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Abstract: Several investigators recently have explored the use of cell population
balance equation (PBE) models for the design of biochemical reactor control
strategies. A major disadvantage of the PBE modeling approach is that the
incorporation of intracellular reactions needed to accurately describe cellular pro-
cesses leads to substantial computational difficulties. We investigate an alternative
modeling technique in which the cell population is constructed from an ensemble
of individual cell models. The average value or the number distribution of any
intracellular property captured by the cell model can be computed from ensemble
simulation data. To illustrate the basic procedure, a single cell model of yeast
glycolytic oscillations is used to construct large cell ensembles for the investigation
of cell population synchronization. The potential use of cell ensemble models for
bioreactor controller design are discussed.
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1. INTRODUCTION

The cell population balance equation (PBE) has
been developed to describe heterogeneities in large
cell populations (Eakman et al., 1966). Most PBE
models are based on a single internal state such
as cell age (Hjortso and Nielsen, 1995) or cell
mass (Zhu et al., 2000). Cell PBE models with a
vector of internal states corresponding to intracel-
lular concentrations also can be constructed. The
incorporation of intracellular reactions within the
PBE framework is facilitated by utilizing a distri-
bution function that represents the mass fraction
of cells with a particular internal state (Nielsen
and Villadsen, 1994). In addition to difficulties
associated with modeling cell cycle events, an in-
herent limitation of the mass fraction PBE formu-
lation is that a detailed intracellular description

leads to a computationally intractable model due
to the high dimension of the internal cell state.

Shuler and co-workers (Ataai and Shuler, 1985;
Kim and Shuler, 1990; Schuler and Domach, 1983)
have developed an alternative modeling approach
for heterogeneous cell populations. Rather than
formulate the governing PBE, the cell population
is described by an ensemble of single cell models
which differ according to key properties such as
the division size. The number distribution func-
tion with respect to any property captured by
the single cell model can be calculated from en-
semble simulation data. Ensembles with approx-
imately 250 individual cells have been used to
predict steady-state and transient size distribu-
tions for aerobic (Schuler and Domach, 1983) and
anaerobic (Ataai and Shuler, 1985) continuous



cultures of E. coli as well as plasmid instabil-
ity in a genetically modified E. coli strain (Kim
and Shuler, 1990). We have not found any recent
developments or applications of this promising
modeling approach. In this paper, we outline the
construction of a cell ensemble model for predict-
ing population synchronization associated with
yeast glycolytic oscillations (Henson et al., 2002).
The results are used to access the utility of cell
ensemble models for bioreactor controller design.

2. YEAST GLYCOLYTIC OSCILLATIONS
Glycolysis is the cellular process by which glucose
is metabolized to generate stored energy in the
form of ATP. Under certain laboratory conditions
oscillations have been observed in glycolytic inter-
mediates and extracellular species. Experimental
studies (Ghosh and Chance, 1964) suggest that an
autocatalytic reaction in the glycolytic chain is re-
sponsible for single cell oscillations. Additional ex-
perimental work has focused on characterizing the
cellular mechanisms which cause synchronization
of individual cells such that they oscillate in phase,
thereby producing oscillations at the cell popu-
lation level. These studies suggest that excreted
acetaldehyde is the extracellular species which
mediates synchronization (Richard et al., 1996).

2.1 Single Cell Model
A single cell model derived from the glycolytic
reaction pathway shown in Figure 1 is used for
the computational studies presented in this paper.
The following model equations (Wolf and Hein-
rich, 2000) are obtained for an arbitrary cell i:

dS1,i

dt
= J0 − v1,i (1)

dS2,i

dt
= 2v1,i − v2,i − v6,i (2)

dS3,i

dt
= v2,i − v3,i (3)

dS4,i

dt
= v3,i − v4,i − Ji (4)

dN2,i

dt
= v2,i − v4,i − v6,i (5)

dA3,i

dt
=−2v1,i + 2v3,i − v5,i (6)

where: S1, S2, S3, S4, N2 and A3 denote the
intracellular concentrations of the species shown
in Figure 1; J0 is the flux of glucose into the cell;
and Ji is the net flux of acetaldehyde/pyruvate out
of the i-th cell. The intracellular reaction rates v2–
v6 depend linearly on the species involved in each
reaction (Wolf and Heinrich, 2000). The reaction
rate v1 includes an additional nonlinear factor
that accounts for autocatalytic behavior:

v1 = k1S1,iA3,i

[
1 +

(
A3,i

KI

)q]−1

(7)
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Fig. 1. Yeast glycolysis reaction pathway.

where: k1, KI and q are kinetic parameters. The
flux of acetaldehyde/pyruvate from the i-th cell
into the extracellular environment is modeled as:

Ji = κ(S4,i − S4,ex) (8)

where: S4,ex is the extracellular acetaldehyde/pyruvate
concentration; and κ is a coupling parameter re-
lated to the cell permeability.

2.2 Cell Population Balance Equation Model

A population balance equation (PBE) model
based on the glycolytic reaction network in Fig-
ure 1 is formulated to demonstrate the associated
computational difficulties. The PBE model is de-
rived using a distribution function that represents
the mass fraction rather than the number fraction
of cells with a particular internal state because
this formalism allows intracellular reactions to be
incorporated in a straightforward manner (Nielsen
and Villadsen, 1994). The PBE is written as:

∂Ψ(x, t)
∂t

+
J∑

j=1

∂

∂xj
[Rj(x, t)Ψ(x, t)] =

[µ(x, t)− µ(t)]Ψ(x, t) (9)

where: x is the internal state vector; Ψ(x, t)dx
represents the mass fraction of cells with internal
state in the range [x, x + dx] at time t; J is the
number of intracellular species; xj is the intracel-
lular concentration of species j; and Rj(x, t) is the
net rate of formation of species j. The function
µ(x, t) represents the specific growth rate of cells
with internal state x, while µ(t) is the average
specific growth rate. Both quantities can be calcu-
lated directly from the intracellular reaction rates
given the associated stoichiometry (Nielsen and
Villadsen, 1994). For the yeast glycolytic pathway



depicted in Figure 1, the number of intracellular
species J = 6 where xT = [S1 S2 S3 S4 N2 A3].

From a computational perspective, the key point
is that the internal state x which characterizes
the intracellular concentrations of each cell is of
dimension six. Assume the model is to be solved
numerically by discretization in each of the six
internal coordinates (Zhu et al., 2000). This pro-
cedure will yield a set of nonlinear ordinary dif-
ferential equations (ODEs) with time as the only
independent variable. If the same number of dis-
cretization points m is used for each coordinate,
then the total number of ODEs is n = m6. Even
with a coarse discretization where m = 10, this
procedure results in one million ODEs. The di-
mension of the internal state vector clearly places
severe limitations on the complexity of the intra-
cellular reaction network that can be utilized. Fur-
thermore, the mass fraction PBE formalism is not
useful for modeling cell cycle events such as bud-
ding and mitosis (Nielsen and Villadsen, 1994).

3. CELL ENSEMBLE MODEL

The ensemble modeling technique allows single
cell behavior to be described with an appropriate
level of detail and circumvents the computational
problems inherent in the PBE modeling approach.
Furthermore, the number distribution with re-
spect to any property captured by the single cell
model can be calculated from ensemble simulation
data. Below we construct a cell ensemble model
to investigate the synchronization phenomenon
associated with yeast glycolytic oscillations.

3.1 Model Formulation and Solution

The dynamics of the i-th cell in the population
are represented by (1)–(8). A mass balance on
extracellular acetaldehyde/pyruvate is derived un-
der the assumption that the cell volume density
(ϕ) remains constant as the number of cells M is
varied (Wolf and Heinrich, 2000):

dS4,ex

dt
=

ϕ

M

M∑
1

Ji − v7 =
ϕ

M

M∑
1

Ji − kS4,ex (10)

where k is the kinetic constant of the acetalde-
hyde/pyruvate degradation reaction. The total
number of ODEs (n) in the cell ensemble model
increases linearly with the number of intracellular
species (6) and the number of individual cells (M):
n = 6M+1. This is to be contrasted with the PBE
model (9) where the number of ODEs obtained
from discretization increases as the power of the
number of intracellular species.

The model parameter values used in the sub-
sequent simulations are identical to those listed
in our original paper (Henson et al., 2002). For

these values, the cell ensemble model possesses a
single stable periodic solution in which all the cells
oscillate in phase and with the same amplitude
regardless of the cell number. Substantially more
complex oscillatory solutions are obtained when
each cell is subject to random perturbations in
the intracellular kinetic parameters. The dynamic
simulation code was developed in FORTRAN us-
ing the variable step ODE solver DVODE (Brown et
al., 1989). Efficient solution of large cell ensembles
was achieved by approximating the full Jacobian
matrix with a banded Jacobian matrix. The actual
Jacobian matrix is not banded due to the presence
of the acetaldehyde/pyruvate flux Ji in (4) and
(10). When these flux terms are neglected in the
Jacobian calculation, the problem becomes highly
banded. We found that this simplification reduced
computation time by at least an order of magni-
tude. A typical one hour dynamic simulation with
1000 cells required less than 10 minutes of CPU
time on a Pentium III 700 MHz processor.

3.2 Calculation of Distribution Properties

Numerical integration of the cell ensemble model
produces a data matrix which contains the intra-
cellular concentrations of each cell and the extra-
cellular acetaldehyde/pyruvate concentration at
each sampling point in time. This problem of com-
puting cell size distributions from ensemble data
was investigated previously for E. coli (Schuler
and Domach, 1983). Below we present a simple
algorithm for computing the cell number distri-
bution with respect to any intracellular variable.

Let z(t) represent the intracellular variable for
which the cell number distribution function N(z, t)
is to be calculated. Consider discretization of the
internal coordinate z into L intervals of width
∆zl = zl − zl−1 where z0 = zmin and zL = zmax.
By definition of the distribution function:

∞∫

0

N(z, t)dz ∼=
L∑

l=1

Nl(t)∆zl = 1 (11)

where Nl(t) represents the average value of N(z, t)
over the interval ∆zl. Denote z̃i(tk) as the value
of the intracellular variable z produced by the i-
th cell at the discrete time tk. For an ensemble
consisting of M individual cells, the mean value
of the intracellular variable z at time tk is:

z̄(tk) =
1
M

M∑

i=1

z̃i(tk) (12)

The distribution function is computed by parti-
tioning the ensemble into the discrete intervals:

ñl(tk) =
M∑

i=1

{S[z̃i(tk)− zl−1]− S[z̃i(tk)− zl]}(13)



where: ñl(tk) represents the number of cells with
intracellular state z in the range [zl−1, zl); l ∈
[1, L]; and S(x) is the unit step function. The dis-
cretized approximate number distribution func-
tion is calculated as:

Ñl(tk) =
ñl(tk)
M∆zl

, l ∈ [1, L] (14)

If the discretization interval is sufficiently small,
then a smooth continuous number distribution
Ñ(z, tk) can be computed from the discrete distri-
bution values Ñl(tk) by polynomial interpolation.

Resolution of the population behavior is deter-
mined primarily by the number of cells M in
the ensemble. As M is increased, the number of
intervals L also can be increased such that each
interval is populated with a sufficient number of
cells to produce a smooth distribution function.
If L is chosen too small relative to M , resolution
is unnecessarily lost. Conversely, the distribution
function will be noticeably non-smooth if L is
chosen too large relative to M .

4. SIMULATION STUDY

The cell ensemble modeling approach is applied
to the problem of yeast glycolytic oscillations. We
focus on NADH concentration dynamics to allow
comparisons to experimental data where the aver-
age NADH concentration was continuously mea-
sured by fluorometry (Ghosh and Chance, 1964;
Richard et al., 1996). The ensemble model pro-
duces non-trivial number distributions (i.e., cells
with different NADH concentrations) only if there
is some source of randomness in the individual cell
models. Two possible sources of randomness are
investigated in the following simulations.

The first test involves an ensemble of 1000 cells in
which the initial conditions of each individual cell
are perturbed according to a Gaussian distribu-
tion with zero mean and a variance of 2.25. Fig-
ure 2 shows the NADH concentration evolution of
each cell. Due to the large variance used, initially
the cell population is disorganized and exhibits
no temporal structure indicative of a synchro-
nized culture. A highly synchronized population
in which the cells oscillate in phase and with a
period of approximately one minute is observed
after 60 minutes. Figure 3 shows the ensemble
average NADH concentration dynamics and the
NADH number distributions computed with z0 =
0 mM, zL = 0.3 mM and ∆z = 0.005 mM at
three times during the simulation. The computed
distributions show the presence of two distinct
cell subpopulations which eventually become syn-
chronized and converge into a single population
that produces fully developed oscillations. Slower
synchronization is observed when less cell models
are included in the ensemble (Henson et al., 2002).
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Fig. 2. Cell population synchronization for ran-
domized initial cell state.
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Fig. 3. Ensemble average NADH concentration
dynamics and NADH number distributions
corresponding to Figure 2.

The next test involves a 1000 cell ensemble in
which the intracellular reaction rate parameters
of each cell are randomly perturbed with zero
mean and variance of 6.25×10−4. Figure 4 shows
the evolution of the NADH concentration of each
individual cell at the end of a 150 minute dynamic
simulation. While the dynamic behavior is not
easily characterized, the random variations appear
to produce three distinct subpopulations. This
behavior is more clearly evident in Figure 5 where
the dynamics of the average NADH concentration
and the NADH concentration of three individual
cells near the end of the 150 minute simulation
are shown. The individual cells have been chosen
to show the oscillatory dynamics of representative
cells from the three subpopulations observed in
Figure 4. Each subpopulation must contain a suffi-
cient number of cells to yield accurate predictions
of average and distribution properties. This is pos-
sible only if the cell ensemble is sufficiently large.
The top plot in Figure 6 shows the complete evolu-
tion of the average NADH concentration. The bot-
tom plot shows the NADH number distributions
computed at at 0 (—), 10 (· · ·) and 150 (− − −)
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Fig. 4. Cell population dynamics for randomized
intracellular kinetic parameters.
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Fig. 5. NADH concentration dynamics for the
total ensemble and three representative cells
corresponding to Figure 4.
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Fig. 6. Ensemble average NADH concentration
dynamics and NADH number distributions
corresponding to Figure 4.

minutes. The sharp initial distribution is indica-
tive of a highly synchronized cell population. As
random cell variations lead to desynchronization,
the NADH distribution becomes increasingly dis-
persed. The final distribution clearly shows the
existence of the three distinct cell subpopulations.

5. BIOREACTOR CONTROLLER DESIGN

The cell ensemble modeling approach allows a de-
tailed single cell model to be incorporated within
a cell population description. As a result, cell
ensemble models are well suited for predicting
complex population dynamics observed in bio-
chemical reactors. The development of cell pop-
ulation control strategies based on such detailed
models offers the potential to enhance bioreactor
productivity, especially with respect to extracellu-
lar metabolites that are excreted during a specific
phase of the cell cycle as a result of complex
interactions between cellular metabolism and cell
cycle events (Alberghina et al., 1991).

As compared to simpler modeling techniques com-
monly used for bioreactor simulation and con-
trol (Daoutidis and Henson, 2002), an obvious
shortcoming of the cell ensemble approach is
model complexity. We have shown that the total
number of model equations increases linearly both
with the number of equations in the single cell
model and the number of cells included the ensem-
ble. However, the simple cell model used in this
paper yields an ensemble model of 6000 differen-
tial equations. More complex cell models (Domach
and Shuler, 1984; Ataai and Shuler, 1985) and/or
larger ensembles will yield population models that
are difficult to solve efficiently. This raises serious
questions about the possible utility of these mod-
els for bioreactor control.

Clearly the development of control strategies
based on high dimensional cell ensemble models
will be facilitated by continuing improvements
in computing technology. Parallel advances in
single cell modeling and cell ensemble solution
algorithms also will be required. For example,
judicious simplification of intracellular reaction
networks can reduce the computational burden
associated with the individual cell model. Only
the reaction pathways most relevant to the cellu-
lar behavior being studied need be incorporated.
Furthermore, linear reaction pathways often can
be lumped into a single reaction without loss of
model fidelity to reduce the number of dependent
variables (Nielsen and Villadsen, 1994). The cell
model studied in this paper only contains lumped
reactions in the upper part of the glycolytic path-
way because this level of detail is sufficient to
describe the oscillatory dynamics.

Model complexity also may be reduced by us-
ing a relatively small number of single cells to
construct the ensemble model. In this paper, we
used large ensembles of 1000 cells to achieve fine
resolution of the computed cell number distri-
butions. Previous work on E. coli suggests that
smaller ensembles comprised of a few hundred cell
models can be sufficient to resolve the popula-
tion behavior (Domach and Shuler, 1984; Ataai



and Shuler, 1985). Furthermore, the ensemble
size required to achieve satisfactory prediction of
cell population dynamics within a feedback con-
trol strategy may be considerably less than that
needed to generate high fidelity simulation results.

The development of control strategies based on
cell ensemble models will require the formulation
and solution of large-scale state estimation prob-
lems. The first step in this direction is analysis of
cell ensemble model observability for given sets
of intracellular and extracellular measurements.
Extensive distribution measurements of intracel-
lular concentrations that are required to achieve
observability typically will not be available. In this
case, estimation of unobservable state variables
via an open-loop observer should be possible. Re-
gardless of the problem formulation, the nonlin-
ear state estimator will require the development
of customized numerical solution techniques. The
computation time required to solve the cell ensem-
ble model studied in this paper was reduced by
an order of magnitude by exploiting the approxi-
mately banded structure of the model equations.
The same simplification should be applicable to
other ensemble models in which the individual
cells interact via a limited number of species in
the extracellular environment. For example, cell
cycle dependent oscillations observed in continu-
ous yeast bioreactors are believed to be mediated
by ethanol excreted into the extracellular environ-
ment (Nielsen and Villadsen, 1994).

Despite these possible improvements, cell ensem-
ble models will remain complex and difficult to
utilize for model-based control. The incorpora-
tion of such models within nonlinear optimization-
based control strategies appears to infeasible. We
intend to pursue linear model predictive control
and simple nonlinear control techniques such as
feedback linearization. More specifically, popula-
tion control strategies will be developed for con-
tinuous yeast bioreactors to determine the pro-
ductivity improvements which result from using
an ensemble model based on a detailed single
cell model instead of population balance equation
model in which the intracellular state is charac-
terized only by cell mass (Zhu et al., 2000).
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OPTIMIZATION OF A FED-BATCH BIOREACTOR
USING SIMULATION-BASED APPROACH
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Abstract: We use simulation-based approach to find the optimal feeding strategy for
cloned invertase expression in Saccharomyces cerevisiae in a fed-batch bioreactor. The
optimal strategy maximizes the productivity and minimizes the fermentation time.
This procedure is motivated from Neuro Dynamic Programming (NDP) literature,
wherein the optimal solution is parameterized in the form of a cost-to-go or profit-to-
go functions. The proposed approach uses simulations from a heuristic feeding policy
as a starting point to generate the profit-to-go vs state data. An artificial neural
network is used to obtain profit-to-go as a function of system state. Iterations of
Bellman equation are used to improve the profit function. The profit-to-go function
thus obtained, is then implemented in an online controller, which essentially converts
infinite horizon problem into an equivalent one-step-ahead problem.

Keywords: Fed-batch Reactor, Optimal Control, Neuro-Dynamic Programming

1. INTRODUCTION

A vast majority of industrially important fermen-
tors are operated in fed-batch mode, which in-
volves addition of substrates continuously to an
otherwise batch reactor. Fed-batch reactors are
especially useful when growth or metabolite pro-
duction follows substrate or product inhibition ki-
netics. In such cases, substrates need to be added
in a controlled manner in order to maximize the
productivity with respect to the desired product.
For example, if product formation is inhibited un-
der excess substrate conditions, low substrate con-
centrations are desired for high product yields. At
the same time, higher substrate levels are required
to prevent starvation of cells and to maintain
high growth rates. Thus, there exists an optimum
feed profile that maximizes the productivity of the
process.

1 The author to whom correspondence should be ad-
dressed. Email: jay.lee@che.gatech.edu

The determination of optimal feed profile is a chal-
lenging problem, as the bioreactors follow com-
plex nonlinear dynamics. Resulting optimal con-
trol problem is therefore a nonlinear programming
(NLP) problem accompanied by various input and
state constraints. The optimization is often non-
convex and the global optimum difficult to achieve
(Banga et al., 1997).

Many authors have used Pontryagin’s maximum
principle to solve the optimal control problem.
However, this approach may be very difficult
for such problems; so several alternative solu-
tion techniques have been proposed. Cuthrell and
Biegler (1989) solved the optimal control problem
of a fed-batch penicillin reactor using successive
quadratic programming (SQP) based on orthog-
onal collocation on finite elements. Luus (1993)
used iterative dynamic programming (IDP) to
find optimal feed profile for the same reactor;
while Banga et al. (1997) presented a fast stochas-
tic dynamic optimization method — called in-



tegrated controlled random search for dynamic
systems, ICRS/DS — for this reactor. Recently,
Bonvin et al. (2002) provided a good review of dy-
namic optimization methods for batch processes,
and also presented algorithms that achieve nearly
optimal performance in the presence of uncertain-
ties.

In this paper, optimal control of a fed-batch fer-
mentor for cloned invertase expression in Saccha-
romyces cerevisiae is considered. The expression
of the enzyme is repressed at high glucose con-
centration. Hence, a fed-batch reactor is ideal for
this process (Patkar and Seo, 1992). Patkar et
al. (1993) proposed a model for this fermentation
process, involving a set of four coupled ODEs.
They used first-order conjugate gradient method
in order to find the optimal feed rate profile for
this system. Later, Chaudhuri and Modak (1998)
used a neural network model into the generalized
reduced gradient method for the same optimiza-
tion problem.

The main disadvantage of the above methods is
that the fermentation ending time should be fixed
a priori in both cases. In order to find the optimal
fermentation ending time, several different fer-
mentation ending times should be guessed and, for
each one of them, one productivity optimization
problem should be solved. This is extremely com-
putationally demanding. Methods such as control
parameterization may be used for free-end-time
problems to obtain open loop optimal policies.
Another drawback of these methods stems from
the fact that they are open loop optimal, which
means that each time an initial condition changes,
a new and different optimization problem should
be solved. Besides, the resulting fixed policies do
not take into account the possible process distur-
bances.

Dynamic Programming (DP) is an optimization
method that can be used to overcome these limita-
tion. It was introduced by Bellman and coworkers
(Bellman, 1957) as a feasible approach to solve the
dynamic optimization that results from an opti-
mal control problem. Here, the aim is to find the
optimal ‘cost-to-go’ function, which can be used
to parameterize the optimal solution as a function
of the system state. This method is promising as
presents a feasible approach to solve any optimal
control problem. However, it suffers from ‘curse
of dimensionality’, which refers to exponential in-
crease in computational cost with increase in state
dimension.

Recently, Neuro-Dynamic Programming (NDP)
was proposed as a way to alleviate the curse of
dimensionality (Bertsekas and Tsitsiklis, 1996).
NDP uses simulated process data obtained under
suboptimal policies to fit an approximate cost-to-
go function – usually by fitting artificial neural

networks, hence the name. The initial approxi-
mate cost-to-go function is further improved by
an iteration procedure based on the so called
Bellman equation. Closely related to NDP are
the methods in AI literature, collectively classi-
fied as Reinforcement Learning (RL, Sutton and
Bartow (1998)). We applied this approach to on-
line control of a continuous bioreactor (Kaisare et
al., 2002) as well as that of a benchmark Van der
Vusse reactor (Lee and Lee, 2001). Simulation-
based NDP method will be applied for optimal
control of the fed-batch Saccharomyces cerevisiae
fermentor. We have considered a deterministic
optimization problem, i.e. the model is known
and full state feedback is assumed. The method
can be expanded to stochastic case. Moreover,
simulation-based NDP methods do not require
the explicit model to be known—methods like Q-
learning (Watkins and Dayan, 1992) developed in
RL community are model-free stochastic learning
techniques.

2. STATEMENT OF THE OPTIMAL
CONTROL PROBLEM

Our objective is to find an optimal feed profile µ
that adapts itself when initial conditions change
or when disturbances occur. The optimal policy is
a function of the system state, represented as

µ(x) = arg max
u,tf

{productivity − λ · tf} (1)

subject to relevant input and state constraints and
following system dynamics. λ is a positive con-
stant that penalizes invertase fermentation time.

In general, the performance index is mathemat-
ically represented as the sum of stage-wise costs
incurred (or rewards obtained) until the end of
horizon.

J(xk) =
tf

∑

i=k

φ(xi, ui) + φ̄t(xtf ) (2)

subject to

Path Constraint: gi(xi, ui) ≥ 0

Model Constraint: ẋ = f(x, u)

Here φ is the stage-wise cost/reward and φ̄p is
the terminal cost/reward. The path constraints
include all input and state constraints. The sys-
tem dynamics appear as model constraints. For
discrete-time system, the model f(x, u) can be
integrated for one time step. Equivalently, model
constraint becomes xk+1 = fh(xk, uk).

The above problem is an infinite-horizon control
problem, as we wish to solve free terminal time
optimal control (i.e. tf is not fixed).



3. NEURO-DYNAMIC PROGRAMMING

We begin this section with the description of Dy-
namic Programming (DP), which is an elegant
way to solve the previously introduced optimiza-
tion problem. In this method, the process is mod-
eled as a chain of consecutive transitions from
one state to another. The way each transition is
made depends on the decision variable, which has
an associated cost or reward. The objective of
dynamic programming is to maximize the total
profit or minimize the total cost, obtained from
the transitions needed to reach the final desired
process state from initial process state.

DP involves stage-wise calculation of the profit-
to-go function 2 to arrive at the solution, not
just for a specific x0 but for general x0. Thus,
the objective function is split into two parts —
one stage reward obtained in going from xk to
xk+1, and total future rewards as a function of
xk+1. The latter is parameterized as profit-to-go
function, which represents the “desirability” of
state xk+1. Using the profit-to-go function, the
multi-stage optimization problem is cast into an
equivalent single-stage optimization that is solved
online.

max
uk

{φ (xk, uk) + J∗ (xk+1)} (3)

where the optimal profit-to-go function is at each
stage is defined as

J∗ = max
u

{ tf
∑

i=k+1

φ(xi, ui) + φ̄t(xtf )

}

(4)

The crucial step in DP is calculation of the profit-
to-go function J∗(x). This involves stage-wise
evaluation of rewards obtained in all possible tran-
sitions from each state in the state space. Without
going into further details, we mention here that
this approach is seldom practically feasible due
to the exponential growth of the computation
with respect to state dimension. This is referred
to as the ‘curse of dimensionality’, which must
be removed in order for this approach to find a
widespread use.

An alternative method, which uses simulations
to overcome the curse of dimensionality, involves
computation of an approximation of the profit-to-
go function. Exhaustive sampling of state space
can be avoided by identifying relevant regions of
the space through simulation under judiciously
chosen suboptimal policies. The policy improve-
ment theorem states that the new policy defined
by µ(x) = arg maxu

{

φ(x, u) + J i(fh(x, u))
}

is an

2 It is customary in DP to use cost-to-go for minimization
problem. We use profit-to-go as we solve maximization
problem. Both cost and profit are exactly equivalent

improvement over the original policy (Howard,
1960). Indeed, when the new policy is as good as
the original policy, the above equation becomes
the same as Bellman optimality equation (5).

J∞(x) = max
u
{φ(x, u) + J∞(fh(x, u))} (5)

Equivalently, for a free-end-time batch optimiza-
tion problem, the above equation can be formu-
lated as

J∞(x) = max
[

φ̄t(x),

max
u
{φ(x, u) + J∞(fh(x, u))}

]

(6)

where the modification accounts for termination
of batch at a state x. In other words, if φ̄t(x) is
greater than the second term, the batch should be
terminated.

Use of the Bellman equation to obtain iterative
improvement of cost-to-go approximator forms
the crux of various methods like Neuro-Dynamic
Programming (NDP) (Bertsekas and Tsitsiklis,
1996), Reinforcement Learning (RL) (Sutton and
Bartow, 1998), Temporal Difference (Tsitsiklis
and Roy, 1997) and such.

In this paper, the basic idea from NDP and RL lit-
erature is used to obtain optimal performance of a
fed-batch bioreactor. Relevant regions of the state
space are identified through simulations of several
heuristic policies, and initial suboptimal profit-to-
go function is calculated from the simulation data.
A functional approximator is used to interpolate
between these data points. Neural network is the
chosen function approximator (hence the name
‘Neuro’ in NDP). Evolutionary improvement is ob-
tained through iterations of the Bellman equation
(7). When the iterations converge, this offline-
computed profit-to-go approximation is then used
for online optimal control calculation for the re-
actor.

3.1 Algorithm

A detailed algorithm was presented in our pre-
vious work (Kaisare et al., 2002), which is repro-
duced in this section. Following notations are used
in this section and rest of the paper. J represents
profit-to-go values. A function approximation re-
lating J to corresponding state x is denoted as
J̃(x). Superscript ()i represents iteration index for
cost iteration loop and k is discrete time. Finally,
J̃(k) ≡ J̃(x(k)) and φ(k) ≡ φ(x(k), u(k)).

The simulation-based approach involves computa-
tion of the converged profit-to-go approximation
offline. The following steps describe the general
procedure for the infinite horizon profit-to-go ap-
proximation.



(1) Perform simulations of the process with cho-
sen suboptimal policies under all representa-
tive operating conditions.

(2) Using the simulation data, calculate the
∞-horizon profit-to-go for each state vis-
ited during the simulation. For example,
each closed loop simulation yields us data
x(0), x(1), . . . , x(tf ), where tf is the termina-
tion time for the specific suboptimal policy.
For each of these points, compute the profit-
to-go value.

(3) Fit a neural network or other function ap-
proximator to the data to approximate the
profit-to-go function — denoted as J̃0(x) —
as a smooth function of the states.

(4) To improve the approximation, perform the
following iteration (referred to as the cost or
value iteration) until convergence:
• With the current profit-to-go approxi-

mation J̃ i(x), calculate J i+1(k) for the
given sample points of x by solving

J i+1 = max
[

φ̄t(xk) max
u
{φ(xk, uk)

+J̃ i(fh(xk, uk))
}]

(7)

which is based on the Bellman Equation.
• Fit an improved cost-to-go approximator

J̃ i+1 to the x vs. J i+1(x) data.
(5) Policy Update may sometimes be neces-

sary to increase the coverage of the state
space. In this case, more suboptimal simu-
lations with the updated policy (maxu φ +
J̃ i) are used to increase the coverage or the
number of data points in certain region of
state space.

Once the value iteration described above con-
verges, the resulting profit-to-go function can be
used for online control. At each time, state es-
timates are obtained (for deterministic problem,
we have the state itself). Single-stage optimization
problem, as shown in Eq. (3), is solved using the
converged profit-to-go function J̃a in place of the
optimal J∗.

4. INVERTASE PRODUCTION
OPTIMIZATION

The fermentation process considered here consists
of production of invertase in Saccharomyces cere-
visiae utilizing glucose for growth. Patkar and
Seo (1992) reported the fermentation kinetics
of invertase production in fed-batch cultures; as
well as experimental data for cell density (c, ex-
pressed as optical density OD), glucose concentra-
tion (s gm/L) and specific invertase activity (i)
obtained with various glucose feeding strategies
in 1.2 liter bioreactor. The productivity of the
reactor at any time is given by

productivity = icV (8)

Thus the optimization problem as defined in Eq.
(1) becomes

max
u,tf

{

icV |tf
− λtf

}

(9)

with constraints u ∈ [0, 0.2722] and V ≤ 1.2. The
model equations are summarized in appendix A.

4.1 Obtaining profit-to-go function

The first step in simulation-based NDP optimiza-
tion is to obtain a suboptimal profit-to-go func-
tion. This was done through simulations of a set of
suboptimal heuristic policies. The heuristics were
selected so that the 4-dimensional state space was
sufficiently covered. The policies involved main-
taining the reactor at initial volume V (0) for cer-
tain amount of time ti and then increasing the
feed rate until end of fermentation time or until
constraints are met (if Vmax is reached before tf ,
feed rate is reduced to u = 0 and reactor is oper-
ated in batch mode until t = tf ). Mathematically,
the feed rate profiles followed were

u(t; ti, b) =
{

0 if t < ti
0.02(1 + b(t− ti)2.2) if t ≥ ti

We used four values of b = [0.05, 0.07, 0.1, 0.13]
and nine values of ti = [1, 2, . . . , 9] to generate 36
different heuristic policies. Each of these policies
were implemented for three different initial values
of V (0) = [0.4, 0.6, 0.8].

For each of the heuristic policies, the optimal
ending time was determined — as the time that
yielded the maximum profit value calculated ac-
cording to Eq. (A.5). The productivity thus cal-
culated gives the terminal reward function φ̄t =
icV |tf

. Stage-wise reward is given by φ(xk) =
λ∆tk. Thus, for each of the states corresponding
to a specific heuristic policy, the profit-to-go func-
tion is calculated as

J(xk) = icV |tf
− λ · (tf − tk)

where tk = k.∆t is the “current” time for xk.

We obtained a total of 9328 states and correspond-
ing profit-to-go values through simulation of the
heuristic policies. Next, a function approximator
was used to correlate the profit-to-go as a func-
tion of system state. A backpropagation neural
network was used that had 4 input nodes (cor-
responding to 4 state variables), 1 output node
(profit-to-go) and two hidden layers with 17 and 5
nodes respectively. We denote this approximation
as J̃0.



Policy Profit icV |tf
tf

Patkar (1993) 3.70 7.30 12
Chaudhuri (1998) 3.50 7.10 12
Best heuristic 3.72 7.23 11.7
NDP 3.80 7.25 11.5

Table 1. Optimal control results for
V (0) = 0.6.

Given this initial approximation of profit function,
Bellman equation was used iteratively to improve
the optimality of the profit-to-go approximation.
For each of the 9328 data points, following equa-
tion was solved

J̃ i+1 = max
[

icV |xk

max
uk

{

−λ∆tk + J̃ i(xk+1)
}

]

Here, superscript i represents the iteration index.
∆t represent time steps, which were taken to be
constant and equal to 0.1 hours. Value iterations
were performed as elaborated in section 3.1. Three
iterations were required for the profit function
to converge with 1-norm less than 0.2. The best
neural network structures for each of the iterations
were 4-17-5-1, 4-17-5-1 and 4-13-5-1 respectively.

Simulations using the converged profit-to-go ap-
proximator resulted in visits to regions of state
space previously unvisited by heuristic controller.
Hence, policy update was performed by including
these unvisited states, and value iteration of Bell-
man equation was performed again. It took just
one iteration for the profit function to converge.
The neural network structure was found to be 4-
15-5-1, and this J̃4 was used for control.

5. RESULTS

The fourth trained neural network was imple-
mented into online optimal control. The reactor
was started with V (0) = 0.6. This was the case
solved by Patkar et al. (1993) and Chaudhuri and
Modak (1998). The results are shown in Table 1.
State space plots for online controller performance
are shown in Fig. 1. It can be seen from the figure
that the optimal policy results from interpolation
in the state space and not in the policy space.

The controller was then tested with different ini-
tial volume V (0) = 0.5. The results are shown in
the second column in Table 2. This condition was
not “seen” before by the function approximator.
Next, we tested the controller in presence of un-
known disturbance: abrupt cell death occurs at 9
h resulting in a 50% decrease in cell concentra-
tion. The NDP method still gives most optimal
performance over the other methods. The best
heuristic reported above is the heuristic that gave
maximum profit value. It should be noted that

Policy Profit Profit
V0 = 0.5 Cell death

Patkar et al. (1993) 3.74 0.62
Best heuristic 3.58 1.88
NDP 4.06 1.97
Table 2. Control results for a different

V0 and unknown disturbance cases

we found different heuristics to be the best for
different V (0) values. Thus, the optimal controller
does not select any particular heuristic policy;
instead it “patches” solution of various heuristics
to come with a different, optimal policy.

6. CONCLUSIONS

A simulation-based Neuro-Dynamic Programming
(NDP) strategy was applied to obtain optimal
feeding profile for different initial conditions for
invertase production in a fed-batch bioreactor.
Simulation from suboptimal heuristic laws is used
to identify relevant regions of the state space and
to initialize the profit-to-go function approxima-
tion. The profit-to-go approximator is then im-
proved by performing iterations of Bellman equa-
tion over only the relevant regions of the state
space. The profit-to-go function thus obtained was
then used for online optimal control. This method
gives nearly optimal performance for different ini-
tial conditions without requiring to recompute
the profit-to-go function. This method therefore
has a promise in controlling fed-batch reactors in
presence of disturbances.
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Appendix A. FED-BATCH REACTOR MODEL

Mass balance equations

( ˙cV ) = (RrYcr + RfYcf ) cV (A.1)

( ˙sV ) = usf −RtcV (A.2)

( ˙icV ) = (π − kdi) cV (A.3)

V̇ = u (A.4)

where u is the feed rate, c(OD), s(g/L) and
i(units/OD/l) represent concentrations of cell,
substrate and invertase respectively. The rate ex-
pressions are

Rr =
0.55s

0.05 + s
Rt = max

{

1.25s
0.95 + s

,Rr

}

π =
6.25s

0.1 + s + 2s2 Rf = Rt −Rr

Ycr = 0.6, Ycf = 0.15, kd = 1.85.

Operating conditions: c(0) = 0.15, s(0) = 5,
i(0) = 0.1, sf = 10, V (0) = {0.4, 0.5, 0.6, 0.7, 0.8.

Objective function:

max
u

{

icV |tf
− λtf

}

(A.5)

subject to constraints 0 ≤ u ≤ 0.2722, V ≤
1.2. Here, tf is fermentation time, λ = 0.3 and
sampling interval is ∆t = 0.1.
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Abstract: Glucose concentration controllers for Type I diabetic patients are synthesized using
model–based methods. A physiologically–based model of the insulin–dependent diabetic is
employed as the patient. For modeling and control purposes, the patient is approximated
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nonlinear controller synthesis strategies: internal model control using partitioned inverses
(Doyle III et al., 1995), and model predictive control.
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1. INTRODUCTION

In the normal patient, proper glucose control is
maintained by the pancreatic β–cells; these cells
alter their secretion of insulin, a potentiator for
glucose removal from the bloodstream, in response
to changing glucose levels. In the Type I (or insulin–
dependent) diabetic patient, this control mechanism
does not function properly, leading to sustained
elevated blood glucose concentration and a condition
known as hyperglycemia (defined as blood glucose >
120 mg/dL). The Diabetes Complications and Control
Trial (1993; 1996) has shown that this condition is
responsible for many of the long–term effects of
diabetes, such as blindness, kidney failure, and limb
loss. While classical injection therapy can return
the patient to near normoglycemic levels (glucose
between 70 and 120 mg/dL), two primary drawbacks
result from this treatment. First, the non–continuous
nature of treatment often leads to wide variations
in glucose concentration. In addition, over–delivery
of insulin can result in significant drops in blood
glucose concentration into the hypoglycemic range (<
60 mg/dL). This low–glucose condition deprives the
cells of fuel and can lead to coma and patient death.
The maintenance of glucose within tight physiological

limits is of supreme importance for the survival of
diabetic patients.

The treatment of insulin–dependent diabetes currently
employs insulin injection, inhalation delivery systems,
or continuous infusion pumps. The inherent drawback
of all of these approaches is their reliance on patient
compliance to achieve long–term glucose control. The
patient is normally required to adjust their insulin dose
levels prior to meals, exercise, and sleep, and it is
assumed that the patient delivers a correctly estimated
dose at the proper time. The loss of glucose control
may result from an incorrect estimate of insulin need
or a missed dose. In an effort to remove the patient
from the control loop, this work focuses on the
development of a closed–loop insulin delivery system
using periodic glucose measurements to calculate and
deliver an insulin dose that will maintain the patient
within the normoglycemic range in response to a
variety of physiological disturbances.

Three primary components would compose a closed–
loop insulin delivery system. Patient glucose mea-
surements would be accomplished with an in vivo
glucose concentration sensor; a significant effort is
ongoing in this area (Jaremko and Rorstad, 1998). To



deliver variable amounts of insulin to the patient, there
exist a variety of pump mechanisms (Cohen, 1993;
Minimed Corporation, 1999). Linking the sensor and
the delivery device is the control algorithm, on which
this paper is focused. Classical feedback algorithms
are inadequate for glucose control, due to the
existence of system constraints and their interactions
with the patient dynamics. The following work
evaluates two candidate advanced control structures,
nonlinear internal model control using partitioned
model inverses (PNLI–IMC) and nonlinear model
predictive control (NMPC), as well as their linear
counterparts, with respect to their glucose control
performance in response to glucose concentration
challenges.

2. DIABETIC PATIENT CASE STUDY

The structure used as the diabetic patient in this
work is the physiologically–based pharmacokinetic /
pharmacodynamic model given in (Sorensen, 1985;
Parker et al., 2000). This model uses a compartmental
technique to account for the connectivity and
interaction of the various organs important to glucose
and insulin metabolism and dynamics. From an input–
output perspective, the steady state behavior is shown
in Figure 1. In the local region of the nominal
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Fig. 1. Steady state locus for the diabetic patient.
Nonlinear patient model (dashed), linear model
(solid).

condition (uss ≈ 23.9 mU/min, yss ≈ 81.1 mg/dL),
the diabetic patient displays linear behavior. However,
more severe hypo– and hyperglycemic states elucidate
the nonlinear character of the diabetic patient glucose–
insulin response. The shape of the steady state locus
motivates the use of polynomial empirical models
to approximate the system behavior. Advantages of
this approach include the relative ease with which
empirical models can be identified and updated, as
compared to more physiologically relevant models.
Furthermore the calculation of the model inverse, for
use in the control algorithm, can be facilitated by
selecting certain model structures, as discussed in
greater detail below (Doyle III et al., 1995).

3. MODEL DEVELOPMENT

Model–based control systems require an accurate
dynamic patient model. Given the significant vari-
ability observed in biomedical systems (Puckett
and Lightfoot, 1995), an easily customizable model
is preferable. These requirements lead to the use
of empirical model structures for capturing patient
dynamics. If a linear model is required, which facil-
itates controller synthesis, then discrete–time transfer
functions can be employed. Alternatively, Volterra
series, a member of the class of nonlinear moving
average models, are effective in approximating
nonlinear process dynamics (Boyd and Chua, 1985;
Zheng and Zafiriou, 1994; Zheng and Zafiriou, 1995).
Both structures are straightforward to update, and the
decision about which model to employ depends on the
control structure and desired performance.

3.1 Volterra Series

In an effort to capture the nonlinear characteristics of
the diabetic patient, a nonlinear Volterra series model
was selected to approximate the input–output behavior
of the diabetic patient. Previous work (Florian and
Parker, 2002) developed a Volterra model for the
patient process described in Section 2. The remainder
of this subsection will highlight those results as they
form the basis for the model employed in the control
studies.

The general Volterra series model has the form:

ŷ(k) = y0 +
N

∑
i=1

M

∑
j1=1

. . .
M

∑
jN=1

hi( j1, . . . , jN)×

u(k− j1) . . .u(k− jN) (1)

The diabetic patient can be approximated using the
above discrete–time nonlinear model because the
glucose–insulin dynamics display fading memory
(Boyd and Chua, 1985); inputs further in the past have
a lesser effect on the output than more recent input
changes, up to a memory of M, beyond which the
input effects are no longer significant. By selecting a
model memory, M and model order, N, a truncated
Volterra series can be employed to model a given
system. Model coefficients (hi( j1, . . . , jN)) identified
from patient data provide an empirical relationship
(the Volterra model) between past insulin infusion
rates (u(k − i)) and glucose concentration (y(k)) for
a given patient at each sample time (k).

Starting from the general Volterra series model in
equation (1), Florian and Parker (2002) showed
that a third–order diagonal structure provides a
good trade–off between identifiability (from limited
clinical data) and predictive accuracy. The diagonal
structure reduced the number of unknown model
coefficients from 12,341 to 121, and decreased the



data requirements by orders of magnitude. This
Volterra model can be decomposed as:

y(k) = h0 +
�

(k)+ � 2(k)+ � 3(k) (2)

�
(k) =

M

∑
i=1

h1(i)u(k− i),

� 2(k) =
M

∑
i=1

h2(i, i)u
2(k− i),

� 3(k) =
M

∑
i=1

h3(i, i, i)u
3(k− i),

Here
�

denotes the linear terms, and diagonal
terms of order N are given by � N . To facilitate
the identification procedure, y(k) and u(k) are in
scaled deviation form. In order to capture the dynamic
response of the diabetic patient, the glucose sampling
rate, Ts, and the model memory, M, were selected
such that ≈ 99% of the patient step response was
captured by M coefficients, resulting in Ts = 10 min
and M = 40. This is a reasonable memory length for
application in controller synthesis, and the glucose
sampling interval of 10 minutes is characteristic of
current sensor development goals.

In model identification, tailored input sequences can
dramatically reduce the amount of data necessary
for model development while simultaneously offering
improved coefficients (Parker et al., 2001a). An input
sequence of at least four discrete levels is required
to identify a third–order Volterra model (Nowak and
Van Veen, 1994). As in (Florian and Parker, 2002),
a tailored five–level sequence was constructed that
excited only the diagonal terms. The input sequence:

u(k) =















































γ1 k = 0
0 1 ≤ k ≤ M

−γ1 k = M +1
0 M +2 ≤ k ≤ 2M +1
γ2 k = 2M +2
0 2M +3 ≤ k ≤ 3M +2

−γ2 k = 3M +3
0 3M +4 ≤ k ≤ 4M +3

(3)

is a special case of a continuous–switching–pace
symmetric random sequence, where the sequence
levels represent deviations from the nominal input
value. In the previous identification study (Florian
and Parker, 2002), it was established that |γ1| < |γ2|
provided superior estimates of model coefficients due
to the lesser effect of the finite memory assumption
for smaller inputs. Furthermore, the second–order
diagonal coefficients were identified only from the γ2
magnitude pulse responses, as these provided better
stimulation of nonlinear behaviors. The sequence used
to identify the Volterra model in equation (2) is shown
in Figure 2

The identification objective was chosen to be
minimization of model prediction error:
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Fig. 2. Input sequence (top) and output response
(bottom) for linear plus nonlinear diagonal
coefficient identification.

J =
4M+3

∑
k=0

e2(k) =
4M+3

∑
k=0

[y(k)− ŷ(k)] (4)

In combination with the input sequence above,
coefficient estimators can be analytically derived as in
(Florian and Parker, 2002):

ĥ0 =
y(0)+ y(M +1)

4
(5)

+
y(2M +2)+ y(3M+3)

4

ĥ1(k) =
γ3

2 (y(k)− y(k +M +1))

2γ1γ2(γ2
2 − γ2

1 )
(6)

−
γ3

1 (y(k +2M +2)− y(k +3M+3))

2γ1γ2(γ2
2 − γ2

1 )

ĥ2(k,k) =
(y(k +2M +2)− y(2M+2))

2γ2
2

(7)

+
(y(k +3M +3)− y(3M+3))

2γ2
2

ĥ3(k,k,k) =
γ2(y(k)− y(k +M +1))

2γ1γ2(γ2
2 − γ2

1 )
(8)

−
γ1(y(k +2M +2)− y(k +3M+3))

2γ1γ2(γ2
2 − γ2

1 )

These estimators were updated from (Parker et
al., 2001a) to include third–order diagonal model
estimation effects and the use of a partial sequence for
second–order coefficient estimation. These estimators
show superior performance in the absence of
measurement noise; by repeating the input sequence
in Figure 2, noise effects can be averaged over the
number of repeats, as in (Parker et al., 2001a).

4. CONTROLLER SYNTHESIS

While a significant amount of work has been
performed in the area of controller synthesis for
insulin–dependent diabetic patients (see (Parker et
al., 2001b) for a survey) the majority of these
controllers employ linear patient models. The key



Table 1. Controller and model struc-
ture evaluation chart. The cells include
the abbreviation used for the particular

controller–model pairs.

Controller
IMC MPC

Linear LIMC LMPC
Model

Nonlinear PNLI-IMC NMPC

contribution in the present study is the evaluation and
comparison of two control structures, internal model
control (IMC) using a partitioned model inverse and
model predictive control (MPC), when the models
employed are clinically–relevant empirical models of
the Volterra type. Table 1 provides the abbreviations
used for the controllers under evaluation. In all cases,
the controllers were designed to accommodate a
sampling rate of 1 measurement per 10 min. Based on
current sensor research (Jaremko and Rorstad, 1998),
this sampling rate provides a reasonable trade–off
between the capabilities of sensing technology and the
controller performance needs.

4.1 IMC Synthesis

Synthesis of a linear discrete–time IMC controller can
be accomplished using a variety of techniques (dis-
cretization of a continuous–time controller, discrete–
time synthesis, etc.) (Ogunnaike et al., 1994). In the
present work, a discrete–time transfer–function model
(G(z)) was constructed to approximate the linear
Volterra series model. By appending a first–order filter
(time constant φ ) to the linear inverse, the discrete–
time IMC controller was synthesized. The resulting
transfer function model and LIMC controller were:

G(z) =
−0.458

z−0.849
(9)

Q(z) =
(1−φ)z−0.849(1−φ)

−0.458z+0.458φ
(10)

The quality of model fit can be seen in Figure 3.

Partitioned nonlinear inverse controller synthesis was
accomplished using the approach of Doyle III et al.
(1995), in discrete–time with the third–order diagonal
Volterra model. If the linear inverse exists, then a
nonlinear system � that can be partitioned as

� = (
�

+ � ) =
�

( � +
� −1 � )

can be analytically inverted yielding:

� −1 = ( � +
� −1 � )−1 � −1

In block diagram form, this can be constructed as
shown in Figure 4. Here the linear controller (

� −1)
is the transfer function in Equation (9), written in
difference equation form. The nonlinear controller
component ( � ) is comprised of the � 2 and � 3
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Fig. 3. Comparison of model dynamics. Solid: actual
patient (continuous); dashed: linear Volterra;
dash–dot: transfer function.
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Fig. 4. PNLI–IMC schematic

components of the Volterra model (2). The difference
equation formulation facilitates the “while” loop
structure required for the controller loop to converge,
an effect of the direct–feed nature of the controller
and the static nonlinearities in the feedback loop. The
convergence criterion is a difference in consecutive
insulin infusion rate calculations of 1×10−4 mU/min.

The IMC controller (in both linear and PNLI–
nonlinear forms) contains a single tuning parameter:
the filter time constant. Since the controller is
designed primarily to reject meal disturbances from
a pseudo–steady state, the value of the filter constant
could be selected to be small (in this case φ =
0.1) to allow aggressive disturbance rejection. Should
setpoint changes become a concern, or if sharp
discontinuities were to occur in the measurement
signal, the controller would have to be detuned
significantly (to approximately φ = 0.7) to maintain
stability.

4.2 MPC Synthesis

Model predictive control is an algorithm that employs
a process model to predict future dynamic behavior
based on past inputs. This is an optimization–based
control algorithm, executing at each sample time, and
it uses the following objective function:

min
∆ � (k|k)

‖Γy [ � (k +1)− � (k +1|k)]‖2
2

+‖Γu∆ 	 (k|k)‖2
2 (11)



Over a future prediction horizon of p steps, a series
of m ≤ p manipulated variable moves is calculated
in order to minimize the objective in Equation (11).
The matrices Γy and Γu are used to trade off
setpoint tracking error and manipulated variable
movement, respectively. Additional constraints on
the manipulated and controlled variables can be
implemented in a straightforward fashion, as this
is an optimization problem. In the case of a
linear process model, the resulting problem is a
quadratic programming problem. This changes to
a nonlinear programming problems when nonlinear
process models are employed. To solve the quadratic
and nonlinear programming problems, the fmincon
optimization routine of MATLAB (©2002, The
Mathworks, Natick, MA) was employed.

Selecting the tuning parameters for a model predictive
control algorithm is typically done on an ad hoc
basis; there is no optimal tuning algorithm available.
In general, the move and prediction horizons are
adjusted to provide sufficient aggressiveness in control
action, as well as adequate model prediction. The
tuning matrices are used to alter the setpoint tracking
performance (Γy) and to suppress noise–induced
manipulated variable adjustment (Γu).

4.3 Results and Discussion

The results of using nonlinear compensation within
the IMC framework to reject a meal disturbance of
50 grams (glucose) at time t = 50 min can be seen
in Figure 5. A slightly more aggressive controller
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Fig. 5. 50 g meal disturbance simulation comparing
LIMC (dashed) and PNLI–IMC (solid). The filter
time constant was selected as φ = 0.1 in both
cases.

results from using the PNLI–IMC framework, as the
nonlinear controller both increases and decreases the
insulin delivery rate more rapidly than the linear
controller. The sum–squared error (SSE) was reduced
by 6.5%, with a small (3.7%) improvement in glucose
concentration undershoot to a minimum of 65.5 mg/dl.

Simulation results evaluating the model predictive
control algorithm for the same disturbance as above
are shown in Figure 6. The increased aggressiveness
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Fig. 6. 50 g meal disturbance simulation comparing
MPC (dashed) and NMPC (solid). The tuning
parameters for both controllers were Γy = 3, Γu =
1, m = 3, p = 8.

of the nonlinear controller can be clearly observed
in the manipulated variable profile, where the insulin
delivery rate is elevated more quickly and to a higher
maximum delivery rate. This leads to the glucose
concentration decrease observed between t = 150 and
t = 200 min. Furthermore, the nonlinear controller
decreases its delivery rate more quickly, thereby
compensating more efficiently for the hypoglycemic
excursion around t = 270 min. For an 0.3% increase in
total insulin delivery, the nonlinear controller provides
a 13% decrease in sum–squared error and a more rapid
reaction to hypoglycemic excursions.

The increased ability to tailor the performance
objective in MPC leads to a marked increase in
performance as defined by sum–squared error, as
shown in Table 2. This improvement in error is a

Table 2. Controller performance compari-
son. Absolute (mg2/dl2) and comparative

(%) metrics versus linear IMC shown.

Linear Nonlinear
SSE % SSE %

IMC 213 0 199 6.5
MPC 187 12 163 23.3

result of decreasing the magnitude and duration of
the hyperglycemic excursion (between t = 100 and
t = 200), as well as the return to steady state after
the hypoglycemic excursion. The NMPC algorithm
is particularly responsive to the depressed glucose
concentrations between t = 220 and t = 270 min, and
its aggressive response leads to superior performance.
The fact that this nonlinear control algorithm responds
so aggressively to the hypoglycemic excursion is
imperative for diabetic patients in whom dramatically
suppressed glucose levels can lead to coma and death.
One minor penalty for improving the SSE is increased



undershoot. Both MPC controllers lead to minimum
glucose concentrations of about 2 mg/dl less than
the IMC controllers. However, the difference is well
within the noise band of present sensors.

5. CONCLUSIONS

This paper presents an analysis of linear and nonlinear
model–based control algorithms as employed in
simulation on insulin–dependent diabetic patients.
By employing a previously–developed parsimonious
nonlinear Volterra series model (Florian and Parker,
2002) in the control structure, nonlinear control
algorithms (IMC with partitioned inverses and MPC)
were synthesized. These algorithms were then tested
with respect to their capabilities in meal disturbance
rejection. Nonlinear compensation proved beneficial,
especially as the patient deviated from the nominal
condition of 81 mg/dl. Given the performance metric
of SSE, the NMPC controller is superior; however,
if constraints are not imposed and a closed–form
controller solution is required then linear MPC would
be the best choice. In all cases, the utility of empirical
model structures identified from patient data have
proven effective in controlling glucose concentration
in the presence of meal disturbances.
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AN OPTIMAL OPERATING STRATEGY FOR
FED-BATCH FERMENTATIONS BY FEEDING THE

OVERFLOW METABOLITE

S. Valentinotti ∗, C. Cannizzaro ∗, B. Srinivasan ∗∗,
D. Bonvin ∗∗,1

∗ Laboratoire de Génie Chimique et Biologique
∗∗ Laboratoire d’Automatique
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CH - 1015 Lausanne, Switzerland

Abstract: Optimization of the fed-batch fermentation of Saccharomyces cerevisiae
is analyzed. Due to the limited oxygen uptake capacity of the cells, the overflow
metabolite ethanol is formed when the substrate concentration is above some critical
value. This value decreases during the course of an experiment due to the reduction in
dissolved oxygen concentration resulting from biomass formation. Optimal operation
corresponds to regulating the substrate concentration along this time-varying critical
value. This paper proposes a novel strategy to implement this optimal solution,
whereby ethanol is fed along with the substrate and its concentration in the reactor
regulated around the inlet concentration value. Sub-optimal strategies of practical
interest are also discussed and simulation results are presented.

Keywords: Fed-batch fermentation, Overflow metabolite, Bottleneck principle,
Optimization, Ethanol regulation.

1. INTRODUCTION

Biotechnology has risen to becoming one of the
active research areas in the control community. In
this work, the optimization of a key biotechno-
logical process, the production of baker’s yeast, is
studied. Though presented for baker’s yeast, the
results are generally applicable to fermentation
processes with microorganisms that present an
overflow metabolism.

Numerous models have been proposed to describe
the behavior of Saccharomyces cerevisiae under
different growth conditions (Nielsen and Villad-
sen, 1994). The model used in this work was pro-
posed by (Sonnleitner and Käppeli, 1986). It as-
sumes that the oxidative capacity of S. cerevisiae
is limited and constitutes a bottleneck in the ox-

1 Corresponding author: dominique.bonvin@epfl.ch

idative metabolism. The size of this bottleneck
may change from experiment to experiment and
even during a given experiment due to changes in
the cell metabolism, nutrient limitation, or other
factors (van Hoek et al., 1998). When the sub-
strate uptake rate exceeds the oxidative capacity,
the overflow metabolite ethanol is formed.

Maximization of biomass production is obtained
when the glucose flux exactly matches the ox-
idative capacity of the cells. However, industrial
bioreactors are often operated at substrate con-
centrations well under this critical value in order
to avoid yield losses when substrate is transformed
into ethanol, and/or accumulation of the over-
flow metabolite which might be toxic. This work
proposes a methodology for ensuring optimality
by operating the reactor at this unknown, time-
varying critical value.



Regulating the concentration of the overflow
metabolite has been used for the purpose of opti-
mization in several works (Axelsson, 1989; Chen et
al., 1995; Valentinotti et al., 2003). However, true
optimality would require regulating the ethanol
concentration at zero, which is not possible due
to the non-zero resolution of the ethanol sensor.
Thus, those approaches are at best sub-optimal.

In this work, the non-intuitive idea of adding the
overflow metabolite in the feed stream is used. By
choosing the ethanol regulation set point equal to
its concentration in the feed, optimal operation
can be achieved. The main advantage is that
the sensor resolution is no longer a critical issue.
Furthermore, if desired, sub-optimal operation
can be obtained by adjusting the ethanol set point
relative to its concentration in the feed.

The paper is organized as follows. In Section 2, a
macroscopic process model is presented. Section
3 formulates the optimization problem and its
nominal solution, while Section 4 discusses three
on-line operating strategies. The adaptive control
strategy is presented in Section 5 and simulation
results are shown in Section 6.

2. PROCESS MODELING

A macroscopic description of the metabolism of
S. cerevisiae fermentation includes the following
reactions:

S + a1O2
r1
→ b1X + c1CO2 (1)

S r2
→ b2X + c2CO2 + d2P (2)

P + a3O2
r3
→ b3X + c3CO2 (3)

where S is the substrate, P the reaction product
ethanol that can also be oxidized by the cells,
X the biomass, and CO2 and O2 carbon dioxide
and oxygen, respectively. ai, bi, ci, di and ri are the
yield coefficients and the reaction rate of the ith

reaction, respectively.

In this work, the overflow metabolism (bot-
tleneck) model proposed by (Sonnleitner and
Käppeli, 1986) is used. It assumes a limited res-
piratory capacity of the cells. The uptake of the
glucose fed to the reactor is assumed to occur at
the following rate:

rs = ks
S

S + Ks

[
g of S

g of X h

]
(4)

The rate at which the cells can oxidize the sub-
strate is given by :

ro = ko
O2

O2 + Ko

[
g of O2

g of X h

]
(5)

The rate ro is seen as the bottleneck since it
limits the amount of glucose that can be oxidized.

Thus, Reaction (1) takes place as long as sufficient
glucose and oxygen are available in the reactor.
Its rate is determined by the smallest of the rates
at which glucose and oxygen are taken up by the
cells, rs and ro/a1, respectively:

r1 = min
(

rs,
ro

a1

)
(6)

The glucose concentration at which the oxidative
capacity saturates is defined as Scrit, for which
rs = ro/a1. It follows that Scrit = roKS/(a1ks −
ro) is a function of the dissolved oxygen concen-
tration O2. When the glucose flux is too large to
fit through the bottleneck, i.e. rs > ro/a1 cor-
responding to S > Scrit, the excess will overflow
into the reductive metabolism resulting in ethanol
production according to Reaction (2). This is in
fact what gives this metabolism its name. The rate
at which this reaction takes place is given by:

r2 = max
(

0, rs −
ro

a1

)
(7)

If the glucose flux does not use up the whole
oxidative capacity of the cells, the ethanol present
in the reactor is oxidized simultaneously via Reac-
tion (3). The excess oxidative capacity is given by
ro−a1rs, and the rate at which ethanol is oxidized
is therefore:

r3 = max
(

0,min
(

rp,
ro − a1rs

a3

))
(8)

rp = kp
P

P + Kp

[
g of P

g of X h

]
(9)

Based on the reaction model (1)-(3), the following
macroscopic mass balances can be derived:

d(V X)
dt

= (b1r1 + b2r2 + b3r3)V X (10)

d(V S)
dt

=−(r1 + r2)V X + FSin (11)

d(V P )
dt

= (d2r2 − r3)V X + FPin (12)

d(V O2)
dt

= kLaV (O∗
2 − O2) − (a1r1 + a3r3)V X

(13)
dV

dt
= F (14)

where F is the substrate feed rate, V the volume,
and Sin and Pin the inlet concentrations of S and
P , respectively. The dissolved oxygen concentra-
tion in the bioreactor is given by (13), where kLa
is the overall mass transfer coefficient, and O∗

2 the
dissolved oxygen equilibrium concentration. For
simplicity, it is assumed that kLa and O∗

2 remain
constant throughout the experiment.

The model parameters are given in Tables 1 and
2, while the operating and initial conditions used
in the simulation are provided in Table 3.



Parameter Value Unit

a1 0.396 g of O2/g of S
b1 0.490 g of X/g of S
c1 0.590 g of CO2/g of S
b2 0.050 g of X/g of S
c2 0.462 g of CO2/g of S
d2 0.480 g of P/g of S
a3 1.104 g of O2/g of P
b3 0.720 g of X/g of P
c3 0.625 g of CO2/g of P

Table 1. Yield coefficients for the pro-
posed reaction mechanism.

Parameter Value Unit

ks 3.500 g of S/g of X h
ko 0.256 g of O2/g of X h
kp 0.170 g of P/g of X h
Ks 0.100 g of S/l
Ko 0.001 g of O2/l
Kp 0.100 g of P/l

Table 2. Kinetic parameters for the
rates rs, ro, and rp.

Variable Value Unit

Sin 300 g/l
Pin 10 g/l
O∗

2 0.039 g/l
kLa 250 h−1

Vmax 8 l
Fmax 3 l/h

Xo 1.5 g/l
So 0.023 g/l
Po 10 g/l
O2o 0.039 g/l
Vo 4 l

Table 3. Operating and initial condi-
tions

3. OPTIMIZATION PROBLEM AND
NOMINAL SOLUTION

From a practitioner’s perspective, the goal is to
maximize the amount of biomass with minimum
batch time, which in fact are two objectives in one.
Thus, from an optimization perspective, these two
objectives need to be combined. In this paper, the
batch time is considered as the cost function to
be minimized, and the biomass productivity as a
constraint to be met. As a result, the optimization
problem is formulated as follows: given opera-
tional constraints, determine the feeding strategy
that minimizes the batch time while ensuring that
the amount of biomass at final time is at least the
prescribed quantity (V X)des:

min
tf ,F (t)

J = tf (15)

subject to (10) − (14)

0 ≤ F (t) ≤ Fmax

V (tf ) ≤ Vmax, V (tf )X(tf ) ≥ (V X)des

where tf is the final time, Vmax the maximal
volume, Fmax the maximum feed rate at which

the substrate can be fed, and (V X)des the desired
minimal amount of biomass computed as:

(V X)des = VoXo + b1Sin(Vmax − Vo) (16)

which corresponds to the amount of biomass that
can be attained from the substrate. Note that, due
to the presence of ethanol in the feed, it is possible
to produce slightly more biomass than (V X)des.
The optimal solution of (15) obtained numerically
is shown in Figure 1.
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Fig. 1. Optimal feed rate profile and evolutions of
oxygen and substrate concentrations.

It has been argued in Sonnleitner and Käppeli
(1986) that exactly filling the bottleneck is opti-
mal in some sense. Here, it will be shown that,
for the optimization problem (15), the optimal
solution in fact corresponds to exactly filling the
bottleneck, i.e. regulating S at Scrit. To arrive
at this conclusion, the two cases with S ≥ Scrit

and S ≤ Scrit are considered and it follows that
S = Scrit is indeed optimal.

• For S ≥ Scrit, biomass is produced from
the substrate by Reactions 1 and 2, and
eventually the overflown ethanol is converted
to biomass through Reaction 3. Thus, for
the consumption of one unit of substrate,
the quantity of biomass produced is (b1α +
(b2 + d2b3)(1 − α)), where α = r1/rs, 0 ≤
α ≤ 1. Since b1 > (b2 + d2b3), the maximum
corresponds to α = 1, i.e. r1 = rs where the
bottleneck is exactly filled. So, for S > Scrit,
the desired productivity cannot be achieved
with the substrate alone, and some of the
ethanol in the feed stream must be consumed
in order to produce the difference in the
desired biomass production.

• For S ≤ Scrit, there is space in the bottleneck
for some of the ethanol in the inlet to be
converted to biomass, i.e. r3 = (ro−a1r1)/a3.
So, the rate of production of biomass is:
( b1

a1
β + b3

a3
(1 − β))roXV , where β = a1r1/ro,

0 ≤ β ≤ 1. Since, b1
a1

> b3
a3

, the maximum
value is for β = 1, i.e. r1 = ro/a1. In other
words, the bottleneck should be entirely filled



with substrate in order to minimize time,
though the desired productivity could be
achieved even by partially filling it.

For the initial condition S(0) = Scrit(O2(0)), the
optimal input F ∗ that enforces S = Scrit can be
obtained by differentiating rs = ro/a1 once with
respect to time:

F ∗ = V
N

D

∣∣∣∣
S=Scrit

(17)

where

N = a1KoksS
2(kLa(O∗

2 − O2) − roX) + KskoO
2
2rsX

D = a1KoksS
2O2 + KskoO

2
2(Sin − S)

The first part of the feed rate profile is nearly
exponential when oxygen is not limiting, while
the second part is almost linear when oxygen
limitation occurs after about 10 h. The optimal
solution is t∗f = 16.12 h. Figure 1 also indicates
that Scrit reduces with time.

4. ON-LINE OPERATING STRATEGIES

Since the model parameters might not be accu-
rately known and can vary during the batch, the
feed rate expression (17) cannot be used to imple-
ment the optimal strategy. Instead, it is possible
to use the ethanol concentration measurement P
to adjust the substrate feed rate F .

As seen in the previous section, optimality re-
quires r2 = r3 = 0, i.e. neither production
nor consumption of ethanol. One possibility is
to track the amount of ethanol V (t)P (t) =
(V P )ref (Valentinotti et al., 2003). Another pos-
sibility, which involves tracking the concentration
of ethanol with Pin �= 0, is discussed next.

Application of the chain rule of differentiation to
(12) gives:

dP

dt
= (d2r2 − r3)X +

F

V
(Pin − P ) (18)

Assume that Pin is constant and the ethanol
concentration is regulated around the value Pref .
If P (t) = Pref = Pin, then dP/dt = 0 implies
(d2r2− r3) = 0. However, since r2 and r3 are non-
negative and cannot be positive simultaneously,
r2 = r3 = 0.

In addition, depending on the relative values of
Pref and Pin, sub-optimal solutions are possible:

• Pref < Pin (for r2 = 0 and r3 > 0): Ethanol
is constantly consumed and S < Scrit.

• Pref > Pin (for r2 > 0 and r3 = 0): Ethanol
is constantly produced and S > Scrit.

The larger the difference |Pref − Pin|, the more
sub-optimal the operation will be.

Though it is preferable to keep the operation opti-
mal, there might be biological reasons for choosing
sub-optimal operation. Consider the optimal case
where the ethanol concentration is regulated at
Pin. Then, for any corrective action needed, for
example, to reject a perturbation, the system has
to switch from oxidative to reductive metabolism
and vice-versa. In other words, if excess ethanol is
produced, some space needs to be created in the
bottleneck for it to be consumed. In contrast, this
change of metabolism need not take place in sub-
optimal strategies. Among the two sub-optimal
strategies, Pref < Pin leads to S < Scrit, implying
that maximal yield is still achieved, but the batch
time is longer. On the other hand, Pref > Pin

leads to shorter batch times at the cost of a
reduction in yield.

The particular case Pin = 0 was considered in
(Valentinotti, 2001). There, Pref had to be as low
as possible in order to be nearly optimal. Thus,
Pref was chosen based on the resolution of the
ethanol sensor, which is no longer the case when a
non-zero Pin is used. Furthermore, with Pin = 0,
it is only possible to control the system in the
overflow situation since negative concentrations
cannot be measured. In contrast, with a non-zero
Pin, the reference is shifted up to Pin and the
system becomes observable and controllable for
all three cases - overflow, critical, and underflow.

5. CONTROLLER DESIGN

In this section, a linear adaptive controller will
be used to maintain the ethanol concentration P
constant. Thus, the computation of a linear model
will be discussed first, followed by the design of the
adaptive controller.

5.1 Linear model

The bioreactor is operated in the fed-batch mode
and hence has no steady-state operating point.
However, for optimal operation, P (t) = Pin and
S(t) = Scrit. So, linearization will be around these
optimal values for P and S while using averaged
values for the others, e.g. V̄ and F̄ .

In order to derive a linear model, it is assumed
that (V S) is at quasi-steady state:

d(V S)
dt

= −(r1 + r2)XV + FSin = 0 (19)

The linearized dynamics will be different depend-
ing on whether the second or the third reaction
takes place in addition to r1. Thus, two cases need
to be considered:

• Case A: r2 �= 0, r3 = 0. Here, r1 = ro/a1

and, from (19), r2X = (F/V )Sin−(ro/a1)X.
Using this expression in (18) leads to:



dP

dt
=

F

V
(d2Sin + Pin − P ) − d2roX

a1
(20)

or, in linearized form:

dP

dt
=− F̄

V̄
P +

d2Sin + Pin − Pref

V̄
F (21)

− F̄

V̄ 2
(d2Sin + Pin − P )V − d2ro

a1
X

dV

dt
= F (22)

The linearized discrete-time model then
reads:

P (kh) =
B1(q−1)
A(q−1)

(F (kh) − w1(kh)) (23)

where B1 = B̄1(1 − (1 − e(F̄ /V̄ )h)q−1), A =
(1 − q−1)(1 − (1 − e−(F̄ /V̄ )h)q−1) and w1 =
d2roX/(a1B̄1), with B̄1 = (d2Sin + Pin −
Pref )/V̄ , h the sampling period, kh the sam-
pling instant, and q−1 the backward-shift op-
erator.

• Case B: r2 = 0, r3 �= 0. Here, r1 = rs and,
from (19), r1X = (F/V )Sin. Furthermore,
assuming that the excess oxidative capacity
is small, i.e. rp > (ro − a1rs)/a3, one ob-
tains r3 = (ro − a1r1)/a3, and thus r3X =
r0X/a3 − (a1/a3)(F/V )Sin. Using this last
expression in (18) gives:

dP

dt
=

F

V
(
a1

a3
Sin + Pin − P ) − roX

a3
(24)

Similarly, linearization and discretization
lead to the following discrete-time model:

P (kh) =
B2(q−1)
A(q−1)

(F (kh) − w2(kh)) (25)

where B2 = B̄2(1 − (1 − e(F̄ /V̄ )h)q−1),
B̄2 = (a1Sin/a3 + Pin − Pref )/V̄ and w2 =
roX/(a3B̄2).

The following averaged linearized discrete-time
model will be used:

P (kh) =
B(q−1)
A(q−1)

(F (kh) − w(kh)) (26)

where B = (B1 + B2)/2 and w = (w1 + w2)/2.

Though the expressions for w1 and w2 are differ-
ent, it is interesting to note that when Pref =
Pin, w1 = w2. In both linearized models, w is
the input disturbance corresponding to the sub-
strate flux needed for biomass growth. Since the
biomass grows exponentially in the first phase and
linearly in the second, the key problem is that
of rejecting an unstable disturbance, for which
standard PID-type controllers are inappropriate
(Axelsson, 1989). Thus, an adaptive controller
based on the internal model principle for dis-
turbance rejection is used here (Valentinotti et
al., 2003).

5.2 Adaptive controller design

The RST polynomial control law with Q-parame-
terization is given by (Tsypkin, 1991):

RoF = −SoP + TPref − Q(AP − BF ) (27)

where Ro, So, and Q are polynomials in the
backward-shift operator q−1. The closed-loop
characteristic polynomial is independent of the
choice of Q and is given by Ac = A Ro + B So.

The resulting closed-loop system using the control
law (27) is shown in Figure 2. The closed-loop
output is given by:

P =
BT

Ac
Pref − (Ro − Q B)

Ac
wB (28)

with wB = Bw a filtered version of the distur-
bance w.

F
w

PPref 1/Ro B/A

Q

So

T

B A

-

-

-

-

w
B

Fig. 2. Block diagram of the controlled system.

The goal of adaptation is to minimize the second
term in (28) by adjusting Q:

min
Q

‖ε1 − ε2Q‖2 (29)

where the signals ε1 and ε2 are defined as ε1 =
Ro

Ac
wB and ε2 = B

Ac
wB . Note that wB can be esti-

mated from the input and output using ŵB(kh) =
AP (kh) − BF (kh). Equation (29) corresponds to
a linear regression problem for the elements of Q,
for which on-line adaptation can be done using
standard algorithms (Ljung, 1987).

6. SIMULATION RESULTS

The optimal and the two sub-optimal strategies
proposed in Section 4 are implemented in simula-
tion on the model presented in Section 2 using the
controller described in Section 5. The substrate
concentration and the feed rate for the various
strategies are shown in Figures 3 and 4, and the
numerical results are given in Table 4.

Strategy Pin Pref X(tf ) V (tf ) tf
1 10 8 74.71 7.95 16.26
2 10 10 74.25 8.00 16.12
3 10 12 74.25 8.00 16.14

Table 4. Optimization results with the
various strategies for (V X)des = 594 g.

For the optimal Strategy 2, the substrate is always
at its critical value Scrit(O2). Strategies 1 and 3
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implement S < Scrit and S > Scrit, respectively
(see Figure 3).

For the case Pref < Pin, since the bottleneck is
not filled with substrate alone, part of the ethanol
in the feed is converted to biomass. This way, a
slightly higher X(tf ) is obtained. Though the feed
stops before the reactor is full, the final time is
larger. On the other hand, when Pref > Pin, there
is overflow and the reactor is filled slightly faster.
However, once the reactor is full, the productivity
is less than the desired one. Thus, there is a small
batch phase with F = 0 (see Figure 4) so as to
produce the required biomass from ethanol.

As seen in Table 4, the minimal time is obtained
with Strategy 2. Implementation is by regulating
P (t) around Pin. Note that no information regard-
ing the model parameters is used in the controller,
and the optimal solution is enforced solely from
the ethanol measurement through feedback.

7. CONCLUSIONS

A non-intuitive approach for the optimal oper-
ation of fed-batch fermentations has been pre-

sented. This consists of adding a small amount of
product in the feed solution and maintaining the
product concentration in the fermenter constant
at its inlet value.

The proposed operating strategy allows main-
taining the desired metabolism (either overflow,
critical or underflow) even when changes in the
value of Scrit occur due to oxygen limitation. In
fact, when the oxygen concentration is limiting,
regulating P forces the substrate concentration
S to decrease in order to match the oxidative
capacity of the cells.

Although the analysis and the simulation study
were done for S. cerevisiae, it is possible to use
the proposed approached with other microorgan-
isms presenting an overflow metabolism such as
E. coli, a bacteria used for recombinant protein
production.
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Abstract

To survive in the face of uncontrollable natural vari-
ations, biological organisms have developed adapta-
tion mechanisms that make them remarkably insen-
sitive to variations in certain variables. Conversely,
outside these ranges of admissible variation, biologi-
cal function may change dramatically, usually in un-
desirable ways (e.g., the organisms die). As a conse-
quence, a set-theoretic control strategy seems quite
appropriate for biologically-based processes like fer-
mentation reactors: many variables do not have to be
controlled to precise setpoints, but they do have to be
maintained within viable operating ranges. This pa-
per proposes a strategy for this kind of set-theoretic
control based on zonotopes, which are the images of n-
dimensional cubes under affine transformations. This
approach is well-suited to the control of linearized
fundamental models or linear empirical models over
a specified range of validity. In addition, the results
presented here establish strong connections with clas-
sical linear control theory. Finally, these results are
extended to positive linear systems, a class that in-
cludes many biological system models (e.g., compart-
mental models arising in pharmecokinetics) and that
are inherently harder to control than unconstrained
linear systems.

1 Introduction

This paper describes target-set control, a control
strategy that leads to the selection of control input

sequences that drive the system state vector into a
specified target set. One motivation for target-set
control is the control of biological processes and sys-
tems, where many variables must be kept within spec-
ified ranges, but variation within those ranges has lit-
tle effect on system performance, due in part to the
well-developed adaptive nature of biological organ-
isms. For example, homeostasis, the term for the co-
ordinated action by which living organisms maintain
equilibrium and sustain life, has several distinguish-
ing characteristics that are important to the engineer
contemplating the control of biological systems:

1. Desired equilibrium conditions are generally in
terms of ranges of acceptable values not precise
point targets as is commonly the case in stan-
dard control engineering;

2. By design, intrinsic system robustness is
achieved by ensuring that multiple combinations
of input variable settings can equally well main-
tain the system at the desired equilibrium con-
ditions. In other words, the problem of main-
taining homeostasis has multiple equally admis-
sible solutions. Contrast this with most stan-
dard control engineering problems for which non-
uniqueness of a control solution may in fact be
undesirable.

3. In their natural ”settings”, the states, inputs and
output variables of typical biological systems are
constrained to be non-negative at all times.

While one can definitely phrase the biological system
control problem within the classical control theory
framework (i.e. employ a model—often defined in
terms of deviation variables—to compute a unique

set of input variable values to drive system states to
a unique set-point, subject to constraints), we believe
that a more natural theoretical control framework for
bioprocesses ought to take their distinguishing sys-
tem characteristics into consideration explicitly.

2 Problem formulation

The basic problem formulation considered here is an
extension of one considered previously [5], but based

1



on a more flexible class of uncertainty sets. More
specifically, this formulation assumes the existence of
an approximate linear model of the general form:

x(k + 1) = Ax(k) + Bu(k) + d(k), (1)

where x(k) represents the n-dimensional state vector
at time k, u(k) is the vector of m control inputs at
time k, A and B are compatibly dimensioned ma-
trices, and d(k) is an effective disturbance vector of
dimension n. This model may be obtained by lin-
earizing a fundamental model of process dynamics
about some specified steady-state operating condi-
tion, via empirical model identification, or by any
other means. The effective disturbance vector d(k)
represents the combined effects on the state vector of
linear model parameter uncertainty, neglected non-
linearities, discretization artifacts, and the influence
of unmeasurable external disturbances. The control
problem considered here is the following one:

Given the process model (1), characterize
the set of admissible sequences of control in-
puts {u(k), . . . ,u(k + r− 1)} that will drive
the state vector x(k) into a designated tar-
get set S∗ in Rn.

To solve this problem, we introduce the following sets:

- Σk, the set of all possible values for the state
vector x(k) at time k,

- ∆k, the set of all possible values for the effective
disturbance vector d(k) at time k.

In what follows, given Σk, ∆k, and a specific control
input vector u(k), we first derive an expression for the
set Σk+1 of possible states x(k + 1) and then extend
this result to obtain an expression for the set Σk+r of
possible values for x(k + r) for arbitrary r ≥ 1. This
multi-step result represents one important extension
of our previous results [5]; another extension is the
replacement of spherical uncertainty sets with more
flexible zonotopes, described next.

3 Zonotopes

A zonotope is defined [8, p. 191] as the image of
the p-cube under an affine projection map, where the

p-cube is the set

Cp = {x ∈ Rp | |xi| ≤ 1, i = 1, 2, . . . , p}, (2)

and an affine projection of a set A ⊂ Rp is the set
defined by

M
⊗

A + b = {Mx + b | x ∈ A}, (3)

where M is any n×p matrix and b is any vector in Rn.
For convenience, let Zn(M,b) denote the zonotope in
Rn defined by:

Zn(M,b) = M
⊗

Cp + b

= {x ∈ Rn | x = b +

p
∑

i=1

λimi,

|λi| ≤ 1}, (4)

where mi is the ith column of the matrix M. Note
that if the matrix M is diagonal, the resulting zono-
tope is a parallelepiped, a rectangular polytope in Rp

with its faces parallel to the coordinate axes.
To describe system evolution in terms of zonotopes,

we need the following notion. The Minkowski sum of
two sets A and B is defined by [8]:

A
⊕

B = {a + b | a ∈ A, b ∈ B}. (5)

Now, define Σ0
k+1

as the set of all possible unforced

states x(k + 1), obtained by setting u(k) = 0. This
set is related to Σk and ∆k by the evolution equation:

Σ0
k+1 = [A

⊗

Σk]
⊕

∆k. (6)

To obtain results that are computationally useful
from this general expression, it is necessary to spe-
cialize to a class of sets for which affine projections
and Minkowski sums are easy to compute; zonotopes
represent one such class.

More specifically, the zonotope Zn(M,b) may be
viewed as the Minkowski sum of p line segments in
Rn, each defined by a column of the matrix M, trans-
lated by the vector b. That is,

Zn(M,b) = [`1

⊕

`2

⊕

· · ·
⊕

`p] + b

`i = {x ∈ Rn | x = λmi, |λ| ≤ 1}. (7)
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It follows immediately from this result that the
Minkowski sum of two zonotopes Zn(M,b) and
Zn(N, c) is simply the Minkowski sum of the line
segments defined by the columns of M and N, offset

by b + c. Defining the composite matrix [M
...N] as

[M
...N] = [m1, . . . ,mp,n1, . . . ,nq ], (8)

the Minkowski sum of two zonotopes is given by

Zn(M,b)
⊕

Zn(N, c) = Zn([M
...N],b + c). (9)

Hence, it follows that zonotopes are closed under

Minkowski addition. To see that zonotopes are also
closed under affine transformations, note that

A
⊗

Zn(M,b) + c = A
⊗

[M
⊗

Cp + b] + c

= [AM]
⊗

Cp + [Ab + c]

= Zn(AM,Ab + c). (10)

4 State evolution

To describe state evolution under this framework,
suppose that the initial state homeostatic set is Σk =
Zn(Vk,xk) for some n×p matrix Vk and some nom-
inal state vector xk. Next, assume the uncertainty
sets ∆k+j associated with the effective disturbance
vectors d(k + j) are ∆k+j = Zn(Wk+j ,dk+j) where
Wk+j is an arbitrary n × qj matrix describing the
uncertainty in d(k+j) about its nominal value dk+j .
It follows from Eq. (6) that the one-step unforced
state evolution is described by

Σ0
k+1 = [A

⊗

Zn(Vk,xk)]
⊕

Zn(Wk,dk)

= Zn([AVk

...Wk],Axk + dk). (11)

The control vector u(k) steers the center of the evolv-
ing uncertainty set, giving us the one-step state evo-
lution equation

Σk+1 = Σ0
k+1 + Bu(k) (12)

= Zn([AVk

...Wk],Axk + dk + Bu(k)).

Iterating this result, it follows that the r-step state
uncertainty set Σk+r is the zonotope Zn(Vk+r ,xk+r),
where

Vk+r = [ArVk

...Ar−1Wk

... · · ·
...Wk+r−1] (13)

xk+r = Arxk + Ar−1dk + · · · + dk+r−1

+ Ar−1Bu(k) + · · · + Bu(k + r − 1).

A useful rearrangement of this result is the following
generalization of Eq. (12):

Σk+r = Σ0
k+r + Φv, (14)

where Σ0
k+r represents the r-step unforced evolution

caused by the system dynamics (e.g., decay of ini-
tial conditions) and the influence of external distur-
bances. This term is given explicitly as

Σ0
k+r = Zn(Vk+r ,yk+r), (15)

yk+r = Arxk + Ar−1dk + · · · + dk+r−1.

The term Φv in Eq. (14) describes the influence of
the control inputs applied over this time period:

Φ = [Ar−1B
... · · ·

...B]

v =







u(k)
...

u(k + r − 1)







. (16)

Note that v ∈ Rrm describes the complete sequence
of control moves made in the r steps considered here,
and that Φ is the n × rm controllability matrix.

5 Target-set control

Given the results just presented for uncertain state
evolution, we require one more construct to address
the control problem. The Minkowski difference be-
tween two subsets of Rn is defined by

A ∼ B = {x ∈ Rn | B + x ⊂ A}. (17)

It is important to note that the Minkowski difference
is not the inverse of Minkowski addition; in particu-
lar, these operations are related by [6]:

(A ∼ B)
⊕

B ⊂ A, (18)
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where the inclusion is generally proper. To see the
utility of this construct, suppose the control objec-
tive is to guarantee that the state vector x(k + r)
lies in a specified target set S∗. The set of all possi-
ble “state corrections” that are consistent with this
control objective is then given by

Ωk+r = {z ∈ Rn | Σ0
k+r + z ⊂ S∗}

= S∗ ∼ Σ0
k+r. (19)

Given the sequence of r control moves specified by
the vector v and the r-step controllability matrix Φ,
the set of feasible control moves that are capable of
meeting our control objective is given by

Υk+r = {v ∈ Rrm | Φv ∈ Ωk+r}. (20)

Note that if Φ has rank n, the usual controllability
condition [4, p. 460], Φv can assume any value in Rn,
implying that the r-step control problem is feasible
(i.e., the set Υk+r is not empty) if and only if the set
Ωk+r is not empty.

To determine the set Ωk+r, first note that for any
two sets A,B ⊂ Rn and any two n-vectors a and b,

[A + a] ∼ [B + b] = [A ∼ B] + [a − b], (21)

so the Minkowski difference of two zonotopes becomes

Zn(M,b) ∼ Zn(N, c) = [Zn(M,0) ∼ Zn(N,0)]

+ [b− c]. (22)

Next, suppose P is a parallelepiped in Rn and Z is an
arbitrary zonotope in Rn. By the preceeding result,
there is no loss of generality in assuming that both of
these sets are centered at zero. Hence, the Minkowski
difference between these sets may be written as

P ∼ Z = Zn(M,0) ∼ Zn(N,0)

= {z ∈ Rn | z + Zn(N,0) ⊂ Zn(M,0)}

= {z ∈ Rn | − Mii ≤ zi + yi ≤ Mii,

y ∈ Zn(N,0)}. (23)

Next, note that any vector y ∈ Zn(N,0) may be
written as

y =

p
∑

j=1

λjnj ⇒ yi =

p
∑

j=1

λjNij . (24)

Applying the triangle inequality to this result gives

|yi| ≤

p
∑

j=1

|λj ||Nij | ≤

p
∑

j=1

|Nij |, (25)

since |λj | ≤ 1 for all j. Further, the extreme values in
this inequality are achievable by taking either λj =
sign {Nij} or λj = −sign {Nij} for all j. Hence, the
Minkowski difference result from Eq. (23) may be
written more explicitly as

P ∼ Z = {z ∈ Rn | (26)

−Mii + N�

ii ≤ zi ≤ Mii − N�

ii},

where N�

ii is defined as

N�

ii =

p
∑

j=1

|Nij |. (27)

Defining the matrix N� as the n×n diagonal matrix
with elements N�

ii, Eq. (26) may be written as

P ∼ Z = Zn(M,0) − Zn(N,0) = Zn(M−N�,0).
(28)

Also, note that for the inequalities in Eq. (26) to
be consistent—i.e., for the set P ∼ Z to be non-
empty—it is necessary that Mii − N�

ii ≥ 0 for all i,
meaning that the matrix M − N� is positive semi-
definite. Geometrically, this result means that the
Minkowski difference between any parallelepiped P
and any other zonotope Z is a parallelepiped.

In the context of the control problem of interest
here, suppose each component of the state vector is
constrained to lie in the interval ai ≤ xi ≤ bi. This
constraint corresponds to x ∈ S∗ = Zn(H,x∗) where
the diagonal matrix H and the vector x∗ are

Hii =
bi − ai

2
, x∗

i =
ai + bi

2
. (29)

The set Ωk+r is then given by

Ωk+r = S∗ ∼ Σ0
k+r

= Zn(H,x∗) ∼ Zn(Vk+r ,yk+r)

= Zn(H −V�

k+r,x
∗ − yk+r). (30)

Further, note that this set is nonempty if and only if
Hii − [V�

k+r ]ii ≥ 0 for i = 1, 2, . . . , n. If these condi-
tions hold, the set Υk+r of feasible controls defined
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in Eq. (20) corresponds to the solution set for the
following collection of n simultaneous inequalities:

γ−

i ≤ [Φv]i ≤ γ+

i , (31)

where these bounds are given by

γ−

i = [x∗ − yk+r ]i − [H −V�

k+r]ii

γ+

i = [x∗ − yk+r ]i + [H −V�

k+r]ii. (32)

Recall that for a controllable system, the controlla-
bility matrix Φ has rank n for r ≥ n, from which it
follows that any state correction in the set Ωk+r is
achievable. For a completely controllable system, the
standard (i.e., non set-theoretic) solution would be to
choose v so that [Φv]i falls in the center of each inter-
val defined in Eq. (31), corresponding to a set point
for the state vector of x∗ − yk+r and representing a
standard disturbance rejection strategy. Conversely,
note that if γ−

i ≤ 0 ≤ γ+

i for i = 1, 2, . . . , n, it follows
that one feasible solution is v = 0. This solution
corresponds to the classical statistical process con-
trol (SPC) strategy: no control action is necessary so
long as the controlled variables lie within their target
specification. One advantage of the target-set formu-
lation considered here is that it permits us to consider
a range of alternatives between these two very differ-
ent control strategies. This flexibility is particularly
useful in connection with positive linear systems, as
the following discussion illustrates.

6 Positive linear systems

Positive linear systems are linear systems whose
states, inputs, and outputs are constrained to be non-
negative at all times. The local dynamics of biologi-
cal systems can often be described by positive linear
systems because the variables involved are concentra-
tions, which cannot be negative. An important spe-
cial case of positive linear systems are compartmental

systems, which may be defined as systems composed
of interconnected reservoirs and which correspond to
asymptotically stable positive linear systems [3, p.
147]. It is important to note, however, that this pos-
itivity constraint applies to system models written
in terms of absolute state variables and not to those

written in terms of deviation variables about some
specified steady-state, since such deviations can be
either positive or negative. An important practical
aspect of positive linear systems is that they are in-
herently harder to control than unconstrained linear
systems; for example, controllability conditions are
much more restrictive for positive linear systems [2].
An interesting feature of the results presented in the
preceeding sections of this paper is that they extend
directly to the case of positive linear systems and
provide some additional insights into the differences
between unconstrained and positive linear systems.

To obtain this extension to positive linear systems,
first define the positive p-cube:

C+
p = {x ∈ Rp | 0 ≤ xi ≤ 1, i = 1, 2, . . . , p}, (33)

which is a subset of the positive orthant of Rn, de-
noted Rn

+. Next, define a positive affine projection

of a set A ⊂ Rn
+ as the set M

⊗

A + b, where M

is an m × n matrix whose elements are all nonnega-
tive and b is an m-vector whose components are all
nonnegative. A positive zonotope is the subset of Rn

+

denoted Z+
n (M,b) and defined by any positive affine

projection of the positive p-cube. It is not difficult to
show that the Minkowski sum of positive zonotopes
is a positive zonotope, and that any positive affine
projection of a positive zonotope is another positive
zonotope. As a consequence, all of the state evolu-
tion results (i.e., Eqs. (13) through (16)) carry over
directly to positive linear systems: if the state vector
lies in the set Z+

n (Vk,xk) at time k, these equations
describe its subsequent evolution in response to the
unforced positive system dynamics, nonnegative dis-
turbance inputs characterized by positive zonotopes
∆k+j = Z+

n (Wk+j ,dk+j), and nonnegative control
inputs uk+j .

The most important difference between the posi-
tive system formulation and the unconstrained for-
mulation is that the set Ωk+r defined by Eq. (30)
does not lie in the positive orthant. Since nonnega-
tive input sequences can generate only state vector
changes in Rn

+ for a positive linear system, we must
restrict consideration to the positive part of Ωk+r .
As in the unconstrained case, it is easy to obtain an
explicit expression for this set if the target set S∗ is

5



a parallelepiped in Rn
+. Specifically, we have:

Ω+

k+r = [S∗ ∼ Σ0
k+r] ∩ Rn

+

= [Z+
n (H,x∗) ∼ Z+

n (Vk+r ,yk+r)] ∩ Rn
+

= {x ∈ Rn | 0 ≤ xi ≤ Hii −

p
∑

j=1

[Vk+r]ij

+x∗

i − [yk+r ]i, i = 1, 2, . . . , n}. (34)

Given this result, the set Υk+r of admissible control
moves consists of all nonnegative vectors v satisfying
the following conditions for i = 1, 2, . . . , n:

0 ≤ [Φv]i ≤ x∗

i − [yk+r ]i + Hii −

p
∑

j=1

[Vk+r ]ij . (35)

Note that the set Υk+r is non-empty if and only if
the right-hand side of Eq. (35) is nonnegative for all
i. Also, note that these conditions hold if and only

if the SPC solution v = 0 is feasible. This observa-
tion provides a very natural reference case for target-
set control of positive linear systems: given a per-
formance measure of interest and any other feasible
control strategy in Υk+r, how does its performance
compare with that of the SPC strategy?

Finally, note that even if Ω+

k+r is non-empty and
Φ−1 exists, it will generally not be possible to gener-
ate all of the positive state corrections in Ω+

k+r with
nonnegative control input sequences v. In particular,
note that Φ is a matrix with all nonnegative entries:
even if Φ is square and Φ−1 exists, this inverse is
necessarily an M-matrix, which has non-positive off-
diagonal elements [1, ch. 6]. Consequently, unless Φ
is a diagonal matrix, there will be elements of Ω+

k+r

that can only be reached using negative control in-
puts. In practice, diagonality of Φ is an extremely
restrictive condition; one case where this occurs is for
a diagonal B matrix, corresponding to the monomial
matrix condition for controllability discussed by Cox-
son and Shapiro [2]. The contrast between this result
and the unconstrained linear system result (i.e., that
every state correction in Ωk+r is achievable if Φ−1

exists) provides yet another illustration of the im-
portant practical differences between positive linear
systems and unconstrained linear systems.

7 Summary

As one reviewer noted, the target-set control ap-
proach described here bears some important similar-
ities to the geometric approach to control theory [7].
He further argued that geometric control theory is
more powerful because it does not restrict consider-
ation to zonotopes. While we agree with this argu-
ment, we also note that the restriction to zonotopes
has important advantages, both computationally in
the simple construction of explicit sets of admissible
control values and conceptually, as in the connections
between controllability and statistical process control
noted in Sections 5 and 6.
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