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Abstract: Product quality variables for many electronics and materials processes are set 
at the nanoscale and smaller length scales. Although the control of these processes is of 
scientific and industrial interest, there is a shortage of feedback controller design methods 
based on the noncontinuum models that describe such nanoscopic phenomena. In this 
study, linear, gain-scheduled, and nonlinear feedback controllers are designed for a 
coupled kinetic Monte Carlo-finite difference code that simulates the manufacture of 
copper interconnects. The feedback controller designs incorporate a low order stochastic 
model constructed from the coupled continuum-noncontinuum code.
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1. INTRODUCTION 
 
The vast majority of the literature on feedback 
controller design is based on continuum models, 
which are described by systems of algebraic, 
ordinary differential, and partial differential 
equations (Levine, 1995). The continuum modeling 
approach, however, is inadequate for modeling much 
of the molecular and mesoscale phenomena that 
occur in the complex chemical processes that 
constitute the attention of today’s scientists and 
engineers (Maroudas, 2000). This is especially 
apparent in microelectronics processes, for which the 
critical phenomena occur at the nanometer and 
smaller length scales. Hence in recent years 
increasing efforts have been directed towards the 
development of noncontinuum models, such as 
kinetic Monte Carlo (KMC) simulation models, for 
which most existing controller design techniques are 
not directly applicable. The design of feedback 
controllers based on such noncontinuum models is an 
open research problem in the field of control 
(Murray, 2002). 

Global competition has increased the importance of 
feedback control for the complex chemical processes 
that are best described by noncontinuum models. 
There is probably no place where this is more 
apparent than in the microelectronics industry, which 
has had an average annual growth of 20%, with sales 
of $200 billion in 2001. It is generally accepted that 
high performance feedback control will be required 
to achieve the small length scales required to provide 
high computational speed in future microelectronic 
devices (Sematech, 2001). 
 
Here feedback controllers are designed for a coupled 
KMC-finite difference (FD) code that simulates the 
electrochemical deposition of copper into a trench, a 
key step in the manufacturing on-chip interconnects 
for microelectronic devices (Andricacos, et al., 
1998). The industrial need is to deposit copper 
uniformly into trenches and vias of small dimension 
(less than 100 nm) under galvanostatic (constant 
current) conditions. This industrial importance has 
motivated numerous experimental and simulation 
studies on the modeling of copper electrodeposition 



in recent years (Alkire and Eliadis, 1999; 
Andricacos, et al., 1998; Georgiadou, et al., 2001; 
Gill, 2001; Harper, et al., 1999; Merchant, et al., 
2000; Moffet, et al., 2000, Moffet, et al., 2001). The 
goal of the feedback controller is to maintain the 
current (or current density) at a constant specified 
value. This feedback controller allows the KMC 
simulations to operate under industrial operating 
conditions. 
 
The paper is organized as follows. First, the coupled 
KMC-FD copper electrodeposition simulation code 
is described. This is followed by construction of a 
low order stochastic model that is used to design 
feedback controllers and associated filters to handle 
the non-Gaussian stochastic noise produced by the 
KMC code. Then the closed-loop responses of the 
controllers are compared in simulations of the low 
order stochastic model and the KMC-FD simulation 
code. 
 
 
2. COUPLED KINETIC MONTE CARLO-FINITE 

DIFFERENCE SIMULATION CODE 
 
Kinetic Monte Carlo (KMC) methods are used to 
simulate structural properties of matter that cannot be 
represented by a macroscopic continuum description, 
and are widely used for simulating dynamic chemical 
and materials processes. A KMC simulation is a 
realization of the Master equation (Fichthorn and 
Weinberg, 1991): 
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where σ and σ' are successive states of the system, 
P(σ, t) is the probability that the system is in state σ 
at time t, and W(σ',σ) is the probability per unit time 
that the system will undergo a transition from state σ' 
to σ. For a particular system being studied, the KMC 
code chooses randomly among the possible 
transitions of the system and accepts particular 
transitions with appropriate probabilities. After each 
accepted or attempted transition, the time variable is 
incremented by one Monte Carlo time step, and the 
process is repeated. If the probabilities satisfy certain 
conditions, the real time variable t corresponding to 
the number of Monte Carlo time steps can be 
computed. 
 
Electrochemical deposition of a copper film into a 
trench is simulated in this application. A KMC 
method was used since traditional continuum codes 
are not convenient for simulating the evolution of the 
roughness of the surface, which is an important 
characteristic of the produced copper film. The KMC 
code describes the mesoscale with a cubic lattice, 
where each subdomain in the simulation space 

represents a cluster of molecules (referred to as a 
mesoparticle) of a given species in the deposition 
bath (see Fig. 1). Each subdomain is cube of 12.5 nm 
on a side and is assumed to be homogeneous in both 
phase and composition. Similar mesoscale KMC 
methods have been applied by various researchers to 
a number of systems (Bird, 1994; Birdsall and, 
Langdon, 1985; Katsoulakis, et al., 2002; Lu and 
Kushner, 2001). While molecular-scale simulations 
are of interest, this coarser mesoscale representation 
results in an efficient computational method that can 
simulate devices on the same scale as in the real 
system (Drews, et al., 2003). The Monte Carlo 
simulation domain is a trench with aspect ratio 2:1, 
40 subdomains wide, 80 subdomains high, and 6 
subdomains deep.  
 

 
 
Fig. 1. Architecture of the KMC-FD simulation 

operating under feedback: FD denotes the finite 
difference code, KMC denotes the kinetic Monte 
Carlo code, and C denotes the controller. The 
KMC domain is on the left. 

 
The kinetic Monte Carlo code simulates deposition 
phenomena by considering the likelihood of various 
actions that each mesoparticle can take at a given 
time step. These actions are bulk diffusion, surface 
diffusion, the reaction A�B, a combination reaction 
A+B�C, a splitting reaction A�B+C, and 
dissolution. All actions are computed as frequencies, 
with units of sec-1. At a given Monte Carlo time step, 
a mesoparticle can make a maximum of one move. 
The possible moves that each species can make are a 
function of the location of the mesoparticle in the 
simulation space, as well as the number and type of 
the six nearest neighbors. 
   
The Monte Carlo domain has periodic boundary 
conditions in the x and y directions, an impenetrable 
boundary at the electrode surface (in the z-direction), 
and a link to a continuum code at the top boundary in 
the z-direction. The continuum code is a one-
dimensional FD code that provides diffusion fluxes 
of Cu2+ into the Monte Carlo domain by solving the 
diffusion equation. The KMC code provides the 
concentration of Cu2+ to the continuum code. The 
height of the continuum domain was set to 50 µm, 
which is close to the actual diffusion boundary layer 

C 

KMC

FD 



thickness that corresponds to typical processing 
conditions. In both the FD and KMC codes, an 
additive-free bath is simulated. The KMC code also 
produces a signal that is the charge passed during 
deposition, and reads as input the applied potential η. 
These signals serve as the input and output of the 
feedback controller (see Fig. 1). 
 
Three time steps are tracked in the KMC simulation 
code: (1) the time step over which the continuum 
code is called for updated flux information, (2) the 
sampling interval for the feedback controller, and (3) 
the Monte Carlo (MC) time step. In order to capture 
the full dynamics of the system, the MC time step 
must be small enough to capture the action of the 
fastest species. For all the processes in this 
application, the Monte Carlo time step was computed 
to be ~2.8 µs. A complete KMC simulation run 
typically requires 1.08×108 MC time steps before the 
copper fills the trench. In this particular study, the 
linking time step and the sampling interval for the 
feedback controller are set to be 10-7 s and 10-2 s, 
respectively. 
 
To carry out the galvanostatic (i.e., constant current) 
simulations associated with industrial operations, the 
feedback controller must manipulate the applied 
potential η to control the current i, based on the 
charge transferred as a function of time. There are 
two main performance requirements for the feedback 
controller. First, the feedback controller should have 
a tracking response as fast as possible. Second, 90% 
of the fluctuations in the applied potential should be 
within ±0.01 V. An additional requirement is for the 
controller to be low order, so that its computational 
cost is negligible compared to the cost of the KMC-
FD calculations. The potential η enters the surface 
reaction frequencies in a nonlinear manner. This 
suggests that nonlinear control may give better 
performance than linear control. The next section 
describes how a low order stochastic model was 
constructed from input-output data collected from the 
KMC-FD code, and how this model was used to 
design feedback controllers. 
 
 

3. IDENTIFICATION OF A LOW ORDER 
STOCHASTIC MODEL 

 
The KMC-FD code is computationally expensive, 
highly stochastic, and nonlinear. To design low order 
feedback controllers, a low order stochastic model is 
constructed that is capable of capturing the most 
essential input-output behavior of the coupled KMC-
FD code. This low order model is incorporated into 
model-based controller design and used for filter and 
controller tuning.  
 
The output of the KMC-FD code is the cumulative 
charge passed up to current simulation time. To 

emulate the real physical system as closely as 
possible, the charge signal is converted to a current 
density signal. The current density was computed as 
the total charge passed in each 0.01 s, divided by 
0.01 s and the surface area in cm2. A larger time step 
interval could be used to compute the current from 
the charge, but this would lead to a more sluggish 
response, causing an inherent performance limitation 
in the feedback controller. On the other hand, 
decreasing the time step leads to more highly noise-
corrupted signal. The manipulated variable is the 
applied potential, which affects the kinetics of the 
mechanisms simulated in the KMC-FD code and 
hence directly affects the current generation.  
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Fig. 2. Step input implemented on the KMC-FD code 

and the resulting step response. 
 
The current density for a series of steps in the applied 
potential sent to the KMC-FD code is reported in 
Fig. 2. The applied potentials are selected to be 
within the normal operating condition of the KMC-
FD simulation. Autocorrelations indicate that the 
current density reaches steady state within one 
sampling instance.  
 
Upon reaching steady state, the output signal is 
bounded and its mean remains constant. These 
conditions justify the assumption that the signal is 
quasi-stationary (see Fig. 3). This assumption is 
verified by comparing the probability mass function 
of different time segments. The stochastic 
fluctuations are non-Gaussian and asymmetric, and 
can be modeled by a Poisson distribution for all 
normal operating conditions. To ensure consistency 
and accuracy, the identification procedure was 
repeated with different seed numbers. These sets of 
input-output data were used in the parameter 
estimation of a low order stochastic model: 
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where { }Ζ∈−∈ nn,0025.0κ  and Z is a set of non-
negative integers. The form of the nonlinearity was 
motivated by the expression for the surface kinetics. 
Figure 3 compares the stochastic current density 
produced by the low order model (2)-(3) and the 
KMC-FD code for a range of applied potential. 



 

Fig. 3. Current density distributions for the low order 
model (solid line) and the KMC-FD code (× and o 
correspond to simulation data with different seed 
numbers). 

 

Fig. 4. Block diagram for the closed-loop system 
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Fig. 5. Model gain of the KMC-FD code computed 
from step data. 

 
 

4. FEEDBACK CONTROLLER DESIGN 
 
Linear, gain-scheduled, and nonlinear inversion-
based controllers were designed based on the low 
order stochastic model (2)-(3). Each controller 
incorporates a first-order filter (see Fig. 4): 
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with filter constant α. This filter is used to reduce 
fluctuations in the manipulated variable without 
filtering the reference signal. The linear and 
nonlinear feedback controllers incorporate the 
deterministic part of the low order model (2)-(3):  
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An alternative deterministic model used by the gain-
schedule controller is to directly compute the model 
gain as a function of the manipulated variable (see 
Fig. 5). The model gain is computed based on the 
initial steady state condition at zero applied potential. 
The best least-squares quadratic fit to the model gain 
is: 
 

212 101912.6102074.26058.4 −−−−−−−− ××××++++××××++++==== ηηK  (6) 
 
The two plant descriptions give almost the same 
output prediction. 
 
 
4.1 Linear Controller 
 
The range in system gain is given by 
 

}1417.005.0,{ ≤≤ℜ∈ KKK            (7) 
 
where the upper bound was selected to exceed 
slightly the steady-state value for regulating the 
current density at –0.015 A/cm2.  
 
The linear feedback controller was designed using 
internal model control. Many other controller design 
techniques such as generic model control, direct 
synthesis, and geometric control give the same or 
similar control structures. The desired closed-loop 
response is first-order-plus-time-delay: 
 

1

1
1

)/exp(1
))/exp(1()1( −−−−

−−−−
−−−−

−−−−−−−−
−−−−−−−−====++++====

zt
ztFGGGG

r
i

cc τ
τ

∆
∆    (8) 

 
where τ is the desired closed loop time constant. This 
equation is rearranged to give the feedback controller 
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where )/exp( τφ t∆−−−−==== . Applying the small gain 
theorem to systems with time varying perturbations 
(Braatz and Morari, 1997) shows that choosing K = 
0.1417 in the linear controller provides robustness 
for the full range of time-varying model gains in (7). 
The value τ = 10-5 s ensures fast response yet not 
faster than the dynamics of the KMC-FD simulation 
which is on the order of 10-6 s. The tuning of the 
filter constant α is discussed in Section 4.4.  
 
 
4.2 Gain-scheduled Controller 
 
The structure of the gain-scheduled controller is 
identical to the linear feedback controller. The only 
difference is that the gain K in (9) is updated at every 
time step using (6). 
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4.3 Nonlinear Controller 
 
The nonlinear controller inserts an inverter derived 
from (5): 
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before the plant in the block diagram in Fig. 4. The 
plant combined with the inverter is a simple one-
delay system that is controlled using the linear 
feedback controller with K = 1 in (9).  
 
 
4.4 Filter Design 

 
The filter constant α is tuned to ensure that at least 
90% of the fluctuations in the applied potential are 
within ±0.01 V over the entire operating regime, 
while avoiding too much filtering which leads to 
unnecessarily sluggish response. The filter constant 
is designed based on the probability density 
distribution of the applied potential at the final time, 
that is, the time required to fill up the trench with 
copper. The reason for using the final time to design 
the filter coefficient is that the applied potential is the 
most negative at the final time, and the stochastic 
fluctuations are largest when the applied potential is 
the most negative. A filter coefficient that adequately 
filters the stochastic fluctuations at the final time also 
provides adequate filtering at earlier times. 
 
A primary goal of this study was to create a filter and 
controller design procedure that can be quickly 
repeated when physicochemical parameters in the 
KMC-FD code are changed. Due to the high 
computational cost of running the KMC-FD code, its 
use in filter and controller design is limited to the 
creation of data for constructing the low order 
stochastic model (2)-(3). The low order model is then 
used to design the filter and controller. The 
probability density distribution of the applied 
potential at the final time was obtained by running 
the closed-loop simulation of the low order stochastic 
model 10,000 times at several α values. From this 
probability density distribution, the mean and the 
deviation corresponding to the 90% confidence level 
were estimated. Figure 6 shows how the deviation 
varies with the filter constant α. Table 1 reports the 
filter constants that result in 90% of the applied 
potential being within ±0.01 V at the final time. 
 
Table 1. Filter constants for the three controllers 
 

Controller type α 
Linear 0.03806 
Gain-scheduled 0.03951 
Nonlinear 0.03260 
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Fig. 6. The relationship between the filter constant α 
and the deviation around the mean at the final 
time corresponding to the 90% confidence level 

 
 

5 RESULTS AND DISCUSSION 
 
The controllers were implemented in the KMC-FD 
code and the low order stochastic model (2)-(3). 
Figure 7 shows agreement between the closed-loop 
predictions of the original and low order models. As 
specified, the applied potential is within ±0.01 V of 
its steady-state value 90% of the time, except for the 
initial transient.  
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Fig. 7. Closed-loop responses for the linear, gain-
scheduled, and nonlinear inversion-based 
controllers implemented on the low order model 
(2)-(3) and the KMC-FD code 

 
Figures 8 and 9 focus on the initial time responses. 
The closed-loop performance is similar for the 
controllers, with the gain-scheduled controller 
slightly better than the others. Differences between 
the closed-loop simulations obtained with the low 
order stochastic model (2)-(3) and the KMC-FD code 
are within the stochastic variation in the responses. 
This is further support that use of the low order 
model for filter and controller design was justified. 
The applied potential in Fig. 8 reaches a quasi-
steady-state value in ~0.5 s. Since the process 
dynamics are very fast, the unfiltered current density 
(not shown due to extremely large stochastic noise) 
reaches a quasi-state-value in ~0.5 s. The filtered 
current density, which includes the filter lag, reaches 
a quasi-steady-state value in 1 s. 
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Fig. 8. The applied potentials for the three controllers 
implemented on the low order model (2)-(3) and the 
CED code 
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Fig. 9. The filtered current density for the three 

controllers implemented on the low order model 
(2)-(3) and the CED code 

 
 

6. CONCLUSIONS 
 
This paper demonstrates the design of low order 
linear, nonlinear, and gain-scheduled feedback 
controllers for a coupled kinetic Monte Carlo-finite 
difference code that simulates infill of a trench 
during copper electrodeposition. The feedback 
controllers and associated filters were constructed 
from a low order stochastic model constructed from 
data collected from the KMC-FD code. The 
controllers enable the KMC-FD code to operate with 
nearly constant current, which is the industrial 
operating condition. 
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Abstract: Transient enhanced diffusion of boron inhibits the formation of ultrashallow 
junctions needed in the next-generation of microelectronic devices. Reducing the junction 
depth using rapid thermal annealing with high heating rates comes at a cost of increasing 
sheet resistance. The focus of this study is to design the optimal annealing temperature 
program that gives the minimum junction depth while maintaining satisfactory sheet 
resistance. Comparison of different parameterizations of the optimal trajectories shows 
that linear profiles gave the best combination of minimizing junction depth and sheet 
resistance. Worst-case robustness analysis of the optimal control trajectory motivates 
improvements in feedback control implementations for these processes. Copyright © 
2003 IFAC 
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1. INTRODUCTION 
 

Moore’s law requires a continued shinkage of feature 
sizes in microelectronic devices. For example, 
advanced CMOS devices will require junction depths 
between 13 to 22 nm in the source and drain 
extension region by the year 2005 according to the 
2001 International Technology Roadmap for 
Semiconductors. The current technology for the 
formation of such ultrashallow junctions depends on 
ion implantation of dopant, such as boron, into 
silicon. Although the junction depth can be made 
shallower by reducing the implant energy, the 
effectiveness of this approach is limited by the need 
to anneal out the point and/or extended defects 
generated by ion implantation. Silicon self-interstitial 
defects can mediate the diffusion of dopants during 
the annealing process, which leads to a significant 
increase of the junction depth. This phenomenon is 
known as “transient enhanced diffusion” (TED). For 
this reason, considerable efforts have been put forth 
in the modeling of the TED for designing appropriate 
post-implant annealing programs to produce the 
desired junction depth (see (Jain, et al., 2002) and 
references therein).  
 

The state-of-the-art in post-implant annealing 
employs a lamp-based rapid thermal annealing 
(RTA).  Figure 1 shows a typical RTA “spike” anneal 
program, which consists of a stabilization step at 
constant temperature (~650 °C), followed by a linear 
heating step at a constant rate (~100 °C/s) reaching a 
maximum temperature (~1000 °C), and finally a 
radiative cooling step at a initial rate of several tens 
of degrees per second. In the literature, there exists 
conflicting experimental evidence on the efficacy of 
using high heating rates (up to 400 ºC/s) in the spike 
anneal profile to reduce TED (Downey, et al., 1999; 
Shishiguchi, et al., 1997). Recent results (Gelpey, et 
al., 2002; Mannino, et al., 2001) tend to confirm the 
benefit of using high heating rates. The results also 
suggest that the reduction in the junction depth comes 
at the expense of an undesired increase in the sheet 
resistance. The tradeoff in reducing the junction 
depth without sacrificing the sheet resistance 
motivates a careful optimization of the post-implant 
annealing temperature program.  
 
A recently developed comprehensive TED model 
consists of a set of reaction-diffusion equations 
combined with Poisson’s equation to account for the 
electric field effects on charged species (Jung, et al., 
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1999). The activation energies arising from the 
reaction rate constants and diffusivities in the TED 
model are not exactly known, but there exist 
extensive experimental and computational estimates 
of these parameters. To resolve problems with regard 
to conflicting estimates in the literature, maximum 
likelihood (ML) estimation was applied to give the 
most likely values and the standard deviations for the 
parameters from the published parameter estimates. 
Furthermore, maximum a posteriori (MAP) 
estimation was applied to produce improved 
parameters from the ML estimates and experimental 
Boron profile data collected at International 
Sematech (Gunawan, et al., 2003).  
 
This paper focuses on the design of the spike anneal 
program that optimizes the junction depth subject to a 
constraint on the sheet resistance. The TED model is 
implemented using the process simulator FLOOPS 
(Law and Tasch, 2000). Different parameterizations 
of the optimal trajectory are used to elucidate the true 
optimal annealing program. Worst-case analysis of 
the resulting optimal trajectory quantifies the 
performance degradation with respect to control 
implementation inaccuracies and model uncertainties. 
 
 
2. TRANSIENT ENHANCED DIFFUSION MODEL 
 
Transient enhanced diffusion arises from reaction-
diffusion processes consisting of Fickian diffusion, 
electrical drift motion, and reaction networks 
including boron activation and interstitial clustering. 
The model comprises of coupled continuity equations 
(i.e., mass balances) for each species and Poisson’s 
equation to include the electrical field effect on the 
charged species. The general continuity equation is 
 

 i i
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N J
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t x

∂ ∂
∂ ∂

= − +  (1) 

 
where Ni denotes the concentration, Ji is the flux, and 
Gi is the net generation rate of species i. The flux Ji 
includes terms from the Fickian diffusion and the 
electric field drift motion: 
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where Di denotes the diffusivity and E(x) is the 
electric field. The mobility µi follows the Einstein 
relation 
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where q is the electron charge, k is the Boltzmann 
constant, and T is the temperature. The term γi 
describes the average charge of species according to  
 
 ,

ji j z
j

zγ γ=∑  (4) 

 
where zj are the possible charge states (i.e., +2, 0, 

1− , etc.) and 
jzγ is the fraction of species i having 

charge zj according to the Fermi-Dirac statistics.  
 
Poisson’s equation describes the electric field 
induced by the spatial charge imbalance: 
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where ε denotes the dielectric constant and the charge 
density Q(x) is given by 
 
 ( ) i i

i

Q x p n Nγ= − +∑  (6) 

 
with p and n denoting the hole and electron 
concentrations, respectively. The concentrations p 
and n are assumed to be in thermal equilibrium.  
 
The generation term Gi includes the formation and 
annihilation rates due to the boron activation reaction 
and/or clusters formation and dissociation. The boron 
activation reaction provides a pathway between 
mobile interstitial boron Bi to and from immobile 
activated boron (i.e., substitutional boron, Bs): 
  

 ( )s i s i i s

Kick-out

B Si B Si B Si

Kick-in

assoc ko

dis ki
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+ − +
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 (7) 

 
In addition, the intermediate (Bs─Sii) acts as 
nucleation centers for mixed boron-silicon clusters. 
The rates of reactions follow reactant-limited rate 
expressions with the reaction rate constants adhering 
to the Arrhenius law.  
 
Clusters of interstitial atoms have been shown to 
form during TED (Collart, et al., 2000; Stolk, et al., 

Fig. 1. A typical RTA temperature program. 



1997). There is evidence supporting the formation of 
clusters consisting of pure boron (Collart, et al., 
2000), pure silicon (Stolk, et al., 1997), and mixed 
boron-silicon (Haynes, et al., 1996). During thermal 
annealing, the clusters can act as reservoir (during the 
stabilization step) and source (during ramp up) for 
mobile interstitial boron and silicon. The formation 
and dissolution of pure interstitial clusters follow the 
reactions 
 

 

f

2d

g

m-1 md
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 (8) 

 
where I denotes the interstitials (boron and silicon) 
and the indices m denote the sizes of the clusters. The 
cluster formation rate assumes a reactant diffusion-
limited reaction in agreement with much of the 
literature (see for example (Laidler, 1987)). On the 
other hand, the dissolution rate follows a first-order 
kinetic expression with rate constant according to the 
Arrhenius law.  
 
The formation and dissolution of mixed boron-silicon 
clusters is described by: 
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where p, q are integers larger than or equal to 1. The 
formation and dissolution rates of mixed clusters 
again follow diffusion-limited and first-order 
kinetics, respectively, as in the pure cluster dynamics. 
 
The TED model requires a set of activation energies 
associated with the diffusivities and kinetic rate 
constants for the boron activation reaction and cluster 
dissociation dynamics. These activation energies are 
difficult to directly measure experimentally and 
determine computationally. Experimental and ab 
initio density functional theorem (DFT) estimates of 
the activation energies are scattered throughout the 
literature. For many of the activation energies, the 
published values show significant variation. To 
resolve problems in regard to conflicting estimates in 
the literature, maximum likelihood (ML) estimation 
was applied to determine the most likely values and 
the standard deviations from the published parameter 
estimates (Gunawan, et al., 2003). 
  
Maximum a posteriori estimation takes a Bayesian 
approach which combines experimental data with the 
a priori information, in this case, from maximum 
likelihood estimation of published experimental 
and/or DFT values (Gunawan, et al., 2003). Figure 2 
presents the after-anneal experimental data used in 
the MAP estimation along with simulation profiles 
using the MAP parameters employing various RTA 
programs. Figure 3 shows the agreement between the 
TED model using the MAP estimates and the 

experimental observations compiled from the 
literature (Agarwal, et al., 1999).  
 
 

4. OPTIMAL CONTROL FORMULATION 
 
In the literature, control of transient enhanced 
diffusion through manipulation of RTA programs 
adopted an ad hoc approach through trial and error 
(Jain, et al., 2002), due to incomplete understanding 
of TED mechanisms and correspondingly 
undependable models for describing dopant diffusion 
and activation. In contrast, this work employs a 
model-based control approach for designing an 
optimal temperature program that minimizes the 
junction depth while maintaining a suitable sheet 
resistance. The optimization variable is the RTA 
temperature profile, in particular, the heating and 
cooling profiles and the annealing temperature. A 
conventional RTA only employs a radiative cooling 
step, but there exists evidence (Agarwal, 2000; 
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boron profiles using the TED model with the 
MAP parameters. The junction depth is defined 
as the spatial penetration of boron at a total 
concentration of 1018 atoms/cm3 

Fig. 3. Comparison of junction depth and sheet 
resistance data from experimental works 
employing various annealing programs as 
summarized in the Sematech curve, and from the 
TED simulations. 
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Agarwal, et al., 1999) supporting the importance of 
the ramp down trajectory, especially in high heating 
rate applications (>150 ºC/s).  
 
The optimal control objective chosen here is to 
minimize the junction depth while maintaining a 
satisfactory sheet resistance, which is equivalent to 
the minimization problem: 
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min max
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β β
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≤ ≤

≤

 (10) 

 
where Xj denotes the junction depth, Rs denotes the 
sheet resistance, and T(t) is the RTA temperature 
trajectory. The sheet resistance is given by: 
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 (11) 

 
where q denotes the carrier charge, µ(C) denotes the 
mobility (concentration dependent), and C(x) is the 
spatial concentration of charge carrier (i.e., activated 
dopant). The following empirical formula gives the 
mobility µ (C) for boron (Zeghbroeck, 2002): 
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In this work, it is desired to produce junctions with 
the sheet resistance below Rs,max of 350 Ω/sq. The 
constraints on the temperature gradient, i.e., βmin and 
βmax, describe the limits for the cooling and heating 
rates, respectively. The state-of-the-art lamp-based 
RTA can produce heating rates up to 400 ºC/s 
(Shishiguchi, et al., 1997), while recent advances in 
RTA technology can achieve cooling rates up to 200 
ºC/s (Vortek Industries Ltd., 2002). The maximum 
temperature of thermal anneal Tmax is set to the 
melting point temperature of silicon at 1410 °C.  
 
 

5. WORST CASE ANALYSIS 
 
Worst case analysis (Ma and Braatz, 2001) provides 
tools for quantifying the robustness of the optimal 
control performance to uncertainties in model 
parameters and control implementation. The 
information can be used to assess whether a more 
accurate model and thus more experiments are 
needed, or to give the desired performance and 
accuracy of the lower level control loops and control 
equipment, respectively. The parametric and control 
uncertainties are described as norm bounded 
perturbations δ u  and δθ , that is, 
 

 { }ˆ: ,  1θ θΕ = = + ≤θ θ θ δθ W δθ  (13) 

 { }ˆ: ,  1u uΕ = = + ≤u u u δu W δu  (14) 

where Wθ and Wu are positive-definite weighting 
matrices. This formulation includes uncertain 
parameters lying within a hyperellipsoid as well as 
independent bounds on each element.  
 
For brevity, only the simplest techniques for the 
worst case analysis of batch processes is summarized 
here. A first-order expansion of the performance 
objective with respect to the model parameters gives 
 

 ( )ˆδΦ = − =L θ θ Lδθ  (15) 

 
where L denotes the sensitivity coefficients given by 
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Based on this expansion, the worst-case deviation of 
the performance is defined by (Ma and Braatz, 2001) 
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Similar worst case analysis with respect to the control 
implementation inaccuracies requires a second-order 
series expansion: 
 
 TδΦ = +Mδu δu Hδu  (18) 
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Then the worst-case performance deviation due to 
control errors is: 
 

 
min max
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This optimization problem is equivalent to 
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where k is any real number, the perturbation 

{ }diag , ,δ= r r c∆ ∆ ∆  consists of independent real 

scalar blocks r∆  and a complex scalar cδ , and 
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 ( )1

max min2= −w δu δu  (24) 

 
 ( )1

max min2= +z δu δu  (25) 

 
and δumax and δumin are the upper and lower bounds 
for the control implementation inaccuracies. Tight 
upper and lower bounds for k can be computed in 
polynomial-time using iterative µ-calculations or 
skewed-µ analysis. 
 
 

6. RESULTS AND DISCUSSION 
 

The wafers were implanted with 2×1015 ions/cm2 of 
boron at 0.60 keV with 0° tilt, which gave a junction 
depth of 40 nm. The total boron was assumed to be 
initially 20% substitutional boron and 80% interstitial 
boron (Kobayashi, et al., 2001). The initial conditions 
for Si interstitials agreed with the “+1” model, where 
Si interstitial concentration tracked the total boron 
concentration. The clusters and the Bs-Sii complex 
were assumed not present initially. Boundary 
conditions at the surface for all species assumed no 
flux (i.e., Ji|surface = 0) with no surface Fermi level 
pinning (Jung, et al., 2001). The optimization is 
solved by extending the golden search method (Press, 
et al., 1992) to multidimensional problems. 
 
Figure 4 presents the optimal RTA programs using 
linear and quadratic parameterizations of the 
temperature trajectory, which give junction depths of 
51.3 and 48.2 nm, respectively (see Fig. 5), and the 
same sheet resistance of 350 Ω/sq. The optimal linear 
heating and cooling rates were 400 ºC/s and 200 ºC/s, 
respectively, indicating that the optimal RTA 
program was to effectively heat and cool as quickly 
as possible to the annealing temperature of 1111 ºC, 
in agreement with experimental studies (Agarwal, 
2000; Mannino, et al., 2001). The use of a high 
annealing temperature with fast heating and cooling 
can be explained by the lower effective activation 
energy of TED compared to boron activation.   

Although experimental studies (Agarwal, 2000; 
Mannino, et al., 2001) had alluded to using fast 
heating and cooling rates, the determination of the 
maximum annealing temperature was made through 
extensive trial and error. In contrast, the optimal 
control formulation using the TED model can directly 
determine the annealing temperature, and therefore 
reduce the number of costly experiments. 
 
The quadratic parameterization was applied to the 
heating ramp, while the cooling rate was kept at the 
optimal linear case. The slope of the quadratic profile 
was limited to 1000 ºC/s, which gave the optimal 
trajectory with an annealing temperature of 1144 ºC. 
The quadratic heating profile only gave minimal 
improvement of the junction depth over a linear 
heating profile. If the optimization problem for linear 
heating profile was solved using a relaxed constraint 
on the heating rate βmax of 1000 ºC/s, the optimal 
annealing temperature increased to 1146 ºC giving a 
junction depth of 48.2 nm (see Fig. 5). In other 
words, if the same maximum heating rate is used, the 
quadratic and linear parameterizations give the same 
minimum junction depth. Since heating rate is the 
true constraint in practice, this indicates that there is 
no benefit to using quadratic over linear heating and 
cooling profiles. 
 
Worst case analysis was applied to the linear optimal 
trajectory. The model parameter uncertainties were 
quantified by the MAP covariance estimate 
(Gunawan, et al., 2003).  The analysis on control 
implementation inaccuracies used control trajectory 
perturbations of 5 ºC, 10 ºC, and 15 ºC at five 
temperatures along the heating and cooling ramps 
(660 ºC, 800 ºC, 950 ºC, 1050 ºC, 1100 ºC, 1112 ºC). 
Table 1 presents the worst-case junction depth 
increases due to uncertainties in the model 
parameters and control implementation. 
 
Table 1. Worst-case junction depth increases (in nm) 

from parameter uncertainty and control errors. 
 

δθ |δu| ≤ 5 ºC |δu| ≤ 10 ºC |δu| ≤ 15 ºC 
0.13 1.89 5.15 9.78 

Fig. 4. Optimal RTA programs employing linear and 
quadratic parameterizations. 

Fig. 5. Simulations of after-anneal Boron profiles 
employing  the optimal RTA programs. 



The analysis results indicate that the deviations from 
the optimal junction depth were minimal for model 
parameter uncertainties and moderate to significant 
for control inaccuries. These results indicate that the 
MAP estimation gave parameter estimates with 
sufficient accuracy for use in optimal control studies. 
The typical RTA controllers make ~20 control moves 
every second (Bratschun, 1999), which translates to 
every 20 ºC in the heating step. Further accounting of 
nonuniformity of temperature across the wafer, the 
control inaccuracies could exceed 15 ºC at any given 
time. The analysis indicates that existing feedback 
controllers for implementing RTA programs need 
improvement as future junction depth requirements 
necessitate further reduction of the junction depth. 
 
 

7. CONCLUSIONS 
 
This paper has shown that the optimal RTA program 
for minimizing TED while achieving the desired 
sheet resistance consisted of fast linear heating and 
cooling profiles, as suggested in many experimental 
studies. Worst case analysis on the optimal junction 
depth deviations suggested the need of improvements 
in existing RTA controllers and advances in RTA 
technology to ensure temperature uniformity across 
the wafer.  
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Abstract: We provide a smooth introduction to reduced-rank multivariate analysis, and
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1 INTRODUCTION
Spatially uniformity is necessary for high yields in a
number of crucial processes of the semiconductor
manufacturing industry, such as etching or deposition
of thin films and chemical-mechanical planarization
(CMP). In plasma etching, good spatial uniformity is
the result of both appropriate design of etching tools as
well as development of successful recipes.  For either of
these tasks, the designer or operator must be able to
assess spatial uniformity characteristics, understand
similarities and differences between tools or recipes,
and apply criteria for the monitoring of spatial
uniformity from tool to tool or run to run. Because
uniformity is usually expressed in terms of a single
number (e.g., 3σ/[average etch depth]) very different
spatial uniformity profiles may result in the same
numerical value of uniformity (Figure 1), thus masking
important information that could be useful in a number
of ways related to tool or recipe performance.

    
Figure 1 – Etch rate profiles on 300-mm wafer surface,

interpolated over 49 measurement points (black dots).
Both wafers correspond to virtually the same numerical
uniformity value, but exhibit very different etch patterns.

In this presentation we provide a brief tutorial overview
of the fundamentals of reduced-rank analysis, a topic
that has found widespread use in chemical engineering.
We show how it can be applied to the analysis,
comparison, monitoring, and control of images
corresponding to etch patterns of silicon wafers. Similar

rank reduction techniques, especially Karhunen-Loeve
(KL) transform, have been used to study spatiotemporal
patterns on catalyst surface by Krischer et al.(1993) and
in analyis and control of paper machines by Rigopoulos
and Arkun (1996).

2 COMPRESSION OF COLLINEAR DATA VIA
SVD

2.1 Basic case:  Deterministic signals, no noise

Figure 2 – Etch rate measurement points
An unrealistic but instructional example setting
Suppose that etch rates, x1, x2, x3  are exactly measured
at three points (edge/center/edge) along the diameter of
a wafer, as shown in Figure 2. We want to know if the
etch profiles are similar and etching process consistent.
Noiseless data are collected
Note that, for now, the data are assumed to be exact, i.e.
there is no measurement noise. A set of data collected
is shown in the matrix X below, and   
Figure 3.

Figure 3 – Hypothetical etch rate profiles for 12 wafers (left)
and Hypothetical local etch rates vs. wafer # (right).

x1 x2 x3
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1 2 3

1 2 3

2600 3348 3361
2700 3423 3311
2800 3392 2907
2900 3393 2609
3000 3527 2757
3100 3745 3182 [ ]ˆ3200 3900 3400
3300 3919 3163
3400 3882 2740
3500 3934 2614
3600 4118 2927
3700 4327 3324

x x x

 
 
 
 
 = =
 
 
 
   

X x x x

644444474444448

(1)

Data collinearity and computation of matrix rank
Are the variables 1 2 3, ,x x x  linearly dependent? i.e. is

there a nonzero vector 1 2 3[ ]ˆ Ta a a=a  such that

1 1 2 2 3 3 0 0Ta x a x a x+ + = ⇔ =x a (2)
If so, the data satisfy the relationship (model equation)

1 1 2 2 3 3 0a a a+ + = ⇔ =x x x Xa 0  for ≠a 0 (3)
A numerically robust method to check whether eqn. (3)
is valid is the singular value decomposition (SVD).
Detailed treatment of SVD can be found in a number of
standard texts such as Horn and Johnson (1985). In
SVD a matrix of rank r is decomposed as

{ { { {1 1 1
" "1" "1 " " " "

1 1

T T
r r r

score loading score r loading r

r rT T
i i i i ii i

σ σ

σ
= =

= + +

≡ ≡∑ ∑

X u v u v

u v y v

L
(4)

Application of SVD (e.g. in Matlab ®) to the data
matrix X, eqn. (4) yields that the rank of X is 2, and the
matrix X can be decomposed as

1

3

1

1

12

1

-0.26882
-0.2727
-0.26381
-0.25876
-0.26976
-0.2907619973 -0.54865     -0.65112     -0.52443-0.30431 
-0.30144 " "1,-0.2919
-0.29302
-0.30999
-0.32996

" "1,

Tloading

score

=X

v

y

144444424444443

144424443

1

3

1

2

12

2

0.53687
0.44752
0.14112
-0.10007
-0.068095
0.13391233.7 -0.52217     -0.22301      0.823170.20911
0.005124 " "2,-0.31245
-0.44865
-0.31508
-0.13062

" "2,

Tloading

score

+

v

y

144444424444443

144424443

{
3

12 1
1

3
3

-0.65293     0.72548      -0.21764
" "3, " "3, Tscore loading

×+ 0
y v

144444424444443 (5)

The above eqn. (5) implies that each row of the matrix
X can be written as a linear combination of the row
vectors loading1 and loading2, i.e.

{ {
3 3

1 2 3 1 1 2 2
" "1 " "2" "1 " "2

[ ]                     T T

score scoreT loading loading

x x x y y= +v v

x
14243 14243 14243 (6)

Because V is orthonormal, eqn. (6) yields the sought

eqn. (2), i.e.

3 0T =x v . (7)

Loadings can be interpreted as basic shapes that can be
used to represent the raw data
Note that the row vectors loading1 and loading2 in eqn.
(6) are the same for all rows of data triplets 1 2 3, ,x x x ;
they appear to be related to the system and not to any
individual wafer.  Therefore, loading1 and loading2 can
be interpreted as two basic shapes (Figure 4), whose
linear combination (sum weighted by score entries) can
produce any of the 12 measured shapes.

-1.00

-0.50

0.00

0.50

1.00

1 2 3

Figure 4 – Loadings, eqn. (5). The two shapes attempt to
capture the curvature in the etch rate profile.

Monitoring scores gives a complete picture of the data
It follows from the preceding discussion that one can
simply observe the scores (compressed data, values of
principal components – hence PCA), to capture all
information about the original data. In other words,
instead of looking at   
Figure 3, one can look at Figure 5.

Figure 5 – Scores for the data in Figure 2, according to eqn.
(5).  Note that Score 3 is identically 0, which is precisely
the equation sought in eqn. (2).

 ( ) 2rank =X  implies data points fall on a plane
Figure 6 shows 3-D plots of the data from two different
viewpoints. The second viewpoint clearly shows that
data fall on a plane.

 
Figure 6 – 2-D world in 3-D data (“collinearity”).

Loadings can also be thought of as weights used to
relate original data to scores (compressed data)
If the score vectors y1, y2 are thought of as
corresponding to two new variables, y1, y2, then y1, y2

are related to x1, x2, x3 as follows: Because the loadings
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are orthonormal, we can post-multiply eqn (4). by vj to
get

1 1 ˆ

" "

m n n m
j j j j

score j

σ× × ×= =X v u y123 (8)

or, row by row,

1[ ] TT
j n j j jy x x= ≡ =v x v v xL (9)

or, in vector/matrix form,
T= ⇔ =y V x x Vy (10)

(The new variables y are also called principal
components, see section 2.3.)
Thus, for this particular example we get, using eqn.(9),
that the two nonzero score variables are

1 1 2 3

-0.54865
[ ] -0.65112

-0.52443
y x x x

 
 =  
  

,  
2 1 2 3

-0.52217
[ ] -0.22301

0.82317
y x x x

 
 =  
  

(11)

and that the last score variable should be trivially equal
to zero, i.e.

3 1 2 3

-0.65293
[ ] 0.72548 0

-0.21764
y x x x

 
 = = 
  

(12)

which is the same as eqn. (7).

This gives us the second interpretation of loadings:
They are the vectors of coefficients by which we weight
the original variables in linear combinations that
produce a new set of variables (the “scores”).
The preceding findings about X can be used to monitor
the system
If the system etches subsequent wafers in the same way,
it is reasonable to expect that data points 1 2 3( , , )x x x
will be produced that are related as before, i.e. by eqn.
(2).  That means, equivalently, that if one first
constructs 2 new variables 1 2,y y  in terms of eqn. (9)
then the value of the residual error (cf. eqn. (6))

{ {
3 3

1 2 3 1 1 2 2
" "1 " "2" "1 " "2

[ ]               ˆ

( )

T

T T T

score scoreloading loading

T T

x x x y y
 
 = − +
  
 

= −

x

e v v

x PP x

14243 14243 14243 (13)

for each new data triplet should be equal to zero, or,
equivalently,

2 0 ( ) 0ˆ T T T= = ⇔ − =e e e x I PP x (14)
where the matrix P consists of the first r columns of V.
(The reason for using eqn. (14), instead of simply

=e 0 , is that it can easily be extended to handle noisy
data, as will be shown below).

Consider now the new data shown in Figure 7 .

Figure 7 – Data set from 10 new wafers.

Applying the test of eqn. (14) to the data shown above
yields the results of Figure 8. It is clear that two data
points (#7 and #8) do not fall on the zero line as they
should. These points indicate that the behavior of the
system that etched these wafers is different from before.

Figure 8 – (Errors)2 for 10 new data sets, Figure 7.

2.2 Noisy signals

SVD on the noisy counterpart of X reveals similar
relationship among x1, x2, x3.

Table 1 – Noisy data

If measurements of 1 2 3, ,x x x
are obtained with
measurement noise as shown
in the data of Table 1, SVD on
the data of Table 1 yields
singular values of 20219,
1206.5, 226.15 (cf. eqn.(5)).
The eigenvalues (singular
values squared) are shown in
Figure 9. The smallest
singular value is two orders of

magnitude smaller than the largest one, indicating that
it is probably equal to zero. But the second singular
value is also an order of magnitude smaller than the
largest singular value. Is it really non-zero or zero?
How many singular values should be retained? What is
the underlying rank of the data?  How many singular
values of X are really nonzero?
Let us call the noiseless data matrix Ξ and

= Ξ +X E (15)
where E is a matrix that contains measurements errors.
Note that for the data in Table 1

( ) 3 ( ) 2rank rank= > Ξ =X (16)
The singular values of X, σX, can be bounded by
bounds such as (Horn and Johnson, 1985):

max2( ) ( ) ( )i i i− Ξ ≤ =X E Eσ σ σ (17)

Two simple criteria for detecting the number of
essentially nonzero singular values of X are
(a) visual inspection of the singular value plot such as

in Figure 9, and
(b) fidelity of reconstruction of the original data in X

# x1 x2 x3
1 2585 3373 3353
2 2874 3586 3374
3 2809 3311 2861
4 2759 3355 2562
5 3175 3602 2763
6 3071 3753 3258
7 3424 3933 3486
8 3368 3974 3263
9 3526 3887 2709
10 3523 4034 2735
11 3546 4209 2910
12 3666 4381 3417
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Figure 9 – Squared singular values (eigenvalues) for data in
Table 1.  (a) individual, (b) cumulative.

Figure 10 – 2-D world in noisy 3-D data.(cf. Figure 6).

Singular values quantify the goodness of data fit by a
matrix of reduced rank
If only a “small” number of principal components is
important, what is the best estimate of Ξ (with rank
r n< ) given the data in X? Answering this question
will allow us to construct scores and loadings, and to
monitor the system, in the same way as we did in the
noiseless case. The difference is that what should have
been ideally zero errors, eqn. (13) should now be
“small” (more in the sequel).
To find the best estimate Ξ̂  of Ξ given X  we can
minimize the distance between Ξ and X, i.e. find

( )
min

rank r nΞ = <
− ΞX (18)

When the norm in (18) is induced 2 norm or Frobenius
norm, the solution is given by SVD as

1
ˆ r T

i i ii=Ξ = ∑ u vσ (19)

Moreover, the optimal difference can be shown to be

2 2 1
( )

ˆmin i i r
rank r n

+
Ξ = <

− Ξ = − Ξ =X X σ (20)

and
2

1( )
ˆmin n

F F r ii rrank r n
+= +Ξ = <

− Ξ = − Ξ = ∑X X σ (21)

Note that the singular vectors (loadings) of X could be
very different from the singular vectors (loadings) of
Ξ (Stewart, 1991). Figure 11, shows loadings for X.
Comparison with  Figure 4 shows little difference.

Figure 11 – Loadings(with error bounds) for noisy data of
Table 1 (by PLS-toolbox®) (cf. Figure 4).

Process monitoring by looking at residual errors
Once the relationship among x1, x2, x3 has been
identified by the counterpart of eqn. (7) with noisy
loading v3, the value of the residual error (i.e.
counterpart of eqn. (13) for noisy loadings) for each
new data point (x1, x2, x3) arriving in the future can be
checked. If the relationship among x1, x2, x3 remains the
same, then the residual error should be “small”. This
leads to the counterpart of eqn. (14) for noisy data.
Specifically, if the residual error is normally distributed

(very often a reasonable assumption) then 2 T=e e e
follows a chi-square distribution, from which one can
construct Q-confidence as (cf. eqn. (14))

2( )T T T= − <e e x I PP x δ (22)

2.3 Stochastic signals

For multiple random variables principal components
are uncorrelated new variables, a few of which capture
most variance
SVD can provide additional insight if the vector
variable x is stochastic. The analysis is known as
principal component analysis (PCA) (Jolliffe, 1986).

Consider the random variable vector 1[ ]ˆ T
nx x=x L ,

and assume that [ ]E =x 0 1 where E denotes expected
value. Denote the covariance matrix of x by

[ ]T n nE ×= ∈ℜC xx (23)
It can be shown that we can use the modal matrix

[ ]1ˆ n=A a aL  of C (i.e. the matrix whose columns
are the orthonormal eigenvectors of C) to construct a
new, zero-mean, vector random variable y as

T= ⇔ =y A x x Ay (24)
(principal components) that has the following
important property

( )
2 1

[ ] 0

var( ) max var
i

i j i

T
i i i

E y y

y

<

=
=

= =x
α

α λ , (25)

That is, each principal component, yi is a weighted sum
of the original variables x1, …, xn, (eqn. (24)) such that
(a) its variance is maximal and equal to the i-th

eigenvalue of the original covariance matrix C
(eqn. (25)), and

(b) yi  is orthogonal to all previous principal
components i jy − , 2, 1,..., 1i j i≥ = −  (eqn. (25)).

                                                       
1 If the average of x is not zero, a new deviation variable can trivially
be defined as [ ]E−x x . There is much higher chance that deviation
variables (as opposed to original variables) are linearly dependent.
Indeed, if the variables x satisfy the relationship ( ) =f x 0 , Taylor
series expansion around [ ]E x  yields

( )
[ ]

( ) ( [ ]) [ ] ˆ
E

E E
=≈

∂
= ≈ + − = ⋅ ∆

∂ x x0

f
0 f x f x x x B x

x14243
which implies linearly dependent ∆x .
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SVD on covariance estimate produces values of
principal components
Because the matrix C is unknown, it has to be estimated
from data. The best estimate of C is

1
1

T

m
≈

−
C X X (26)

where X is a matrix that contains the data for each
random variable in a column. Then, the

eigenvalue/eigenvector pairs ( , )wκ  of 
1

1
T

m −
X X  are

estimates of the eigenvalue/eigenvector pairs ( , )aλ  of
C, which implies that

(a) the eigenvectors w of 
1

1
T

m −
X X  (hence the

estimates of eigenvectors of C) are equal to the
singular vectors v of X (eqn.(4)), and

(b) the eigenvalues of 
1

1
T

m −
X X  (hence the estimates

of eigenvalues of C) are equal to ( 1)m −  times the
squares of the singular values of X
Consequently, one can look at the values of

2 2

2 2
1 1[ ]

i i i
T

r rE
= =

+ + + +x xL L
σ σ λ

σ σ λ λ
  1, ,i r= L (27)

to assess what percentage of the total variance  of x, is
captured by each of the principal components. By
looking at the first few principal components, one can
monitor the system that produces the data
(a) visually, e.g., by plotting PC1 vs. wafer #, PC2 vs.

wafer #, etc. or PC1 vs. PC2 vs. PC3.
(b) numerically, by monitoring statistics such as the

Hotelling statistic [5].
Principal components are directly related to
multivariate SPC
If the zero-mean vector random variable x has (non-
degenerate) covariance C, then one can construct the
Hotelling (scalar) random variable

{ {
2

1 1 1

1
ˆ

T

n
T T T T i

ii

y− − −

=

= Λ = Λ = ∑
yy

x C x x A A x y y
λ

(28)

i.e. the Hotelling random variable is the sum of n
independent random variables, 2 /i iy λ . If some
eigenvalues are zero, then we stop the summation in
eqn. (28) at r, the rank of C, to ensure 0i ≠λ .

3 CASE STUDY 1

Etch profiles (49 measurement points 1 49,...,x x ) from 9
different etching tools were collected, thus creating a
9 49×  matrix X. Figure 12 indicates that 2 or 3
principal components result in less that 10% or 5%
error, respectively.  Corresponding scores are shown in
Figure 13. Loadings are shown as weights in Figure 14

and as basis surfaces in Figure 15.  The quality of
reconstruction of the original data by 3 principal
components is excellent, in that it captures curvature
characteristics, as indicated by the samples shown in
Figure 16.

Figure 12 – Cumulative fraction of total variance captured by
principal components (left) for variables 1 49,...,x x

scaled by subtraction of sample averages 1 49,...,x x
(right).

Figure 13 – Scores for the first 3 principal components (cf.
Figure 5). (Confidence bounds by PLS-toolbox®)

Figure 14 – Loadings as weighting coefficients for all 9
principal components.  Semi-disk size and orientation
denote magnitude and sign, respectively.
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Figure 15 – Top and angle views of loadings as contour

surfaces  for the first 3 principal components.

Figure 16 – Original etch profile (column 1), etch profile
reconstructed from 3 principal components (column 2)
and approximation error (column 3) for two sample
wafers (cf. Figure 1)

4 CASE STUDY 2
18 200-mm silicon wafers were etched in an inductively
coupled plasma reactor at Lam Research Corporation’s
facilities in Fremont, CA. Etch rates were measured at
49 points on the wafer, and a 18 49×  data matrix X was
constructed. Three principal components account for
99.94% of variation in data and are considered
significant. The three loadings are shown in Figure 17.
The scores are shown in Figure 18.

Figure 17 – Loadings of 3 principal components.
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Figure 18 – Scores for PCs for experimental data

It can be observed that PC1 score varies far more than
PC2 or PC3 score. There is a strong linear correlation
between PC1 score and u1, u2 with 2 0.9686R =  and

200.24F = . This implies that the first shape can be
easily removed from the etch patterns and indeed we
can see for wafer 9, PC1 score is almost zero. This
information can be used to design better recipes.

5 CONCLUSIONS
Silicon wafer images depicting etch depth uniformity
can be analyzed efficiently and effectively using
reduced-rank multivariate methods.  Two industrial
case studies exemplify the basics summarized in this
work.
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Abstract: In this work, we present a methodology for real-time carbon content feedback
control of a plasma-enhanced metal organic chemical vapor deposition process using optical
emission spectroscopy. Initially, an estimation model of carbon content of ZrO2 thin films
based on real-time optical emission spectroscopy data is presented. Then, a feedback control
scheme, which employs the proposed estimation model and a proportional-integral controller,
is developed to achieve carbon content control. Using this approach, a real-time control
system is developed and implemented on an experimental electron cyclotron resonance
high density plasma-enhanced chemical vapor deposition system at UCLA to demonstrate
the effectiveness of real-time feedback control of carbon content. Experimental results of
the deposition process under both open-loop and closed-loop operations are shown and
compared. The advantages of operating the process under real-time feedback control in terms
of higher productivity, reduced process variation and lower carbon content are demonstrated.

1. INTRODUCTION
The decrease of microelectronic device dimensions
has motivated the replacement of silicon dioxide with
oxides of higher dielectric constant (κ) as a dielec-
tric layer in metal oxide semiconductor (MOS) de-
vices. This is because for silicon dioxide layers thinner
than about 1.6 nm, direct tunnelling currents through
the oxide result in an exponential increase of leak-
age current. Significant leakage current increases the
power dissipation and deteriorates the device perfor-
mance and circuit stability for very large scale inte-
grated (VLSI) circuits (Iwai and Momose, 1998; Lo
et al., 1997). In addition, since the minimum dimen-
sion of capacitors for 1-4 Gb dynamic random access
memory (DRAM) generations falls into the deep sub-
micron range, it is questionable whether acceptable
charge storage can be achieved with SiO2 within such
small size regime.

The alternative is to use layers of a “new" high-κ
dielectric, with the same equivalent oxide thickness

1 Process Control Group.
2 Electronic Materials Synthesis and Plasma Processing Lab.

or capacitance. A large number of high-κ candidate
materials have been extensively studied. Among these
candidate materials, ZrO2 (as well as H f O2) has
several important properties which make it a leading
candidate for an alternative dielectric. The dielectric
constant of ZrO2 is relatively high among the binary-
metal oxides (κ ∼ 25), and its thermal stability on Si is
very good. Moreover, studies have indicated that pure
ZrO2 next to Si (with an ultra thin intervening SiOx
layer) remains stable up to 900◦C (Copel et al., 2000).
In addition, ZrO2 films have superior chemical resis-
tance, good mechanical strength and a low leakage
current level.

A variety of techniques can be used to prepare metal
oxide thin films. Plasma-enhanced chemical vapor
deposition (PECVD) is one of the most prominent
means of preparing dielectric thin films, especially for
memory devices applications, because of such advan-
tages as low process temperature, high film growth
rate and wide flexibility of deposition conditions. The
use of metal-organic (MO) chemicals as precursors
in PECVD of metal oxide thin films enables uniform
film growth over large areas and complex surface ge-



ometries. However, a potential problem of using MO
precursors is the possibility of incorporation of impu-
rities in the deposited thin film. One of the most im-
portant impurity species is carbon, which is abundant
in the precursors. The incorporation of high concen-
tration of carbon in the deposited film can negatively
affect device performance by changing the dielectric
constant and the leakage current density (Chaneliere
et al., 1998).

In general, carbon can be incorporated in the films
either by forming carbides or oxides with the de-
posited metal or oxygen or by occupying intergran-
ular positions among the grains of the main deposited
compound in the form of cyclic or aliphatic species.
Carbon incorporation can even occur simultaneously
in multiple states depending on precursor, material
to-be-deposited and operating conditions (Vahlas et
al., 1998; Maury et al., 1996). Therefore, the de-
velopment and implementation of real-time feedback
control systems for carbon content control could im-
prove the operation and use of MO precursors in
the deposition of high-κ materials. Previous work on
control of PECVD processes has mainly focused on
control of deposition spatial uniformity (Armaou and
Christofides, 1999) (see also (Armaou et al., 2001) for
results on control of plasma etching).

In this work, we present a methodology for real-time
carbon content feedback control of a plasma-enhanced
MOCVD process using optical emission spectroscopy
(OES). Initially, an estimation model of carbon con-
tent of ZrO2 thin films based on real-time OES data
is presented. Then, a feedback control scheme, which
employs the proposed estimation model and a propor-
tional integral controller, is developed to achieve car-
bon content control. Using this approach, a real-time
control system is developed and implemented on an
experimental electron cyclotron resonance (ECR) high
density PECVD system at UCLA to demonstrate the
effectiveness of real-time feedback control of carbon
content. Experimental results of the deposition pro-
cess under both open-loop and closed-loop operations
are shown and compared. The advantages of operating
the process under real-time feedback control in terms
of higher productivity, reduced process variation and
lower carbon content are demonstrated.

2. ECR HIGH-DENSITY PECVD REACTOR

The schematic of the experimental ECR PECVD reac-
tor system is shown in Figure 1. It consists of an ECR
type microwave source, a reactor chamber, a pumping
system, a pressure control system, a gas delivery sys-
tem, an OES system and a computer-based real-time
process control system.

Figure 2 shows the internal configuration of the reac-
tor chamber. A 6-inch-diameter cylindrical stainless-
steel chamber is surrounded by two circular coaxial
electromagnets, which are 7 inches apart. An ASTeX
ECR source is on top of the chamber. Microwave at
2.45 GHz is generated from the source and transmitted

 

Electromagnet (2.5KW) 

3 Stub Tuner 

Gate valve 

TMP  

To mechanical  
pump 

Throttling valve 

Pressure  
Controller 

Ocean optics 
MC2000 

Optical Emission 
Spectroscopy 

M-wave source 
(2.45 GHz) 

Electromagnet (5KW) Ar 

 O2 

MKS 
Baratron G/g 

MFC Power 
Supply 

Local Area Network 

Control PC 

Microwave  
Power Monitor 

ZTB Bubbler 

ZTB+Ar 
MFC 

MFC 

Fig. 1. Schematic diagram of the ECR plasma-
enhanced CVD system used in this study.

into the chamber through a 3/8-inch thick vacuum-
sealed quartz window and a high-density plasma is
generated. A gas diffusion ring is located just below
the top quartz window to conduct uniform distribution
of the gases. A 4 inch-diameter anodized aluminum
substrate holder is centered inside the chamber. The
distance between the substrate holder and the top
quartz window is adjustable in the range of 6.5 inches
to 12 inches. The substrate holder is also connected
with a 13.56 MHz radio frequency (RF) power supply
tuned by a matching network; this allows controlling
the ion impinging energy by applying bias voltage to
the substrate.
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Fig. 2. Internal configuration of ECR PECVD cham-
ber.

The chamber is pumped by a 140 l/s Alcatel 5150CP
turbo-molecular pump (TMP) backed by a mechanical
pump. The base pressure is measured with an HPS I-
Mag cold cathode ion gauge. The chamber pressure
can be controlled and varied between the base pressure
and atmospheric pressure. The MKS 651C pressure
controller takes the measurement of chamber pressure
by an MKS 626A Baratron gauge as input and manip-
ulates an MKS 253B throttle valve, thereby allowing
to control the pressure independently from the gas
flow rates.

We chose zirconium tetra-tert-butoxide [Zr(OC4H9)4]
(ZTB) as our MO precursor because it has a suf-
ficiently high vapor pressure (0.26 mbar at 60 oC)
(Frenck et al., 1991). A bubbler, which is kept at
constant temperature (65 oC), is used for precursor
delivery because ZTB is a liquid at room temperature
(boiling point=90 oC). Ar is used as a carrier gas of
the precursor vapor and the gas line is heated to 80 oC



to prevent the condensation of precursors. O2 is used
as an oxidant and mixed with Ar and ZTB at a point 8
inches away from the entrance to the reactor.

Throughout this study, the electric currents are fixed
at 120 A for the 5 kW top magnet and 150 A for
the 2.5 kW bottom magnet. The distance between the
top quartz window and the substrate holder is kept
constant at 6.5 inches and no bias is applied to the
substrate.

3. OPTICAL EMISSION SPECTROSCOPY
SYSTEM

Optical emission spectroscopy (OES) is the central
real-time measurement tool used in this study. We use
an Ocean Optics MC2000 OES system with five chan-
nels covering the wavelength range from 200 nm to
1000 nm to analyze the plasma. Each channel consists
of independent optic setups including slits, gratings,
a 2048-element linear silicon charged coupled diode
(CCD) array and an optic fiber cable. The configura-
tions of individual channels are shown in Table 1. The
best optical resolution [full width at half maximum]
for this system is 1.4 Å with a 10 µm slit width in
the ultraviolet (UV) range. The integration time can
be set within the range of 3 ms to 60 s. A sapphire
window with minimal UV absorption is used as the
OES port. The emission spectra are taken 1 in. above
the substrate surface in this study so that gas phase
information near the wafer surface can be collected.

Table 1. OES channel configurations of
wavelength range, start pixel (SP), end
pixel (EP) and resolution (in full width at

half maximum [FWHM]).

CH Range (nm) SP EP Res.[FWHM]
0 196.14 ∼ 354.44 4 2044 1.5
1 327.23 ∼ 464.27 0 2047 1.4
2 437.93 ∼ 617.89 0 2047 1.8
3 585.70 ∼ 868.81 0 2046 2.8
4 786.50 ∼ 1039.51 1 2047 2.5

Table 2. Transitions and wavelengths of
atomic emissions observed.
(Striganov and Sventitskii, 1968)

Species Wavelength (nm) Transition
Ar 750.39 4s′(1/2)

o −4p′(1/2)

C 247.85 2p2 1S−3s14Po

Hβ 486.13 2p2Po −4d2D
O 777.42 3s5So −3p5P
Zr 350.93

351.96
Zr+ 339.20 N/A

343.82
349.62

The major atomic emission peaks and molecular band
heads observed in this study are summarized in Table
2 and Table 3, respectively. The analog signals pro-
duced by optical channels are captured by an Ocean
Optics ADC1000 high-speed ISA-bus A/D converter
installed in a Pentium PC. The OES data are then
transmitted through fast ethernet to the computer used
for real-time process control.

Table 3. Transitions and wavelengths of
molecular emissions observed.

(Pearse and Gaydon, 1976)
Species Wavelength (nm) Transition

C2 516.52 A3Πg −X3Πu
CH 431.42 A2∆−X2Π

4. FEEDBACK CONTROL SYSTEM: DESIGN
AND IMPLEMENTATION

The carbon content of the thin film can not be mea-
sured directly in real-time, and thus, estimates of the
carbon content, which are obtained based on plasma
composition in the reactor chamber by OES, are used
in the feedback control system. Previous spectroscopic
study of the reaction plasma (Cho et al., 2001) in
this ECR PECVD system has shown that the carbon
content in the film has a quasi-linear relationship with
respect to the optical emission intensity ratio of C2
molecules and O atoms in the reacting gas. This can be
explained by the fact that carbon molecules are mostly
responsible in forming the precursors for carbon in-
corporation into the film. This result suggests that the
information of optical emission intensity ratio of C2/O
can be utilized to estimate the carbon content in the
zirconium dioxide film in real-time.

In this work, a mathematical model is constructed
to estimate the carbon content of the film based on
the optical emission intensity ratio which is obtained
through OES in real-time. Following the previous ex-
perimental results (Cho et al., 2001), the relationship
between the carbon content in the surface layer and
the optical emission intensity ratio can be written as
follows:

X s
C(t) = Aγ(t) (1)

where X s
C is the atomic concentration (%) of carbon in

the surface of the film, A is a constant which is related
to the operating condition of the specific experimental
system (experimentally determined for our current
chamber condition to be 11.92) and γ is the optical
emission intensity ratio of C2/O.

Under the assumption that the film growth rate re-
mains constant, the carbon content of the whole film
is obtained using the following formula:

XC(t) =

t
∫

t0

X s
C(s)ds

t − t0
(2)

where XC is the atomic concentration (%) of carbon in
the bulk of the deposited film at time t and t0 is the
time in which the deposition starts. In this case, we
treat XC as the time average of X s

C. Combining Eqs. 1
and 2, the following estimation model is obtained:

XC(t) = A

t
∫

t0

γ(s)ds

t − t0
(3)



We note that although the deposition process is a batch
process in nature, an optimal operating recipe can not
be obtained since no accurate mathematical model de-
scribing the relationship between the optical emission
intensity ratio and the inlet mass flow rate is currently
available. Thus, the control problem for the process
is formulated as a set-point regulation problem; this
approach is further justified by our experimental re-
sults which clearly show that the response time of the
closed-loop system is significantly smaller than the
total deposition time.
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Fig. 3. Block diagram of the closed-loop system under
the proposed carbon content controller.

Figure 3 shows the structure of the closed-loop sys-
tem under the proposed carbon content controller. The
input to the controller is the difference between the de-
sired carbon content and the estimated carbon content
and the controller manipulates the inlet oxygen mass
flow rate. The sensor block GOES can be treated as a
pure time delay since it takes a fixed amount of inte-
gration time for the OES system to obtain good signal-
to-noise ratios and transfer the OES data through the
network. The Ge block is the carbon estimator de-
scribed above. The Gc block is the controller based on
the proportional-integral (PI) control algorithm (de-
scribed below in detail). The Gp block is the process
block describing the relationship between the change
of oxygen mass flow rate and the optical emission
intensity ratio γ of the plasma. Gp is identified ex-
perimentally and the identification procedure will be
discussed in detail in subsection 5.1 below.

To eliminate unnecessary control actions, which may
interfere with the plasma and lead to poor closed-
loop performance, the control objective is to stabilize
the carbon content value close to the desired set-
point (i.e., within a certain tolerance ε). A PI control
algorithm is used to achieve this objective of the
following form:

fAr(t)
fO2(t)

= U(t) = Kcê(t)+Ki

t
∫

t0

ê(µ)dµ + R̄ f (4)

ê(t) =

{

e(t) |e(t)| > ε
0 |e(t)| ≤ ε (5)

where U is the output of the controller (i.e., the mass
flow ratio of Ar/O2), R̄ f is a steady state bias ex-
pressed in terms of the mass flow ratio of Ar/O2 at

steady state, fO2 is the oxygen mass flow rate, fAr is
the Argon mass flow rate which scales with the pre-
cursor vapor flow rate, e is the difference between the
estimated carbon content and the set-point value, Kc is
the proportional gain and Ki is the integral gain. The
input of the controller ê(t) is defined as in Eq.5 where
ε is the tolerance within which we want to approach
the desired set-point.

MATLAB simulations of the entire process model
were performed to obtain reference values of the con-
troller parameters to be used in the real-time com-
puter control system. The reference values were ini-
tially computed by using the Ziegler Nichols (ZN)
tuning method (e.g. (Coughanowr, 1991)) and then ad-
justed based on simulation results to achieve a desired
closed-loop response.

The computer process control system was imple-
mented on an Intel Pentium III 700 MHz PC with 512
MByte RAM. All the programs used in this study were
written in LabVIEW language and National Instru-
ments LabVIEW for Windows Version 6.1 was used
as runtime platform.

5. EXPERIMENTAL RESULTS AND
DISCUSSION

5.1 Open-loop system

The objective of the open-loop experiments is to study
the dynamic behavior of the deposition process based
on real-time OES measurements.

The first set of experiments (3 independent runs)
were performed to study the relationship between the
steady-state value of γ and the mass flow ratio of
Ar/O2, R f . The experimental results are shown in
Figure 4; each data point is obtained by setting R f
at a fixed value and measuring γ after 200 s to guar-
antee that the process has reached steady-state. The
experimental results in Figure 4 suggest that the opti-
cal emission intensity ratio varies proportionally with
respect to the cubic of the mass flow rate ratio; this
relationship is shown by the dotted line and can be
mathematically expressed as follows:

γss = KpR3
f (6)

where γss is the steady-state value of the optical emis-
sion intensity ratio and Kp is a constant which depends
on the processing chamber conditions and the carrier
gas flow rate.

In the second experiment, the process dynamics are
identified by varying the mass flow ratio R f in a way
shown in the top curve in Figure 5 and measuring γ
in real time using OES; the experimental results are
presented in Figure 5. It can been seen that the process
can be approximated by a first-order system which has
a small time constant.

Using the experimental results shown in Figures 4
and 5, we constructed a Simulink model shown in



Fig. 4. Experimental data of R f vs. γss from different
depositions for fixed argon flow rate 8 sccm,
chamber pressure at 40 mTorr and microwave
power 300 W.

Figure 6 within a MATLAB environment to simulate
the process; R f (t) is the input and γ(t) is the output.
The model parameters were identified from the exper-
iments to be Kp=0.53 and τp=10 s.

Fig. 5. Response curve of γ for step changes in R f
for argon flow rate 8 sccm, chamber pressure 40
mTorr and microwave power 300 W.

Fig. 6. Simulink representation for the process dynam-
ics.

Fig. 7. Profiles of bulk (A) and surface (B) carbon
concentration of a ZrO2 film computed based
on real-time OES measurements during an open-
loop deposition with microwave power 300 W,
chamber pressure 40 mTorr, Ar flow rate 8.4
sccm and O2 flow rate 8 sccm.

Figure 7 shows the evolutions of the carbon concentra-
tion of the surface (A) and of the bulk (B) of a ZrO2

film during a typical open-loop deposition. The carbon
concentrations are computed based on real-time OES
measurements using the proposed estimation model.
It can be observed that the starting stage of the depo-
sition has relatively higher carbon incorporation. This
corresponds to the OES measured high C2 emission
intensity and low O emission intensity during the ini-
tial stage of the deposition, as shown in Figure 8. Low
O emission intensity indicates a low O concentration
in the plasma; this may cause incomplete oxidation of
the precursor, which leads to a high concentration of
C2 in the plasma during the initiation of the deposition
process.

It can also be noticed in Figure 7 that the carbon con-
centration of the bulk of the film changes throughout
the deposition process. This is not only because the
bulk carbon concentration is an average value, but
also because the carbon incorporation rate varies with
time. This time variation may be explained by the
continuous increase of O concentration in the plasma
due to the complex and competing serial oxidation and
dissociation processes (Cho et al., 2002). As a result,
reaction products with different compositions are gen-
erated and different amount of carbon is incorporated
into the film at different times during the deposition
process. Due to the existence of these uncertainties in
the deposition process, the profile of bulk concentra-
tion of carbon shown in Figure 7 is not reproducible in
our experiments; this suggests that it is very difficult to
obtain a desired carbon concentration with open-loop
operation.

Fig. 8. Profiles of C2 and O optical emission intensity
during an open-loop deposition with microwave
power 300 W, chamber pressure 40 mTorr, Ar
flow rate 8.4 sccm and O2 flow rate 8 sccm.

5.2 Evolution of the closed-loop system

Using the developed real-time feedback control sys-
tem, a carbon content-controlled deposition experi-
ment was performed (see (Ni et al., 2003) for more
results of closed-loop deposition experiments). Figure
9 shows a 20-minute long controlled-deposition which
was carried out with microwave power fixed at 300 W,
chamber pressure controlled at 40 mTorr and Ar flow
rate set at 8 sccm. The carbon content controller was
implemented with a set-point value for the atomic car-



bon concentration of 1.4%, proportional gain Kc=1.0,
integral gain Ki=0.05 and error tolerance ε=0.03%.

Fig. 9. Profiles of bulk (A) and surface (B) carbon
concentration of a ZrO2 film computed based
on real-time OES measurements and profile of
manipulated oxygen flow rate (C) during a con-
trolled deposition experiment with microwave
power 300 W, chamber pressure 40 mTorr and
Ar flow rate 8.4 sccm.

From the bulk carbon concentration curve in Figure
9, we can see that the carbon content of the film
was controlled very closely to the desired value of
1.4% in spite of the initial plasma disturbance men-
tioned above (this result was also verified through off-
line XPS analysis of the deposited film; see (Ni et
al., 2003) for details). The response time is relatively
small compared to the deposition duration which sup-
ports our set-point regulation formulation of this con-
trol problem.

Comparing the bulk carbon concentration profile of
the thin films under closed-loop (Figure 9, top plot)
and open-loop (Figure 7, top plot) conditions with the
same initial deposition conditions, it can be clearly
seen that the carbon content of the film was reduced
by more than a factor of 5 under closed-loop control.
Moreover, compared to open-loop operation, the con-
trolled process is more robust with respect to distur-
bances caused by system start-up, and mass flow rate
and plasma variations.
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1. INTRODUCTION 

 
Chemical Vapor Deposition (CVD) is one of the 
essential processes in semiconductor manufacturing 
because of its ability to deposit thin smooth films 
conformally onto submicron-scale features. CVD 
processes have evolved together with the 
semiconductor industry, from early bell-jar CVD 
reactors to the current cold-wall single-wafer reactor 
(Xia et al., 2000). Although current conventional 
CVD reactors produce thin smooth films 
successfully, their configurations lack the 2-
dimensional spatial controllability necessary to 
counteract non-uniformity generators such as 
reactant depletion. 
 
Significant research effort has been put into 
improving uniformity of deposited thin films (Wang 
et al., 1986; Moffat and Jensen 1988; Kleijn et al., 
1989; Moslehi et al., 1995; van der Stricht et al., 
1997; Yang et al., 1999; Theodoropoulos et al., 
2000). Most of these studies have focused on 
optimizing the process operating parameters (gas 

input rate, wafer temperature, and reactor pressure) 
and apply to reactor configurations that do not allow 
any adjustments to their overall geometry (Wang et 
al., 1986; Moffat and Jensen 1988; Kleijn et al., 
1989; Moslehi et al., 1995; van der Stricht et al., 
1997). Because current configurations of CVD 
reactors mostly lack precise control actuators for gas 
delivery to the wafer surface, the spatial control of 
film characteristics becomes limited by inflexible 
CVD reactor configurations. While some research 
has focused on distributing precursor gases across the 
wafer surface with pre-specified spatial variation 
(Yang et al., 1999; Theodoropoulos et al., 2000), the 
reactor designs were mainly motivated by the goal of 
decreasing gas phase reactions in MOCVD processes 
using designs that separate precursors to improve 
film uniformity.  
 
As a response to these perceived CVD reactor design 
shortcomings, we have developed a novel CVD 
reactor intended to improve across-wafer 2-
dimensional controllability. This new CVD reactor 
introduces a segmented showerhead design featuring 

     



individually controllable gas distribution actuators, a 
design that reverses the residual gas flow by 
directing it up through the showerhead (henceforth 
referred to as the reverse-flow design), and sampling 
ports for in-situ gas sampling. 
 
In this paper, we describe the proof of this novel 
design concept by simulation and a sequence of 
experiments performed using a prototype reactor. We 
refer to this design as the Programmable CVD 
Reactor Concept because of the potential of real-time 
control of gas phase composition across the wafer 
surface. An illustration of the three-zone prototype 
Prgrammable CVD reactor is shown in Fig. 1. 
 

 
Fig. 1. The Programmable CVD reactor illustrating 
the segmented showerhead structure. 
 

2. CVD REACTOR PROTOTYPE DESIGN 
 

The major design feature of the Programmable CVD 
reactor is its segmented showerhead. A schematic 
diagram of the reactor is shown in Fig. 2. 
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Fig. 2. Schematic diagram showing a vertical cross-

section of the Programmable CVD reactor and its 
feed gas delivery system. 

 
The effect of the segmented showerhead design is to 
discretize the region above the wafer surface into 
individually controllable regions. Because each 
segment is fitted with separate feed gas lines, the 
precursor gas composition in the area of wafer 

surface corresponding to each segment can be 
individually adjusted. 
 
To enhance film uniformity in the wafer area 
corresponding to each segment and to reduce 
interaction between segments, residual gas is 
recirculated up through each segment of the 
showerhead and mixed in a common exhaust volume 
above the showerhead honeycomb structure (Fig. 3). 
The reverse-flow of exhaust gas means diffusional 
transport dominants in the region above the wafer 
and below the bottom of the showerhead segments. 
This design feature increases the controllability of 
across wafer gas composition relative to conventional 
CVD reactors, which normally draw residual gas 
across the wafer surface (e.g., Moslehi et al., 1995). 
 
Showerhead/wafer spacing is controlled with the 
linear motion device shown in Figure 2. The 
sampling tube of each segment can be used to 
transport a small amount of gas to a real time in-situ 
sensor, such as a mass spectrometer. From the 
residual gas analysis of each segment, approximate 
film thickness and the composition of film deposited 
on each area corresponding to each segment can be 
determined. Also, this sampling tube and sensor can 
be used to diagnose process operation during a 
deposition run. 
 

 
Fig. 3. Periodic gas flowfields generated by the 

recirculating showerhead design. 
 
To test the feasibility of the Programmable CVD 
concept, we have constructed a prototype reactor by 
modifying one reaction chamber of an Ulvac-
ERA1000 CVD cluster tool. The Ulvac-ERA1000 
CVD cluster tool located on the University of 
Maryland’s campus is a commercial CVD tool used 
for selective tungsten deposition. In its original 
configuration, the hydrogen reducing gas entered 
through a quartz showerhead above the wafer; wafer 
heating was provided by a ring of heating lamps 
above the showerhead. As part of the programmable 
reactor modification, substrate heating was used in 
place of lamp heating, and the quartz showerhead 
was replaced by a new assembly consisting of a 
three-segment honeycomb structure equipped with 
two feed tubes and one sampling tube per each 
segment. (Fig. 4.) 

     



 
Fig. 4. A photograph of the three-zone prototype 

showerhead mounted on the Ulvac reactor 
chamber. 

 
The prototype system is designed to deposit tungsten 
films using the hydrogen reduction process; this 
deposition process was chosen to test the prototype 
reactor because the Ulvac reactor originally was 
designed for tungsten deposition, and the reactions 
for tungsten deposition by hydrogen reduction have 
well known mechanisms and rate expressions (Arora 
and Pollard, 1991; Kleijn 2000; Kleijn et al., 1991; 
Kleijn and Werner, 1993). Additionally tungsten 
deposition remains a commercially important 
manufacturing process (Ireland, 1997). 
 

2. PROTOTYPE EXPERIMENTAL TESTS 
 
A number of initial experiments were performed 
using the three zone prototype to validate the design 
assumptions and collect data for developing a 
detailed process simulator. Typical operating 
conditions for the first experiments consisted of a 0.5 
torr chamber pressure, a wafer temperature of  
350oC, and 20 minute deposition times. In all cases 
where the showerhead/wafer spacing was small (e.g., 
1mm), distinct hexagonal film patterns were 
produced (Fig. 5), and as anticipated, the pattern 
because more diffuse as the showerhead/wafer 
increased. 
 
In one particular set of experiments, pure Ar was fed 
to Segment 1 at a flowrate of 50sccm; 50sccm of 
WF6 was fed to segment 2, and 50sccm of H2 was 
fed to segment 3. The film thickness in the region 
below each segment was determined by sheet 
resistance measurements using a four-point probe; 
the interpolated results are shown in Fig. 6. While 
some W deposition should take place directly under 
Segment 2 (where pure WF6 is fed) due to the Si 
reduction mechanism, it is interesting to note that 

some W deposition takes place under the remaining 
two segments. An explanation for this phenomenon 
is presented in the following sections on segment 
simulator development. 
 

 
Fig. 5. Typical tungsten deposition pattern produced 

by the prototype Programmable CVD reactor. 
 

 
Fig. 6. Deposition thickness profiles corresponding to 

an experiment in which pure Ar, WF6, and H2 
were fed to the individual segments. 

 
3. MODELING AND SIMULATION 

 
Significant effort is being put into developing 
process simulation tools to assess the effectiveness of 
the segmented design and to determine the operating 
conditions for future experiments. Because of the 
Programmable CVD reactor’s reverse-flow design, 
reactants in the gas mixture in the common exhaust 
volume can diffuse back into the segments. 
Therefore, to sustain the pre-specified gas 
compositions at the bottom of each segment, the back 
diffusion through the segment should be suppressed 
below an acceptable level by the convective upward 
flux contribution. 
 
A steady-state 1-dimensional segment model (for 
each segment) combined with a well-mixed common 
exhaust volume model was used to assess the ability 
of the segmented structure to maintain significant 
segment-to-segment gas composition differences 
near the wafer surface. The geometry of a single 
segment, together with the notation used in the model 
development, is shown in Fig. 7. A schematic 
diagram of common exhaust volume is shown in Fig. 
8 where the each shaded area represents the top of 
the each segment of the showerhead. 
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Fig. 7. Schematic diagram of a single showerhead 
segment. 
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Fig. 8. Schematic diagram of the common exhaust 

volume. 
 

3.1 Film deposition reactions 
 
The overall reaction of tungsten deposition by 
hydrogen reduction is 
 

6[HF](g)[W](s)](g)3[H](g)[WF 26 +→+  
 
The gas phase reactions associated with this 
deposition process are negligible due to low reactor 
pressure during the process operation (Arora and 
Pollard, 1991; Kleijn et al., 1991). Surface reactions 
by Si reduction will occur during the film nucleation 
step 
 

)](3[SiF2[W](s))](2[WF3[Si](s) 46 gg +→+  
 
This is a self-limiting reaction and typically accounts 
for a 10-200 nm of W film thickness (Groenen et al., 
1994). 

 
3.2 Multi-component reactant transport. 

 
In the limit of zero distance between the segment 
wall bottom and wafer surface, the mass balance for 
each species in each segment can be written as 
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where C is the total gas concentration in mol/m3, Ni is 
the total flux of species i in mol/(m2 s), and Fi is a 
forcing function accounting for the change in flux 
due to fresh feed of species i from the segment feed 
tube. At steady-state, (2) can be rewritten as 
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where Rkin represents the rate of either of the 
deposition reactions and αi is the corresponding 
stoichiometric coefficient of species i in that reaction. 
 
The multicomponent gas species transport can be 
expressed by the Stefan-Maxwell equation. The 
binary diffusion coefficient is estimated by the 
Chapman-Enskog kinetic theory and Neufield 
method (Kleijn and Werner, 1993; Reid et al., 1987). 
Neglecting any effect of pressure and forced 
diffusion, the Stefan-Maxwell equation is written as 
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and Di

T is the multicomponent thermal diffusion 
coefficient defined in Kleijn and Werner (1993) 
 
To examine whether back-diffusion of WF6 from the 
common exhaust volume through the segments 
where Ar and H2 are the only feed gas species can 
account for the W deposition in these segments, we 
compute the maximum WF6 concentration possible 
for these segments by setting Ni, the total species flux 
by combined thermal and normal diffusion, to zero at 
z=0 in (3). The boundary condition at the segment 
top is based on the assumption that the gases leaving 
each showerhead segment are mixed perfectly in the 
common exhaust volume (Fig. 8) giving 
 

∑
=

= n

i
iE

jiout
ji

N

N
x

1
,

,,
,

   at z=L   where      (5) ∑
=

=
ns

j
jioutN

1
,,iEN ,

 
and where subscript i denotes species number and j 
refers to segment number. A linear temperature 
profile was assumed for the gas located in the region 

     



between the wafer and the bottom of the feed gas 
tube, where it was assumed the gas entered at room 
temperature.  
 
Given boundary conditions (5), the species moles 
fractions xi,j can be represented as a function of 
spatial position by a truncated global trial function 
expansion. A Galerkin projection method is used to 
spectrally discretize the system; a Newton-Raphson 
procedure then is used to solve the resulting set of 
algebraic equations. For these simulations, it was 
found that a truncation number of 20 was sufficient 
to obtain converged solutions to this boundary-value 
problem. 
 

4. SIMULATION RESULTS 
 
Results of this solution procedure, with simulation 
conditions set to match the experimental conditions 
that produced the wafer shown in Fig. 5 are shown in 
Fig. 9. In this Figure, the wafer surface is located at 
z=0 (the left axis limit) and the segment top is to the 
right; the vertical line represents the location of the 
bottom of the feed tube bundle inside each segment. 
 
The top plot shows that for the Segment 1, in which 
pure Ar is fed, the major gas component is Ar; 
however, there is significant back-diffusion of H2 
and it appears that sufficient WF6 diffuses back into 
the segment to account for the W film found in the 
experiments. The effect of thermal diffusion is 
clearly evident in these plots: note how the H2 profile 
increases near the heated wafer surface. Similarly, 
we observe the back-diffusion of WF6 into the H2-fed 
segment, and the dominance of WF6 in the segment 
where only WF6 is fed. We conclude from this 
simulation that the potential for significant back 
diffusion of WF6 can account for the thin W film 
deposited in Segments 2 and 3, where no W-
containing species were fed. 
 

5. CONCLUSIONS 
 
A novel, spatially controllable CVD reactor design 
has been developed and a prototype reactor was 
constructed by modifying a commercial CVD cluster 
tool. Preliminary simulations and experiments 
demonstrate the feasibility of producing spatially-
patterned film characteristics by controlling gas 
phase reactant composition directly above the wafer 
surface 
 
This approach to thin-film manufacturing control 
opens the door to a new generation of CVD reactor 
design, allowing single-wafer combinatorial studies 
and precise across-wafer uniformity control in a 
single reactor design. Current research focuses on 
developing a detailed process simulator that will be 
used to fully exploit the capabilities of this new 
reactor system. 
 

 
Fig. 9. Reactant gas composition profiles for the 3 

segments corresponding pure Ar feed to Seg. 1, 
WF6 to Seg. 2, and H2 to Seg. 3; all at 50sccm. 
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