in low and high gain, respectively. The
nominal detector maximizes the reconstruction rate, the passive estimator maximizes the
robustness, and the cascade (hybrid) design achieves a suitable compromise between
them. The approach is illustrated with a copolymer reactor case and simulations.
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1. INTRODUCTION

Copolymerization is an important industrial process
where commodity and engineering plastics are
manufactured. In a continuous reactor operation, the
knowledge of the instantaneous copolymer properties
(such as copolymer composition, conversion, mass
fraction, molecular weight, etc.) is important for on-
line monitoring, control, and fault detection purposes.
These properties have direct implications in the
safety, product quality and production rate
performance indices, but they are not available on-
line. Thus, the estimation objective is the inference of
variables related to product quality and production
rate using a model-based estimation technique with
secondary on-line measurements (Mutha et al., 1997;
Dimitratos et al., 1991; Ellis et al, 1994; Van Dooting
et al., 1992).

In polymer reactor engineering, the Extended
Kalman Filter (EKF) is the most widely used state

estimation technique, and the Luenberguer observer
(LO) has been increasingly considered in the last
decade. In both techniques, their structure is fixed
and determined by the nominal observability
property. If this property is ill-conditioned, any
appropriately constructed and tuned detector should
diverge or malfunction. To tackle this problem, the
idea of considering the estimator structure as a
degree of freedom to improve its functioning was
proposed in the geometric estimation design (Alvarez
and Lopez, 1999; Alvarez, 2000). In Hernandez and
Alvarez (2003), the corresponding definition of
nonlinear estimability (a robust form of detectability)
was put in formal perspective with the existing
indistinguishability-based definitions of nonlinear
detectability (Hermann and Krener, 1977; Sontag,
1990). In Alvarez and Lopez (2003), the effect of the
estimator structure on its functioning was studied for
a representative case study of a copolymer reactor,
showing that: (i) the structure decision problem is not
trivial in the sense that there are 56 possible estimator



structures for the case study; (ii) the best functioning
is attained neither with the nominal detectability
structure associated with the standard EKF and LO
nor with a passive estimation structure (i.e. with
estimation degrees equal to one), but with an
intermediate structure; and (iii) how the estimation
structure determines the estimator reconstruction rate
and the error propagation mechanism.

Having as a point of departure the aforementioned
results on the copolymer reactor case (Lopez and
Alvarez, 2003), in this work the problem of on-line
inferring the safety, quality and production rate is
addressed. Using the geometric estimation approach
with secondary measurements of density, refractive
index, temperature, and volume. Considering that the
nominal detector maximizes the innovated dynamics
dimension and therefore the reconstruction rate, and
that the passive estimator maximizes the robustness
to modeling errors. Here the idea is to use a hybrid
structure that superimposes a fast passive estimator
with the slow nominal detector, obtaining a cascade
estimator that yields a better compromise between
reconstruction rate and robustness. The three
estimator designs (nominal detector, passive
estimator and cascade design) are illustrated with a
copolymer reactor case and simulations.

2.  THE COPOLYMER REACTOR PROBLEM

2.1 The reactor model

Let us consider a continuous reactor where a solution
copolymerization takes place (see Fig. 1). The
reactions are strongly exothermic, and heat is
removed by means of a cooling jacket. There is
significant gel-effect (i.e., reaction autoacceleration
by diffusional limitations in the mobility of the
copolymer chains), meaning a copolymer conversion
accompanied by a considerable viscosity increase
and a decrease in the heat exchange capability. From
standard kinetics, reaction engineering, and viscous
heat exchange modeling considerations, the reactor
model is given as follows (functions and parameters
defined in Padilla and Alvarez, 1996):

m
.

1 = -r1 + (q1m1e - qem1)/V := f1(m1,m2,p1,p2,i,T,V)

m
.

2 = -r2  + (q2m2e - qem2)/V := f2(m1,m2,p1,p2,i,T,V)

p
.

1 = -r1(1-ε1) + (q1p1e - qep1)/V:= f3(m1,m2,p1,p2,i,T,V)

p
.

2 = -r2(1-ε2) + (q2p2e - qep1)/V:= f4(m1,m2,p1,p2,i,T,V)

i
.
 = -rI  + (wI - qei)/V := f5(i,T,V)

T
.
 =  rT - γ(T-Tc) + qhe - qh := f6(m1,m2,p1,p2,i,T,V)

V
.
   = qe – q := f7(m1,m2,p1,p2,i,T,V)

µ
.

0= rµ0+[(q1+q2)µ0e-qeµ0)/V:=f8(m1,m2,p1,p2,i,T,V,µ0)

µ
.

2= rµ2+[(q1+q2)µ2e-qeµ2)/V:= f9(m1,m2,p1,p2,i,T,V,µ2)

where
qe  = q1φ1 + q2φ2 + qsφs + (r1φ4 + r2φ5)V

qh  = (q1ρ1 + q2ρ2  + qsρs)T/ (ρV)

qhe = (q1ρ1Cp1T1e + q2ρ2Cp2T2e + qsρsCpsTse)/ (ρVCp)

The reactor states (x) are: the dimensionless
concentrations (referred to pure materials) of the i-th
monomer (mi), of the i-th converted monomer (pi),
and of the initiator (i); the temperature (T), the
volume (V), and the zeroth (µ0) and second (µ2)
moments of the chain length distribution (CLD). The
exogenous inputs (u) are: the feed concentration of i-
th monomer (mie), and of the i-th converted monomer
(pie); the feed temperatures of the i-th monomer (Tie),
and of the solvent (Tse); the jacket temperature (Tc),
the feed flowrate of the i-th monomer (qi), and of the
solvent (qs); the mass feedrate of initiator (wIe); and
the exit flowrate (q). The total feed flowrate (qe) is
corrected by the contraction of volume due to the
polymerization, where (φ1, φ2, φ3, φ4, φ5) is equal to
(1, 1, 1, 0, 0) if no volume contraction is considered.
While the dimensionless solvent concentration (s) is
given by

s = 1 - (m1 + m2 + p1 + p2)

The following set of scalar fields are smooth and
strictly positive: the rates of initiator decomposition
(rI), polymerization of monomers 1 (r1) and 2 (r2),
and change of the zeroth (rµ0) and second (rµ2) CLD
moments, the ratios of heat generation (rT) and
exchange (γ) to heat capacity, the input (qhe) and the
output (qh) enthalpy flows.  The measured outputs (y)
are the density (ρ), the refractive index (η), the
temperature (T), and the volume (V):

y1 = ρ,         y2 = η,         y3 = T,         y4 = V

where ρ is calculated by volume additivity and η
according the Lorimer theory (1972):

Fig. 1. The copolymerization reactor.



ρ = m1ρ1
o

 + m2ρ2
o

 + p1ρ1
p
 + p2ρ2

p
 + sρs

o := h1(m1,m2,p1,p2)

η= ηo+ Csν + a2Cs
2 := h2(m1,m2,p1,p2)

The outputs (z) to be inferred are: the instantaneous
composition (zc) of monomer 1, the conversion (zp)
of copolymer, the weight-average molecular weight
(zM) of the CLD, and the production rate (zR) of
copolymer:

zc  = r1M1
o / (r1M1

o + r2M2
o) := g1(m1, m2, p1, p2, i, T)

zp = (p1P1
o + p2P2

o) / (m1M1
o + m2M2

o + p1P1
o + p2P2

o)
    := g2(m1, m2, p1, p2)

zM = µ2 / (p1P1
o + p2P2

o) := g3(p1, p2, µ2)

zR  = (r1ρ1
o + r2ρ2

o)V:= g4(m1, m2, p1, p2, i, T)

which are key variables to monitor the product
quality and the production rate.

In compact notation, the reactor model can be as
follows:

x
.
 = f(x, u, p),          y = h(x, p),         z = η(x, p) (1)

where p is the vector of model parameters, and

x = [m1, m2, p1, p2, i, T, V, µ0, µ2]
T

y = [yρ, yη, yT, yT]T

u = [m1e,m2e,p1e,p2e,T1e,T2e,Tse,Tc,q1,q2,qs,wIe,q]T

z = [zc, zp, zM, zR]T

2.2 Reactor dynamics

As a case study, the copolymerization of  methyl
methacrylate (MMA) and vinyl acetate (VAC) is
considered, with ethyl acetate (AE) as solvent and
azo-bis-isobutyronitrile (AIBN) as initiator. In
steady-state operation, the copolymer reactor may
exhibit multiplicity of critical points (Hamer et al.,
1981). The nominal input

u = [1.0, 1.0, 0.0, 0.0, 315 K, 315 K, 315 K, 328 K,
       1.11x10-3 m3/min,6.23x10-3 m3/min,1.99x10-3

       m3/min,6.66x10-5 Kmol/min, 8.53x10-3 m3/min]T

was chosen such that the reactor had three steady-
states: two of them (ignition and extinction-type) are
stable, and one is unstable. To test the functioning  of

0 500 1000 1500
310

315

320

325

0.95

0.96

0.97

0.98

0.99

1.00

T
1e

 =
 T

2e
 =

 T
se
  (

K
)

time  (min)

m
1e

Fig. 2. Time-varying exogenous inputs.

the proposed estimation designs, the following
reaction motion was considered. Initially, the reactor
is  at  its unstable steady-state, and the four
exogenous inputs u(t) = [m1e(t), T1e(t), T2e(t), Tse(t)]

T

are varied as shown in Fig. 2. As a result, the reactor
is driven to its ignition-type steady-state after
undergoing a transient with ample and abrupt
changes in its state, as it can be seen in the
continuous thick curves of Fig. 4. This drastic motion
must be regarded as the extreme case of a practical
situation, in order to subject the proposed estimation
scheme to a severe test.

2.3 The on-line monitoring problem

Our main objective is the on-line inference of the
variables (z) related to product quality (instantaneous
composition, conversion and molecular weight) and
production rate, using a robust estimation design with
on-line secondary measurements (y) of density,
refractive index, temperature, and volume.

As mentioned before, this reactor admits 56 estimator
structures (Lopez, 2000; Alvarez and Lopez, 2003),
including the nominal detectability structure
associated to the standard EKF and LO designs.
However the best functioning is attained nor with the
nominal detectability structure either with a passive
structure, but with an intermediate one. Here, a
constructive-like framework (Sepulchre et al., 1997)
is recalled to design a cascade estimator to improve
its behavior: a low gain detectability structure is
cascaded to a high gain passive structure in order to
obtain a better compromise between reconstruction
rate and robustness to modeling errors.

3. NONLINEAR ESTIMATION

In this section, the notions of nominal and robust
nonlinear detectability are defined according Alvarez
and Lopez (1999) and Hernandez and Alvarez
(2003). The construction of the geometric high-gain
observer follows from a straightforward consequence
of the detectability property. The estimator
construction, the convergence criterion, and the
tuning technique can be found in Alvarez and Lopez
(1999) and Alvarez (2000). Then, the nominal and
passive structures of the copolymer reactor case are
recalled (Lopez, 2000; Lopez and Alvarez, 2003).
Then, the cascade structure is introduced and
justified. Finally, three estimator designs are
presented and compared: the nominal detector, the
passive estimator and the cascade design.

3.1 Detectable and passive structures

From Lopez (2000) and Lopez and Alvarez (2003),
we know that the copolymer reactor  [Eq. (1)] motion
is nominally detectable (i.e. the  observability  matrix



has maximum rank) with the structure:

SD = ( k , xo, xµ) (2)

where k  is the observability index vector, and xo (or

xµ) is the observable (or unobservable) state:

k  = (k1, k 2, k 3, k 4) = (2, 2, 2, 1),   k =  k i = 7 (3a)
xo = [x1, …, x7]

T = [m1, m2, p1, p2, i, T, V]T (3b)

xµ = [x8, x9]
T = [µ0, µ2]

T (3c)

This detectability property with partial observability
follows from the fulfillment of two conditions: (i) the
observability matrix O has rank 7 over time, and (ii)
the unobservable motion xµ (t) is stable. This is,

Rank Ο(x, u, p, k ) = 7   ∀ t (4a)

Ο(x, u, p, k ) = φ/ xo,       dim O = k = 7 (4b)

φ(x, u, p, k ) = [h1, ( h1/ x) f, h2, ( h2/ x) f, x6, f6, x7]
T

and the unobservable dynamics

x
. *

µ = [f8, f9]
T[φ-1(u, p, k ), x

*
µ, u, p]:= fµ(xo, x

*
µ, u, p) (5a)

have a (unique) stable solution

x*
µ(t)  = θµ(t, t0, x

*
µ0, u, p, k ) (5b)

The nominal detectability structure SD [Eq. (2)] is the
one that, over the set of 56 admissible structures,
maximizes the dimension of the innovated (i.e., with
measurement injection) dynamics, or equivalently,
the reconstruction rate, regardless of robustness
considerations. If the observability matrix [Eq. (4b)]
is ill-conditioned, any nominal detectability-based
observer should malfunction or diverge.

In the spirit of the passivation backstepping
procedure (Sepulchre et al., 1997; Kristic et al.,
1995), let us recall the passive structure (Lopez and
Alvarez, 2003)

SP = ( κ , xI, xII) (6)
that maximizes the robustness at the cost of the
reconstruction rate. κ is the estimation degree vector,
and xI (or xII) is the innovated (or non-innovated)
state:
κ = (κ1, κ2, κ3, κ4) = (1, 1, 1, 1),     κ = κi = 4 (7a)
xI = [x1, x2, x6, x7]

T = [m1, m2, T, V]T (7b)

xII = [x3, x4, x5, x8, x9]
T = [p1, p2, i, µ0, µ2]

T (7c)

This estimability property (with minimum
innovation) follows from the fulfillment of two
conditions: (i) the innovation matrix O has rank 4
over time, and (ii) the non-innovated motion xII(t) is
stable. This is,

Rank Ο(x, u, p, κ ) = 4   ∀ t (8a)

Ο(x, u, p, κ ) = φ/ xI,       dim O = κ = 4 (8b)

φ(x, u, p, κ ) = [h1, h2, x6, x7]
T

and the non-innovated dynamics

x
. *

II = [f3, f4, f5, f8, f9]
T[φ-1(u, p, κ ), x

*
II, u, p]

   := fII(xI, x
*
II, u, p) (9a)

have a (unique) stable solution

x*
II (t)  = θII(t, t0, x

*
II0, u, p, κ ) (9b)

Figure 3 shows the condition number of the
observability (or innovation) matrix [Eqs. (4b) or
(8b)] associated to the nominal detectability (or
passive) structure SD (or SP), showing that the
observability matrix is significantly more ill-
conditioned (by 5 order of magnitude) than the
passive innovation matrix.

3.3 Cascade structure

In the adjustable structure estimation study presented
in Lopez and Alvarez (2003), it was established that
the best estimator behavior was attained with an
intermediate degree (k = 5) structure, and not with
the detectability (k = 7) or passive (κ = 4) structure.
In the understanding that the detectability structure is
the one that underlies the well known nonlinear EKF
and LO. Motivated by the structure-oriented
nonlinear constructive control approach (Sepulchre et
al., 1997; Kristic et al., 1995), in the present work a
different way to obtain a better estimator behavior is
considered: the cascade combination of a low gain
detectability structure with a high gain passive
structure. According to the following rationale: (i)
first, a high-gain passive estimator (i.e, with fast
dynamics) is designed in order to quickly and
robustly match the input-output reactor behavior,
regarding this estimator as a redesigned model, and
then (ii) a low-gain nominal detector is designed for
this new model, in order to reconstruct the maximum
number of states. This idea has been applied
successfully in a catalytic reactor with experimental
data (Lopez et al., 2002). However in this catalytic
reactor the structure estimation choice was not a
complex task because there are only two candidate
structures. While in our copolymer reactor case there
are 56 admissible estimation structures.

To define the cascade structure, let us consider the
following state partition:
x = [xI, xP, xµ]T (10a)

xI = [x1, x2, x6, x7]
T = [m1, m2, T, V]T (10b)

xP = [x3, x4, x5]
T = [p1, p2, i]

T (10c)

xµ = [x8, x9]
T = [µ0, µ2]

T (10d)
where xP is made by the observable states [Eq. (3b)]
transferred from the observable state (xo) to the non-
innovated one (xII).
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Fig. 3. Condition number C(O) of the observability
( ) or innovation ( • • • • •) matrices [Eqs. (4b)
or (8b)] associated to the detectability (SD) and
passive (SP) structures.



3.4 Estimators

Nominal detector. The PI (proportional - integral)
estimator construction follows from a straightforward
application of Theorem 2 given in Alvarez and Lopez
(1999), obtaining the following nominal detector:

ox̂  = fo( x, u, p̂ˆ ) + G( x, u, p, k,sˆˆ ) [y - h(x, p̂ˆ )]

        + H( x, u, p, kˆˆ ) ⌡⌠KI( k, s )[y - h(x, p̂ˆ )]dt (11a)

x̂µ  = fµ( x, u, p̂ˆ ) (11b)

ŷ  = h(x, p̂ˆ ),     ẑ = g(x, p̂ˆ ),    x̂ = [ ox xˆ ˆ, µ ]T (11c)

Here the nonlinear gains are given by

[G, H] ( x, u, p, k,sˆˆ ) = O-1( x, u, p, kˆˆ ) [Kp( k, s ), Π(k)]

O-1 is the inverse of the observability matrix, and {Π,
KP, KI} are given by (bd := block diagonal)

Π(k) = bd[π1, π2, π3, π4],            dim Π  = k x 4

KP(k, s) = bd[kp1, kp2, kp3, kp4],  dim KP = k x 4

KI(k, s) = diag[(sω1)
k1+1, (sω2)

k
2+1, (sω3)

k3+1, (sω4)
k4+1]

πi =  [1],        kpi = [sωi]    if ki = 1

πi =  [0, 1]T,  kpi = [(2ζ+1)sωi, (2ζ+1)(sωi)
2]T  if ki = 2

where (ωi, ζ, s) are the output reference frequencies
(one for each measurement), the reference damping
factor, and the celerity estimator parameter, which
are considered as tuning parameters.

Passive estimator. In this case the design is
equivalent to previous estimator [Eqs. (11)] but
replacing the observability index vector k  [Eq. (3a)]
by κ [Eq. (7a)], the observability matrix O [Eq. (4b)]
by the innovation one [Eq. (8b)], the state partition
[Eqs. (3b) and (3c)] by [Eqs. (7b) and (7c)], and the
unobservable dynamics [Eq. (5a)] by the non-
innovated dynamics [Eq. (9a)].

Cascade design. The application of the construction
guidelines given in the previous subsection yields the
cascade estimator:

Ix̂  =  fI(x,u,p̂ˆ ) + [G(x,u,p, ,sˆˆ κ f ) +

         G(x,u,p,k,sˆˆ s )] [y-h(x,p̂ˆ )] + [H(x,u,p,ˆˆ κ )KI( ,sκ f )

         + H(x,u,p,kˆˆ )KI(k,ss )] ⌡⌠[y - h(x,p̂ˆ )]dt (12a)

px̂  = fP(x,u,p̂ˆ ) + G(x,u,p,k,sˆˆ s) [y - h(x,p̂ˆ )]

        + H(x,u,p,kˆˆ ) KI(k,ss )⌡⌠[y - h(x,p̂ˆ )]dt (12b)

x̂µ  = fµ(x,u,p̂ˆ ) (12c)

ŷ  = h(x, p̂ˆ ),     ẑ = g(x, p̂ˆ ),    x̂ = [ I px x xˆ ˆ ˆ, , µ]T (12d)

where ss (or sf) is the slow (or fast) celerity parameter
that sets the convergence rate of the associated
passive estimator (or detector). In this way, the
convergence rate of xI (or xP) is affected by (ss, sf) (or
ss), and the convergence rate of the non-innovated
state xµ is independent of (ss, sf).

The convergence conditions for the detector and
passive estimators [Eqs. (11)] are given in Alvarez
and Lopez (1999). The technical derivation of the

convergence criterion of the proposed cascade design
[Eqs. (12)] goes beyond the scope of the present
work. Here, it suffices to say that the application of
the singular perturbation arguments employed in
standard cascade control design yields that the
proposed cascade estimator is convergent if: (i) first,
with the slow parameter defined (ss = 0), the
parameter sf is tuned sufficiently fast (typically 3 to
15 times the reactor natural dynamics) so that the
passive estimator robustly converges, and (ii) then,
the parameter ss is chosen sufficiently slow (ss > 0) so
that the cascade estimator functions with an adequate
trade off between reconstruction rate and robustness.

4. ESTIMATOR IMPLEMENTATIONS

4.1 Tuning

The nominal detector and the passive estimator were
tuned following the pole-placement geometric
estimation tuning scheme presented in Alvarez and
Lopez (1999). The output reference frequencies were
set as (ω1,ω2, ω3, ω4) = (1/2, 1/2, 2, 2)ωr, where ωr =
1/τr min-1 is the characteristic time of the average
reactor residence time τr = 200 min. The damping
factor was set as ζ = 0.71, and the celerity parameter
was set at s = 10 for both designs, meaning that their
dynamics are set ten times faster than the natural
output dynamics.

Following the tuning guidelines presented in the last
subsection, the cascade estimator was tuned as
follows: (i) the value sf = 10 of the passive estimator
was adopted, (ii) the damping factor ζ = 0.71 was
fixed, and (iii) the parameter ss was gradually
increased until a satisfactory functioning was attained
at ss = 4.

4.2 Functioning

To evaluate the estimator functioning, the estimator
model was run with the following errors: -4% error in
the activation energies of propagation, -20% error in
the heat transfer coefficient, and no volume
contraction (i.e., φ1 = φ2 = φ3= 1 and φ4 = φ5 = 0).

The detector and passive estimator estimates are
shown in Fig. 4. The detector estimates (thin
continuous plots) exhibit a fast oscillation response
with some offset. The passive estimator
(discontinuous plots) has a behavior in the other way
around: slow non-oscillatory convergence with larger
offset. These results (Lopez and Alvarez, 2003) are
in agreement with the conditioning assessment of the
observability and passive innovation matrices
presented in Fig. 3.

The cascade estimator functioning presented in Fig.
4, showing the estimates, has  effectively  achieved  a



better compromise between performance and
robustness: the behavior retains features of both
nominal and passive structures, so the motions are
slightly oscillating (mainly for the composition),
there are minor offsets, and fast convergence rates
are attained.

7.CONCLUSIONS

The problem of the product quality and production
rate inference has been addressed of a copolymer
reactor, using on-line secondary measurements.
Three different nonlinear estimation structures were
considered: (a) the nominal detectability structure,
that maximizes the reconstruction rate, (b) the
passive estimation structure that maximizes the
robustness, and (c) the proposed cascade estimation
structure which superimposes a fast passive detector
with a slow nominal detector, achieving a better
compromise between performance (fast
reconstruction rate) and robustness (tolerance to
modeling error and error propagation). Invoking
singular perturbation arguments, the cascade
estimator convergence was established in terms of a
cascade control like criterion: a fast passive gain with
a sufficiently slow detectability gain.
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Fig. 4. Dynamic response of the reactor ( ), of
the detector ( ), of the passive estimator
( • • • • • ), and of the cascade estimator ( ).
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A ROBUST PCA MODELING METHOD FOR PROCESS MONITORING

D. Wang and J.A. Romagnoli

Dept. of Chemical Engineering,
The University of Sydney, NSW 2006 Australia

Abstract: A robust method for dealing with the gross errors in the data collected for PCA model is
proposed. This method, using M-estimator based on the generalized t distribution, adaptively
transforms the data in the score space in order to eliminate the effects of the outliers in the original
data. The robust estimation of the covariance or correlation matrix is obtained by the proposed
approach so that the accurate PCA model can be obtained for the process monitoring purpose.
Comparisons with the conventional PCA modeling and other robust outlier’s replacement approaches
are illustrated through a chemical engineering example.

Keyword: Principal component analysis, multivariate outliers, robust estimation, winsorization,
process monitoring.

1 INTRODUCTION

Data-driven process monitoring based on multivariate
statistic techniques is widely used in chemical industries
with a large amount of measurements provided by the
modern hardware. The measurement variables are usually
highly correlated and the real dimensionality of the process
variables is considerably less than that represented by the
number of process variables collected. Monitoring this “data
rich” process inevitably need dimensionality reduction
techniques to grasp the driven force embedded in these
measurements. By converting the large amount of data
collected from the process into a few meaningful measures,
one can assist the industrial operators in determining the
status of the operations and in detecting and diagnosing the
faults.  Principal components analysis (PCA) is such a
dimensionality reduction technique and it is heavily used in
modeling the multivariate process for monitoring purpose
(Kresta, et. al., 1991).

The performance of PCA model is based on the accurate
estimation of the covariance or correlation structure of the
data. The optimality of the conventional PCA is based on the
assumption that the data are normal distributed around their
locations with the scales. However, normal distribution
usually dose not exist in real chemical engineering practice,
it is hard to assure the normality even for high quality
measurements. Specially, the frequent presence of gross
errors and outliers violates the assumptions in the
conventional approach (even through the data is auto scaled)
and makes the results invalid (Hoo, K. A. et. al., 2002).

Several approaches can be employed to alleviate the outlier
problem in PCA modeling. One of them is based on filter
approaches to detect the gross outliers and delete them or
replace them with some values before the conventional PCA
is used. This pre-treatment approach is intuitive but it may

suffer information and performance loss due to its subjective
or ad hoc fashion. In addition, the multiple outliers are hard
to be detected by using univariate techniques, which will
result in the loss of efficiency. Another approach is based on
the robust estimation of covariance or correlation matrices of
the data. Some of the methods used are multivariate
trimming (MVT), minimum covariance determinant (MCD)
and minimum volume ellipsoid (MVE) (Devlin et. al.,
1981). In MVT, a certain percentage of the observations
with highest Mahalanobis distance (MD) are removed and
the covariance matrix is formed using the remaining
observations. In MCD, a subset of data is formed by
randomly selecting some percentage of the samples. The
determinant of this subset of data is then computed. The
mean and S.D. of the data subset with the minimum non-
zero determinant are then used to calculate the covariance or
correlation matrices. In MVE, the smallest set ellipse, which
contains half of the data, is obtained. The mean and S.D. of
the samples inside this ellipse are calculated and rescaled so
that they estimate a multivariate normal distribution. Such
techniques may be suffered with the disadvantage that
ignoring the data which are believed to be “good” by process
operators will inevitably result the information loss.

In order to maximally use the information provided in the
data while lessening the effects of the outliers, other robust
approaches have been investigated. In Hybrid projection
pursuit (HPP), an M-estimator like formulation is used for
weighting each observation in the data set according to its
MD so that a weighted PCA is proposed with eliminating the
‘discontinuity problems’ in projection pursuit (Chen et. al.,
1996). However, since HPP relies on the MD, the presence
of multiple outliers may yield erroneous results (Hoo, K. A.
et. al., 2002). Recently, a method of robust multivariate
outlier replacement was developed for PCA modeling (Hoo,
K. A. et. al., 2002). In this approach, a winsorization, which
is a procedure that replaces the observations by its pseudo
values, is carried out iteratively in score space obtained in
PCA. The data, especially the outliers, are transformed into a



tight cluster of majority of data set so that the effect of
outliers can be reduced. A Huber or Hampel like M-
estimator is used in the winsorization process. Even through
it is effective in eliminating the outliers, this approach could
suffer the performance loss. Because by using Huber or
Hampel like estimators, one has to specify the breakdown
points, which are the degrees of the freedom in the
estimators, and these parameters are difficult to be
determined as a priori. Injudiciously specified parameters
will result in performance loss of the method or erroneous
results.

In this article, an adaptive robust PCA method is proposed
with the aim of maximal use of the information in the data as
well as robustness to the deviation from the ideality caused
by the outliers. A winsorization procedure is employed in
the score space as that in the approach by Hoo, K.A. et. al.,
but a partially adaptive M-estimator based on the
generalized t (GT) distribution is used instead of Huber or
Hampel like estimators. This GT based estimator is obtained
directly from the data in score space and its influence curve
fit the data adaptively. This will improve the performance
and it is optimal in MLE sense. By using GT distribution,
the data can adjust itself to the shape of its distribution, in
such a way the advantages of both robustness and maximum
likelihood estimation (MLE) retained.

The paper is organized as follows. In the next section, a brief
overview of robust estimate and several robust estimators
are introduced. Specially, robust estimator based on GT
distribution and its robust properties are discussed. In section
3, after giving a brief introduction of PCA, the proposed
robust PCA approach using adaptive GT based M-estimator
is developed. The winsorization procedures of the approach
are also highlighted in the section. In section 4, the proposed
method is implemented and its performance is compared
with that of conventional PCA and the robust PCA using
Huber’s M-estimator through the data collected from a
chemical engineering simulation. Finally, the conclusions
are given in the section 5.

2 ROBUST ESTIMATES

2.1 M-estimates

The essence of robust estimates can be explained by the
simple one-dimension parameter estimation problem

( ) εθ += ,xfy (1)

where y , x  and ε  are the dependent, independent and error

variable, respectively. θ  is the parameter to be estimated.
After collecting a set of data, the parameter  θ  can be
estimated by least squares method,

( )( )
2n

1i
ii ,xfy

n

1
minargˆ ∑

=
θ−=θ (2)

Under the assumption that the error ε  is normal distributed,
the estimation of θ  is optimal in the sense of maximum
likelihood estimation.

However, if the error is not normal distributed, especially
there are outliers in the data, the above estimate will be
biased. This problem can be solved by designing a robust
estimator, which is insensitive to the deviation of the
assumption for the majority of data. The design of this
estimator is usually converted into choosing the objective
function ( )uρ  (not necessary the quadratic one as in the
conventional approach) in the optimization problem

 ( )( )∑
=

θ−ρ=θ
n

1i
ii ,xfyminargˆ (3)

where ( ) ( )uplnu −=ρ , ( )up  is the PDF of the residual

( )θ−= ,xfyu iii . Solving the following equations can also
solve the above problem,

( )( ) 0,xfy
n

1i
ii =θ−ψ∑

=
(4)

where ( ) ( )uu ρ′=ψ

To be robust, the objective function must give less weight to

large value of u  than its quadratic form 2u  so that the
estimator will down-weight or ignore the contribution of the
large errors in the data. In problem (3), a number of
candidates ( )uρ  can be chosen as the objective function so
that different robust estimators can be obtained. These kinds
of estimators correspond to the M-estimators in robust
statistics. In robust estimation, the ψ  function or influence

function defined by ( ) ( ) uuu ∂ρ∂=ψ  is the usual tool for
comparing alternative M-estimators for their robustness. The
ψ  function measures the “influence” that a residual will

have on the estimation process. Some suggested criteria for
the ψ  function are that: it is (a) bounded, (b) continuous,

and (c) descending and identically zero outside an
appropriate region. The motivation for these properties is
that (a) a single “anomalous” observation would have
limited influence on the estimator, (b) grouping or rounding
of data would have minimal impact on the estimator, and (c)
ridiculously large observations would have no impact on the
estimator.

The typically used robust estimator is Huber’s (Huber, 1981)
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where, k  is the parameter characterizing the degree of
contamination, being used as tuning parameter for the
estimator’s performance. Other robust estimators can be
found in the literature (Wang, et. al 2000).

Even though the above approaches are less sensitive to gross
errors and outliers, the optimality of the estimation, in MLE
sense, is still dependent on the suitability of the chosen
function with respect to the actual distribution of the data.  It
is generally hard to characterize the distribution of the errors
correctly without posteriori estimation. If the real errors do
not follow the specified distributions, the performance of
estimator may deteriorate and the estimation could be
biased. Considering these disadvantages, a more flexible
probability distribution function will be discussed next to
describe the error distribution. It is designed to allow for a
variety of thickness of tails, to capture the shape of
distribution and to accommodate other distribution as much
as possible as special cases. The corresponding estimator
will then be robust by its ψ  function and be efficient by

estimating its distributional parameters from the data in the
MLE sense.

2.2 The generalized T density and its robust properties

The proposed robust estimator for PCA modeling in this
work is based on the assumption that the data in score space
is following the generalized T distribution (GT) (Butler, et.
al., 1990), which has flexibility to accommodate various
distributional shapes
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Where q,p,σ  are distributional parameters, σ corresponds

to the standard deviation, p  and q  are parameters

corresponding to the shape of distribution. This density is
symmetric about zero, uni-modal, and suitable to describe
the error characteristics in most cases. By choosing different
values of p  and q , the GT distribution will accommodate
the real shape of the error distribution. The larger the value
of p  or q , the “thinner” will be the tail of the density.

Similarly, smaller values of p  and q  will be associated

with “thicker” tails. The tails behavior and other
characteristics of the distribution, depend upon these two
distributional parameters, which will be estimated from the
data (Wang et. al., 2003). In addition, the GT distribution
defines a very general family of density functions and
combines two general forms, which include most of
stochastic specifications one meets in practice as special or
limiting cases.

The robustness of the estimator based on a GT distribution
can be discussed by investigating its ψ  function. This ψ

function, corresponding to the objective function
( ))q,p,,;uflog)q,p,,u( GT σ−=σρ  is given by

( ) ( ) ( )
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For finite q , this influence function is bounded and reaches

a maximum for positive u  at ( )( ) ppqpu
1

1 σ−=∗  and has a
maximum value of
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Furthermore, ( ) 0,,;lim =σψ
∞→

qpu
u

, so this influence

function exhibits a descending pattern. Consequently,
“large” deviation will not have an impact on this estimator
when q  is finite. Also, for a given finite q , p  control the

behavior of ( )qpu ,,;σψ  near the origin. For example, if

2>p , then this influence function will be less steeply

sloped near the origin than the influence function for the t
distribution with q2  degrees of freedom.

3 PCA AND ITS ROBUSTNESS BASED ON M-
ESTIMATE WINSORIZATION

3.1 Principal Component Analysis

The cornerstone of data-driven process monitoring approach
is the projection method of PCA. The philosophy of this
technique is to reduce the dimensionality of the problem by
forming a new set of variables. The method generates the
new set of variables, called principal components. Each
principal component is a linear combination of the original
variables. All the principal components are orthogonal to
each other so there is no redundant information. The
principal components as a whole form an orthogonal basis
for the space of the data. The first few principal components
can capture the most of the variance in the data so that they
are used as the model. The new data will be fitted by the
model in order to see if the measures developed are in the
normal range.

Let X  be a mn ×  data matrix containing n  process
measurements of m  variables ( )nm ≤ . PCA decomposes
the observation X  as

∑
=

==
m

1i

T
ii

T ptTPX             (10)

Mathematically, ip  and it  can be calculated by finding the
eigenvalues and their companion eigenvectors of covariance
or correlation matrix S  of data X ,

XPT

PPS T

=
Λ=             (11)



where Λ  is the diagonal matrix containing the ordered
eigenvalues of S  and P  is the corresponding eigenvector
matrix.  In PCA, P  is defined as loading matrix and T  is
defined to be the matrix of principal component scores. The
loadings provide information as to which variables
contribute the most to individual PCs and they are the
coefficients on the principal component model; whilst the
score matrix provide the information on the clustering of the
samples and the identification of transitions between
different operating regimes.

In general, if the process variables are collinear, the first k
principal components can be used to explain sufficiently the
variability in the whole data set with less information loss,
and the determination of the number k  can be obtained via
several techniques such as scree test and cross-validation. It
then follows that

EptEPTX
k
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T
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T
kk +=+= ∑
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ii
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kk ptPTX̂             (13)

Once the PCA model is established, analysis and usage of
these lower dimension orthogonal variables are preceded and
the measures such as 2T and SPE along with some
visualization plots in score space can be employed for
process monitoring.

3.2 Robust PCA Based on M-estimate Winsorization

PCA transform the data set by projection onto loading
vectors to form score vectors which are uncorrelated. Hence,
univariate concepts can be employed in the score space. The
outliers present in the original data manifest themselves in
the score space. By recurrently winsorizing the scores and
replacing them with suitable values, it is possible to detect
multivariate outliers and replace them by values, which
conform to the correlation structure in the data. The concept
of winsorization is briefly explained first and its application
to robust PCA is then investigated.

Consider the linear regression problem

( ) ε+θ= ,Xfy              (14)

where ( )′= n21 y,...,y,yy  is a 1n × vector of dependent

variables, ( )′= '
n

'
2

'
1 x,...,x,xX is a mn ×  matrix of

independent variables, and θ  is a 1p ×  vector of

parameters, ε  is a 1n ×  vector of model error or residual.

An estimation of parameter θ , θ̂ , can be obtained by
minimizing the function

( )
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where s is an estimation of the scale of the distribution of
residuals and ρ  is objective function to be minimized.

With the parameter θ̂  estimated, the prediction or estimation
of the dependent variable )n,...,1i(yi =  is given by

( )θ= ˆ,xfŷ iii              (16)

and the residual is given by

iii ŷyr −=              (15)

In winsorization process, the variable iy  is transformed
using pseudo observation according to specified M-estimates
such as Huber’s;
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here the parameter k  is the degree of freedom, which
regulate the amount of robustness and is is the estimation of

scale associated with ir .  Other robust estimates can also be
employed, especially the one based on GT distribution:

( )q,p,;yy iGT
w
i σψ=              (18)

q,p,σ  are the parameters which accommodate the shape of

the residual distribution. These parameters can be estimated
with the data iy .

The technique of winsorization can be used in PCA to
eliminate the effects of outliers in the following. The data
value y in score space can be transformed into a new value

wy  by winsorization as follows,

( ) n,...2,1i,yy i
w
i =ψ=              (19)

where ψ  is any robust influence function discussed before.

Using the winsorization process, the large values exhibited
as outliers in the original data set will be brought closer to
the other observations after they are transformed from the
score space back to the original data space. A new PCA
model is obtained using the new data set. This process is
carried out iteratively until there is not much change in the
loading vectors.

The advantage of using GT based robust estimate over
Huber-like robust estimate is obvious. The GT based
approach can accommodate the shape of the residual
distribution so that it should be more effective when the
winsorization is processed, because the estimate is optimal
in MLE sense. Huber-like approach needs to pre-specify the
robust parameter in an ad hoc manner, this may result in the
inefficiency of the estimation.



 The steps of the robust PCA based on GT winsorization are
described as follow:

1) Scale the data matrix jX  ( j  is the iteration number,

,...2,1j = ) using some estimates of scale and

location ( )jj ,σµ . Calculate the correlation matrix

S .
2) Apply PCA to the correlation matrix S  and

generate the PC loadings and scores
3) Fit the score data to the GT distribution and

calculate its influence function ψ . Winsorize the

score space variables using the transformation:

               
( )
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tt
t

j
i

j
iw,j

i =
ψ+

=

4) Reconstruct the actual data using the loading vector
and winsorized score vector,

Tm
1i

j
i

w,j
i

Tjw,jw,j ptPTX ∑ ===
5) Check for the convergence of the loading vectors,

( ) s
1jj PPmax ε≤− −  where sε  is a user-defined

threshold.
6) If convergence is not achieved at iteration j , then

go back to step 1, otherwise stop.

4 SIMULATION STUDY

The heat-exchanger network example (Romagnoli and
Sanchez, 2000) will be used to demonstrate the performance
of the proposed robust PCA modeling method based on GT
winsorization (Figure 1).

Process stream A  is heated by process streams C,B  and D
at various junctions. The system has 16 measured variables
which are either flow rates or temperatures. The open loop
data are generated by adding Gaussian noise with zero mean
and variances of 2% of their values on all the values when
the process is operating at the normal conditions. 200
samples are generated and the sampling time is 0.1 hour.

Figure  1 Heat Exchange Network

The data generated above are treated as real good data set

and labeled as *X .  In order to compare the performance of
the proposed method with the others, outliers are introduced
by adding randomly to anywhere in *X  with the larger
values (variances up to 10% of their median values) from
different error distribution such as Gaussian, t and non-
central t distribution. The case of non-central t distribution
will be reported here. Figure 2 shows the measurement data
corrupted by non-central t distribution. This corrupted data
set is labeled as X .

      

Figure  2  Data Set X

The performance criterion which will be used to compare the
efficiencies of the various PCA methods is the mean-squared
error (MSE):

( )∑
=

λ−λ=
m

1i

2
i

*
im

1
MSE             (20)

where,  is the eigenvalue vector of data matrix ,  is
the eigenvalue vector of reconstructed data matrix by
different PCA approaches with corrupted data ,  is the
dimension of the variables or the number of principal
components chosen.  The MSE is constructed such that
better performance is obtained if its value is driven toward
zero.

Figure 3 shows the normal plot of the data . If the data fell
on the straight lines, then their distribution is assumed to be
normal. Clearly, it shows that the data  are not normal
distributed.

Three PCA methods are applied to the data , the results
are shown in the tables. Table 1 lists the explained variation
in the data by each eigenvalue along with the cumulative
percentage of the explained variation.  If the selection of the
number of principal components is based on a requirement
that 85% of the variance be explained, then eight principal
components are required for original data. However, for the
same criterion seven principal components are required
based on the conventional PCA with the corrupted data .
The robust PCA approaches can recover the real variation
explained by the principal components so that they diminish
the effects of outliers in the data. The proposed GT based
winsorization has better performance than the winsorization



      

Figure  3 Normal Plot of Data 

using Huber estimator. This is due to that GT winsorization
can accommodates the distribution of the data, while
winsorization based on Huber estimator relies on a priori
parameters so that it is not adaptive. Judiciously specifying
the threshold in Huber-like winsorization may improve the

performance. The normal plots of the filtered data  are
given in Figure 4. It is shown that after the winsorization
based on the GT, the distributions of the data are normal so
the correct results can be obtained by using PCA with the
data X . The MSE criterion is listed in table 2, which shows
that the proposed approach has the best performance. It is
also observed in table 1 that for the outliers-free case, the
proposed robust PCA approaches still have acceptable
performance.

5 CONCLUSIONS

A Robust PCA modeling method based on winsorization in
score space using adaptive robust estimator was developed
and presented. The effects of outliers in the data can be
eliminated by the method while the effectiveness as well as
the robustness is kept by using GT-like estimator. The
performance of the proposed method is compared with the
others using a chemical example. The usage of the approach
in process monitoring such as faults detection, identification
and diagnosis is promising.
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Figure  4 Normal Plot Data after Winsorization

Table 1. Results of PCA
Num.
of PCs

Explained
variance(%)

Cumulative
explained

variances(%)

Explained
variance(%)

Cumulative
explained

variances(%)

Data *X X

1
2
3
4
5
6
7
8

conventional
17.6918
16.1712
15.6300
10.0487
9.2196
8.3142
6.7640
5.4261

17.6918
33.8630
49.4930
59.5417
68.7613
77.0755
83.8395
89.2656

21.3087
16.2429
14.5289
11.9913
9.3763
6.9700
5.4210
4.3469

21.3087
37.5515
52.0805
64.0718
73.4482
80.4182
85.8392
90.1862

1
2
3
4
5
6
7
8

Huber’s
18.7511
17.1491
11.8246
10.2274
9.2651
7.5333
6.0656
4.7430

18.7511
35.9002
47.7249
57.9523
67.2174
74.7507
80.8163
85.5593

19.3563
15.3889
11.6123
10.8261
9.2336
7.6582
6.7601
5.9184

19.3563
34.7452
46.3576
57.1837
66.4173
74.0755
80.8356
86.7540

1
2
3
4
5
6
7
8

GT
17.2848
16.4029
13.0628
10.2440
9.2602
7.3126
6.9677
6.1711

17.2848
33.6877
46.7505
56.9946
66.2548
73.5674
80.5351
86.7062

17.3761
14.3915
14.2124
11.4886
9.3367
8.1144
6.6013
5.1630

17.3761
31.7676
45.9801
57.4687
66.8054
74.9198
81.5211
86.6841

Table 2.  MSE values of different methods
Conventional
PCA

Huber’s
Winsorization

GT
Winsorization

MSE 4.7826 2.6002 0.9374
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Abstract: Qualitative trend analysis (QTA) is a process-history-based data-driven
technique that works by extracting important features (trends) from the measured
signals and evaluating the trends. QTA has been widely used for process fault
detection and diagnosis. Recently, Dash et al. (2001, 2003) presented an interval-
halving-based algorithm for off-line automatic trend extraction from a record of
data, a fuzzy-logic based methodology for trend-matching and a fuzzy-rule-based
framework for fault diagnosis (FD). In this article, an algorithm for on-line extraction
of qualitative trends is proposed. A framework for on-line fault diagnosis using QTA
also has been presented. Some of the issues addressed are - (i) development of a
robust and computationally efficient QTA-knowledge-base, (ii) fault detection, (iii)
estimation of the fault occurrence time, (iv) on-line trend-matching and (v) updating
the QTA-knowledge-base when a novel fault is diagnosed manually. Some results
for FD of the Tennessee Eastman (TE) process using the developed framework are
presented. Copyright c©2003 IFAC.
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1. INTRODUCTION

Modern plants are data rich and information poor.
Vast amount of process data is available which can
be used to assess the process state by utilizing
the important features present in the measured
data. Qualitative trends (e.g. increasing, constant
etc.) are the most natural representation of fea-
tures that have been widely used for FD. Ev-
ery diagnostic system that uses process trends to
achieve fault classification has three components:
(i) a language for trend representation such as
triangular episodes (Cheung and Stephanopou-
los, 1990), primitive-based language (Janusz and

1 Author to whom all correspondences should be ad-

dressed, E-mail: venkat@ecn.purdue.edu, phone: (765) 494
0734, fax: (765) 494 0805.

Venkatasubramanian, 1991) and piecewise-linear
elements (Mah et al., 1992), (ii) a methodol-
ogy to extract the trends such as wavelet-based
method (Bakshi and Stephanopoulos, 1994a), use
of wavelet, neural networks and B-Splines-based
method (Vedam, 1999) and (iii) a classification
methodology and a knowledge-base to map the
sensor-trends into faults such as decision trees
(Bakshi and Stephanopoulos, 1994b), weighted
symptom trees (WST) (Oh et al., 1997) and
fault or sensor centric trees (Vedam, 1999). Re-
cently Dash et al. (2001) proposed an interval-
halving-based algorithm for automatic trend ex-
traction. The primitive-based language (Janusz
and Venkatasubramanian, 1991) is used for the
representation of the qualitative trends. The seven
primitives, viz. A(0, 0), B(+, +), C(+, 0), D(+,



-), E(-, +), F(-, 0), G(-, -) where the signs are
of the first and second derivatives, respectively,
are shown in Figure 1. The primitives B, D, E
and G are nonlinear primitives. Dash et al. (2003)
also developed a fuzzy-logic-based framework for
trend-matching and fault diagnosis. The overall
activity of trend-extraction and trend-matching is
called qualitative trend analysis (QTA).

While the interval-halving algorithm, the trend-
matching methodology and their application for
FD have been discussed in detail (Dash et al.,
2001; Dash et al., 2003), on-line implementa-
tion has not been discussed. Though the research
work by Vedam (1999) dealt with some of the
issues involved in on-line implementation of trend-
similarity-based FD, little has been discussed in
the published literature. In this article, we discuss
most of the important issues that are involved in
on-line fault diagnosis. In particular, we present
an algorithm for on-line trend extraction using
the interval-halving technique to achieve compu-
tational efficiency and robustness. A framework
for on-line FD using QTA is also presented. The
organization of this article is as follows.

In the next section, an overview of QTA is pre-
sented. In section 3, we motivate the need for an
on-line variant of the interval-halving algorithm
and discuss some of the challenges. We also list the
activities that are carried out in on-line FD using
QTA. In section 4, the design of the algorithm for
the on-line variant is discussed. The framework
for on-line FD is discussed in sections 5 and 6.
Section 5 deals with development of a knowledge-
base (KB) for QTA. Section 6 deals with the use
of the QTA-KB for on-line FD. In section 7, a
succinct discussion on the development of a pro-
totype diagnostic system in Matlabr is presented.
Sample results of FD in the TE process are also
presented. Finally we conclude this article with
discussion on future work.

2. OVERVIEW OF QTA

There are two subtasks in QTA- (i) trend extrac-
tion (Dash et al., 2001) and (ii) trend matching
(Dash et al., 2003). A brief discussion follows.

Trend extraction by using the interval-

halving algorithm: The algorithm works by fit-
ting either a constant, a first order or a second
order polynomial (in that order) to the data and
halving the interval if the fit error is significant
as compared to the noise present in the signal
(as dictated by the F-test) even for the quadratic
function. Once the polynomial is fitted over a
certain interval, a primitive is assigned based upon
the sign of the first and second derivatives (t-test
is used to check the significance of the derivatives).

D B C

G E F

A

(0,0)

(+,+) (+,0)(+,-)

(-,+) (-,0)(-,-)

Fig. 1. Fundamental language: primitives

Then the interval-halving procedure is applied to
the remaining data till the entire signal is trans-
formed into a sequence of primitives.

Fuzzy trend-matching: Trend-matching involves
calculation of the following: (a) fuzzy similarity
match between two primitives, (b) similarity mea-
sure between two trends (the time-weighted aver-
age of the similarity match between the primitives
involved in different time intervals) for the same
sensor and (c) multivariate (overall) similarity
measure or confidence index (C.I.) between two
scenarios (given by C.I. = min(S1, S2, . . . , Sn)
where n is the number of sensors and Sk is the
similarity measure between the trends of the kth

sensors in the two scenarios). To perform fault
diagnosis by using QTA, the faults stored in the
QTA-KB are rank ordered in decreasing order of
their C.I. The fault with the highest C.I. is the
fault that has most likely occurred. A low value
of C.I. (say below 0.50) for all the faults indicates
the occurrence of a novel fault.

3. ON-LINE FAULT DIAGNOSIS USING QTA:
MOTIVATION AND ISSUES

Our ultimate aim is to implement the QTA-based
fault diagnosis in real plants. In off-line trend
extraction, the interval halving algorithm is ap-
plied on the entire data. During on-line imple-
mentation, more and more data is available from
sensor measurements. The primitives obtained at
current time may no longer correctly represent
the trend at a future time. Thus a key feature of
an algorithm for on-line trend extraction is that
the primitives should be updated as more data
becomes available. On one hand, trend extraction
cannot be performed on all the data available so
far at every sample time. On the other hand, if
one were to find trends corresponding to only the
new data, one would end up assigning only ‘A’
primitives since no useful trend is contained in few
samples. Thus the data set for trend extraction
should comprise of some of the past data and
the newly available data. This poses the question
of how should one choose the data segment for
trend extraction? Some related questions are- (i)



should the data segments chosen for two con-
secutive trend extractions overlap?, (ii) can one
calculate an average primitive in the overlapping
region?, etc. These issues are discussed in the next
section. Further, for real-time FD, we need to
consider the following- (i) building a knowledge-
base of fault-symptom signatures, (ii) detecting
the occurrence of an abnormal event (fault detec-
tion), (iii) extracting the relevant portion of trend
from an arbitrarily long sequence of primitives
(does fault occurrence time play a vital role?),
(iv) time-efficient computation of similarity mea-
sure and (v) learning- updating the QTA-KB if a
novel fault is manually diagnosed by the operator.
Discussion on on-line trend extraction follows.

4. ON-LINE TREND EXTRACTION

Given sensor data, the basic interval-halving al-
gorithm can be applied on the entire data in off-
line fashion to extract trends. From the above
discussion it is clear that the trend extraction has
to be performed over a window of data, that the
window should move as more data becomes avail-
able and that the trend extracted in the current
window has to be intelligently combined with the
already extracted trends. Before trying to device
an algorithm to carry out additional preprocessing
(and possibly post-processing) for on-line trend
extraction, let us briefly analyze the off-line and
on-line implementation of another methodology
for trend-extraction viz. B-Spline based trend ex-
traction (Vedam, 1999).

To implement the B-Spline based algorithm (which
extracts linear primitives) for on-line trend extrac-
tion by using a sliding-window approach, off-line
algorithm is applied on a window containing 2k+1
samples (k is a positive integer). After measuring p
more samples, the window slides by p data points
(the window size does not change). This is similar
to the sliding window approach for on-line de-
noising using wavelet analysis. Now to get a con-
solidated list of linear primitives till the current
time, the primitives in the current window are
combined with the old list of consolidated linear
primitives. Since the primitives to be combined
are linear, an average value can be used at the
starting point of the current window. After this
time instant, the old primitives are replaced by
the primitives in the current window. Every time
trends are extracted, after updating the list of lin-
ear primitives, they are concatenated to get higher
order primitives. The higher order primitives are
not updated directly. Now let us analyze the key
features of the off-line interval-halving algorithm
for trend extraction.

The basic interval-halving algorithm is capable
of extracting nonlinear primitives directly and no

concatenation is needed. This means that if the
interval-halving algorithm identifies a nonlinear
primitive then there is no need to allow this non-
linear primitive to evolve further except when the
primitive length is very small. This is a very good
feature since concatenation requires a parameter
(magnitude threshold) for every sensor and is not
transparent.

Given that one should preserve the ability to
extract nonlinear primitives and avoid concate-
nation, unlike on-line implementation of B-Spline
based methodology, averaging at the starting
point of the current window is not an option. In
fact, averaging would render the polynomial coef-
ficients (which can be used for data compression)
useless. Similarly, concatenation is not allowed.
Yet, the primitives should evolve as more data
comes in. Two key ideas to achieve this effect are
explained below.

Unrestricted evolution of the last primitive

of the current window: By the nature of the
interval-halving algorithm, as more samples are
available, only the last primitive evolves. This
assumption may be violated for very small time
intervals (where one of the primitives before the
last primitive could be an ‘A’ primitive) due
to parameter-less and ‘fit the simplest-primitive’
nature of the algorithm. Such local violations do
not have much effect on similarity measure.

If the last primitive is a linear primitive (‘A’, ‘C’
or ‘F’) then allow it to evolve until it becomes a
nonlinear primitive or it becomes very long (so
that further evolution would require too much
computation). If the last primitive is a nonlinear
primitive then it should not be allowed to evolve
except when its length is too small.

Parameters and selection of the window:

Three important parameters are the default win-
dow length, the length of the shortest primitive
(minNLP len) and the length of the longest linear
primitive (maxCFlen). For choosing the window,
the endpoint of the current window should coin-
cide with the last sample available. The starting
point of the window can be chosen to coincide with
the starting point of the last primitive. With this
rule in effect, the window size changes adaptively.
One exception to this rule is that if the last prim-
itive is nonlinear and is very long then one can
choose the starting point of the window so as to
keep the window size equal to the default window
size. Depending upon how window is selected, one
should keep a record of the primitives that would
not evolve anymore so that the most updated list
of primitives can be obtained simply by appending
the primitives in the current (or latest) window to
the existing list of non-evolving primitives. The
above procedure of window selection is schemati-
cally shown in Figure 2. A flowchart for the overall
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Fig. 2. Adaptive selection of the window

Window start pt =
last prim start pt;
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Fig. 3. Flowchart for on-line trend-extraction

algorithm is shown in Figure 3. Figure 4 shows
a snapshot of trend-extraction in two consecutive
windows for a sample signal. If one were to use the
interval-halving algorithm on a sliding window of
fixed length (65), the last primitive (at the current
time) would still have been ‘A’. Also, unnecessary
computation would have been performed over a
certain portion of the first primitive.

5. BUILDING QTA KNOWLEDGE-BASE

Development of the QTA-KB primarily involves
trend-extraction for all known faults. Some of
the parameters (which are universal for a given
plant) related to QTA-KB are- description of the
faults stored (including whether the fault truly
corresponds to an abnormal scenario), description
of the sensors which are used for trend extraction
viz. sample rate, normal value, noise etc., the
start and endpoints of the data used for trend
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Fig. 4. Snapshots during two consecutive windows

extraction for each sensor in every fault scenario,
the global parameters related to on-line trend
extraction such as default window length etc. For
small-scale plants, where the number of sensors
is small (say, less than 100), one may be able
to compute similarity measure for all the sensors
with all the fault scenarios in real-time but for
large plants, it may be infeasible. For large plants,
one must consider the issue of computational com-
plexity. Apart from computational infeasibility, it
is expected that the sensors that are physically
located near the fault origin would show departure
from their normal operating region (NOR) before
the sensors that are located far away. Hence, such
sensors are useful in detecting the fault occur-
rence and they should be chosen for estimating
the similarity measure. Thus optimal selection of
sensors (that should be used for calculation of
similarity measure) corresponding to each fault
is very important. Other issues in optimal selec-
tion of sensors are- (i) consistency among simi-
lar faults: the sensors should show similar trends
for multiple manifestations of the same fault and
(ii) discrimination from other faults: the sensors
should be chosen so that they provide maximum
discrimination from other (different) faults. These
ideas have been earlier discussed and implemented
by Vedam (1999). Further, when lesser (but suf-
ficient) number of sensors are chosen, most likely
the chosen sensor would show fast evolution. This
would result in robustness in the calculation of
similarity measure, particularly during the incipi-
ent stage of fault evolution, the duration in which
one is interested in diagnosing the fault. Since
the confidence index assigned to a fault is the
minimum of the similarity measure for the sensors
dedicated to diagnose the fault, if all the sensors



are chosen blindly for assessing every fault then
correct diagnosis would be delayed. To summarize
these ideas, the sensors dedicated for diagnosing
various faults should be chosen with respect to
three criteria: (i) consistency among similar faults,
(ii) fast dynamics for the fault and (iii) discrimina-
tion from other faults. The procedure for optimal
screening of sensors is discussed below-
[1] Extract trends for all the sensors for all the
fault scenarios.
[2] Compute a global similarity matrix containing
the similarity measure for each sensor for all pairs
of faults. Perform the steps 3-7 for every fault.
[3] Identify the set of faults that are similar to this
fault, and the set of faults that are different.
[4] Corresponding to the set of similar faults,
for each sensor, extract the similarity measures
from the similarity matrix and take the mini-
mum. Rank the sensors in decreasing order of the
minimum. Thus the sensor that shows maximum
similarity would be on the top of the list (list 1).
[5] Corresponding to the pairs of this fault with
the different faults, extract the similarity mea-
sures for all sensors, take the maximum for each
sensor, and rank the sensors in increasing order
of the maximum. Thus the sensors that shows
least similarity measure (maximum discrimina-
tion) would be on the top of this list (list 2).
[6] Rank the sensors in decreasing order of speed
of evolution (the sensor that evolves the fastest
should be on the top) (list 3).
[7] Prepare a new list by selecting sensors from list
1 and list 3 (rank them according to a weighted
criterion). This new list is a ranked list of sensors
in decreasing order of consistency and speed of
evolution. If the value of the weighted criterion
is equal for two or more sensors in this list then
sort them according to list 2 (decreasing discrim-
ination). Now select sensors from the new list one
after another till the fault can be resolved from all
other (different) faults.

Of course, in the above procedure, a fail-safe ap-
proach should be adopted so that sufficient num-
ber of sensors are chosen to ensure discrimination
from other faults. In some rare cases, where the
data used for developing the knowledge-base is not
collected properly, consistency with similar faults
and discrimination from different faults could be
in conflict. In such cases, a robust and reliable
knowledge-base cannot be developed.

6. ON-LINE FAULT DIAGNOSIS

During online implementation, the primitives are
continuously extracted. When a fault occurs, the
sensors start deviating from their normal values.
Thus the first step is fault detection. In QTA-
based fault detection, the presence of a non-
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Signature in the database
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Window position 1: Good match
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Fig. 5. Importance of fault occurrence time

A primitive and departure from the NOR indi-
cates presence of a fault. A suitable multivari-
ate methodology also can be used for fault de-
tection. After detection, it is very important to
estimate the time at which the fault occurred
so that an appropriate portion from the infinite
sequence of primitives can be extracted. If the
fault occurrence time is not estimated properly
then poor similarity measure may be obtained
(see Figure 5) even for very similar trends. Due
to excessive computational complexity, similarity
measures with shifted trends cannot be evaluated
in real-time and hence, good estimate of fault oc-
currence time is required. The methodology used
for the estimation of the fault occurrence time is
called backtracking. As shown in Figure 6, once
a fault is detected, we try to fit an ‘A’ primitive
in the last interval. If an ‘A’ can be fitted then
there is little variation which means that the fault
occurred sometime before this interval. So the es-
timation window is stretched backwards and this
procedure is repeated over the stretched window
till an ‘A’ primitive cannot be fitted i.e. there is
enough variation in the data in the estimation
window. This procedure always terminates since
last primitive is a non-A primitive. Trends are re-
calculated for the data after the fault occurrence
time. It can be seen that this method does not
take into account the time-delay but that is not
a problem because, to ensure robust estimation of
similarity measure, the same methodology can be
used during the development of the QTA-KB. As
the fault evolves, more and more sensors deviate
from their NOR. These sensors are used for the
estimation of similarity measure and C.I. for var-
ious faults. This ensures that similarity measure
for a slowly evolving sensor or a sensor that is
not showing enough deviation would not result in
incorrect C.I. for the actual fault. To summarize,
the main activities involved in on-line FD are:

• Fault detection

• Estimation of the fault occurrence time

• Computationally efficient trend matching

• Learning and updating the QTA-KB
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7. A PROTOTYPE DIAGNOSTIC SYSTEM

A prototype diagnostic system to implement the
framework discussed above has been designed in
Matlabr. To give a brief idea about the important
features of the framework, some of the compo-
nents are succinctly discussed below:

Development of QTA-KB: Trends for various fault
scenarios are extracted and sensors to be used for
estimating the C.I. for various faults are identified.
On-line trend extraction: The adaptive trend-
extraction algorithm is used.
Fault detection: Presence of a fault is triggered if a
sensor deviates from its NOR and shows a non-A
primitive.
Fault occurrence time: Backtracking methodology
is used. The relevant trends are re-calculated.
Fault diagnosis: C.I. for various faults are calcu-
lated. The operator is informed about the abnor-
mal sensors and the known or an unknown event.
Learning and updating the QTA-KB: If a novel
event occurs and the operator diagnoses the fault,
it is added to the QTA-KB.

The diagnostic system has been tested on the TE
process (sample time is 0.001 hr for all 14 sensors).
No optimal sensor assignment has been carried
out for this case study. Out of the 33 possible
faults, 26 faults are used to build the QTA-KB.
Results for three test scenarios are as follows:

(1) Fault 1: correct diagnosis.
(2) Fault 25: faults 17, 25 and 18 (located in the

same control loop).
(3) Fault 28 (novel fault): fault 20 (located in the

same control loop as fault 28).

Thus the prototype diagnostic system is quite
robust with respect to correct FD and detection
of novel events. Interaction with the operator,
learning and maintenance is also easily facilitated.
Another important characteristic of the overall
approach is that most of the parameters used can
be easily tuned and that reasonable variation in
them does not degrade the overall performance.
For example, in the TE process, characteristic
time is few hours. The normal window size is
255 (1/4th of the number of samples per hour).

maxCFlen and minNLP len are 1000 and 50,
respectively. The window shift length is 15 (to
allow the necessary computations every minute).

8. CONCLUSIONS AND FUTURE SCOPE

Various issues in on-line trend extraction and fault
diagnosis have been discussed. An algorithm for
the same has been presented. A framework for on-
line fault diagnosis has been presented. Important
components have been discussed. A prototype for
FD has been developed in Matlabr. Some results
for FD of the TE process have been discussed. Our
future work will include improvement in on-line
trend extraction (to further reduce computation
time) and multiple fault diagnosis.
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