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Abstract: By now a series of NMPC schemes exist that lead to guaranteed stability of the
closed-loop. However, in these schemes the computation time to find a solution of the open-
loop optimal control problem is often neglected. In practice the necessary computation time
is often not negligible, and leads, since not explicitly considered, to a delay between the
state information and the input signal implemented on the system. This delay can lead to
a drastic performance decrease or even to instability of the closed-loop. In this paper we
outline a simple approach how the computational delay can be considered in nonlinear model
predictive control schemes and provide conditions under which the stability of the closed-
loop can be guaranteed. This allows to employ nonlinear model predictive control even in
the case that the necessary numerical solution time is significant. The presented approach is
exemplified considering the control of a continuous reactor.
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1. INTRODUCTION

In many process control problems it is desired to de-
sign a stabilizing feedback such that a performance
criterion is minimized while satisfying constraints on
the controls and the states. From an optimal control
point of view one would ideally like to solve the corre-
sponding Hamilton-Jacobi-Bellmann equations to ob-
tain an explicit solution of the corresponding feed-
back law. However, often the explicit solution of the
corresponding partial differential equations can not be
obtained. One way to circumvent this problem is the
application of model predictive control(MPC) strate-
gies.
The work presented in this paper is concerned with
nonlinear model predictive control (NMPC) for con-
tinuous time processes and the problems resulting
from the often not negligible on-line computation
time. While by now a series of NMPC schemes ex-
ist that guarantee closed loop stability (see for ex-
ample (Mayne et al. 2000, Rawlings 2000, Allgöwer
et al. 1999) for an overview), in these schemes the
necessary on-line computation time is typically not

taken into account.Even though that recent develop-
ments in dynamic optimization have lead to efficient
numerical solution methods for the open-loop optimal
control problem (See e.g. (Bartlett et al. 2000, Find-
eisen et al. 2002, Tenny and Rawlings 2001, Diehl
et al. 2002)), the solution time is often significant.
Neglecting the resulting delay is thus of paramount
interrest. Otherwise the performance might degrade
significantly or even instability of the closed loop can
occur.
One of the few works that take the delay into account
is the work presented in (Chen et al. 2000). In this
paper we outline a similar, rather simple method on
how the occuring delay can be taken into account
in sampled-data NMPC. In comparison to (Chen et
al. 2000), the derived results allow to stabilize a wider
class of systems and to consider more general cost
functions. We furthermore exemplify the importance
of the consideration of the delay via a small example
system.
The paper is structured as follows: In Section 2 we dis-
cuss the difference between the so called sampled-data



and the instantaneous approach to NMPC. Section 3
contains a description and the proof of stability for
the proposed NMPC approach that takes the delay into
account. The properties of this approach are discussed
in Section 4. Before we conclude in Section 6 we
present in Section 5 a small example considering the
control of a simple CSTR.

2. SAMPLED-DATA NMPC

We consider the stabilization of continuous time non-
linear systems described by

ẋ � t ��� f � x � t ��� u � t ����� x � 0 ��� x0 (1)

subject to the input and state constraints

u � t �
	 U � x � t ��	 X �� t � 0 � (2)

where x � t ��	 X ��� n and u � t ��	 U ��� m denote the
vector of states and inputs, respectively. The set of
feasible inputs is denoted by U and the set of feasible
states is denoted by X . We assume that U ��� m is
compact, X ��� n is connected and � 0 � 0 ��	 X � U.
With respect to the vector field f : � n ��� m � � n

we assume that it is locally Lipschitz continuous and
satisfies f � 0 � 0 ��� 0.
Model predictive control is based on the repeated solu-
tion of an open-loop optimal control problem subject
to the system dynamics and the constraints. Based on
the system state at time t, the controller predicts the
behavior of the system over a prediction time Tp in the
future 1 such that an open-loop performance objective
functional is minimized. To incorporate feedback that
counteracts possible disturbances, the optimal open-
loop input is implemented only until the next recalcu-
lation instant. Based on the new system state informa-
tion, the whole procedure – prediction and optimiza-
tion – is repeated, moving the control and prediction
horizon forward.
Mathematically the open-loop optimal control prob-
lem that is solved at the recalculation instants can be
formulated as:

min
ū ��� � J � ū ������� x � t � � (3a)

s.t. ˙̄x � f � x̄ � ū ��� x̄ � t �!� x � t � (3b)

ū � τ �"	 U � x̄ � τ �"	 X � τ 	$# t � t % Tp & � (3c)

x̄ � t % Tp �"	 E (3d)

where the cost function J is typically given by

J �����'�)( t * Tp

t
F � x̄ � τ ��� ū � τ � � dτ % E � x̄ � t % Tp ����+ (3e)

The bar denotes internal controller variables, x̄ ����� is
the solution of (3b) driven by the input ū �,�-� : # 0 � Tp & �
U with initial condition x � t � . We assume that the
“stage cost” F : X � U � � is locally Lipschitz con-
tinuous with F � 0 � 0 �.� 0 and F � x � u ��/ 0 � X � U 0� x � u �21�3� 0 � 0 � . The end penalty E and the terminal

1 For simplicity we assume that the prediction and control hori-
zon coincide.

region constraint E are often used to enforce stability
of the closed-loop (Mayne et al. 2000, Allgöwer et
al. 1999, Fontes 2000).
In the following, optimal solutions of the dynamic op-
timization problem (3) are marked by �,�-� �

. For exam-
ple we denote the optimal input for x � t � by u

� ��� ;x � t ��� :# 0 � Tp & � U.
The input applied to the system in NMPC is based on
the optimal input u

�
. Depending on how “often” the

open-loop optimal control problem (3) is recalculated,
different concepts of NMPC exist. If the open-loop is
solved at all time instants, we refer to it as instanta-
neous NMPC. If the dynamic optimization is solved
only at disjoint recalculation instants and the resulting
optimal control signal is implemented open-loop in
between, the resulting scheme is called sampled-data
NMPC.
Instantaneous NMPC: In instantaneous NMPC the
input applied to the system is given by

u � x � t ����� u
� � t;x � t ����� (4)

leading to the nominal closed-loop system

ẋ � t ��� f � x � t ��� u � x � t ����+ (5)

Various instantaneous NMPC schemes exist, see for
example (Mayne et al. 2000). From a practical point of
view instantaneous NMPC schemes are not appealing,
since an open-loop optimal control problem must be
solved at all times, which is certainly not possible in
practice.

Sampled-data NMPC: In the remainder of the paper
we consider sampled-data NMPC. In difference to
instantaneous NMPC, in sampled-data NMPC, the
open-loop optimal control problem is only solved at
the discrete recalculation instants and the resulting
optimal input signal is applied open-loop to the system
until the next recalculation instant. Thus the applied
input is given by

u � τ ��� u
� � τ;x � ti � �
� τ 	4# ti � ti * 1 � (6)

where ti denotes the discrete recalculation instants.
The nominal closed-loop system under the feed-
back (6) is given by

ẋ � t ��� f � x � t ��� u � � t;x � ti � ���5+ (7)

For simplicity and clarity we denote the resulting state
by x � τ;x � ti ��� u � ��� ;x � ti � ��� , τ 	6# ti � ti * 1 � .
We assume that the recalculation instants ti are given
by a partition π of the time axis.

Definition 1 (Partition) Every series π �7� ti � , i 	98
of positive real numbers such that t0 � 0, ti : ti * 1 and
ti � ∞ for i � ∞ is called a partition. Furthermore,; π̄ : � supi <>= � ti * 1 ? ti � is the upper diameter of π

(longest recalculation time).; π : � infi <>= � ti * 1 ? ti � is the lower diameter of π
(shortest recalculation time). @

For a given t, ti should be taken as the nearest recalcu-
lation instant with ti : t. We denote the time between



two consecutive recalculation instants ti and ti * 1 as re-
calculation time δr

i � ti * 1 ? ti. Allowing for varying re-
calculation times, allows to re-optimize the input more
frequently if the system dynamics changes rapidly.
Sampled-data NMPC schemes leading to stability of
the closed-loop are for example given in (Fontes 2000,
Michalska and Mayne 1993, Chen and Allgöwer
1998, Jadbabaie et al. 2001, de Oliveira Kothare and
Morari 2000, Magni and Scattolini 2002, Chen et
al. 2000, Findeisen et al. 2003).
Even so that in sampled-data NMPC in principle the
recalculation time δr

i � ti * 1 ? ti is available for the so-
lution of the open-loop optimal control problem, most
of the existing standard NMPC schemes that guarantee
stability do not take the necessary solution time for (3)
and the resulting delay into account. One of the few
exceptions is the work presented in (Chen et al. 2000),
in which the computational delay is taken into account
by optimizing at every recalculation instant, based on
a prediction of the state at the next recalculation in-
stant, the open-loop optimal control problem for the
next recalculation instant. The purpose of this work
is to expand the results in (Chen et al. 2000) and to
outline rather general conditions that guarantee that
the closed loop is stable. Furthermore we underpin by
a simple example the importance of a correct consid-
eration of the occuring computational delay.
We assume in the following that the maximum time for
finding the solution to the open-loop optimal control
problem is known and denoted by δ̄c. Furthermore,
we assume that the lower diameter of the recalculation
instant partition π satisfies π � δ̄c and that Tp � π̄.

Remark 1 Note, that we do not necessarily sample
and hold the input in between recalculation instants.
The reason for this is twofold: First of all the use of a
fixed input does not allow to achieve asymptotic con-
vergence to the origin if it is not considered during the
optimization without decreasing the recalculation time
to zero. Secondly, in practice the recalculation time
is either predetermined by the time needed to solve
the open-loop optimal control problem or by an exter-
nal scheduling mechanism. It is typically significantly
larger than the sampling time of the process control
system. As sampling time δs we refer to the time the
process control system operates, i.e. the A/D and D/A
converter operate. Typically, the sampling time is in
the order of seconds, whereas the time needed for
solving the open-loop optimal control problem (which
often also defines the recalculation time) is typically
in the order of tenth of seconds, minutes or even tenth
of minutes. Thus the open-loop optimal input signal
that is applied to the system during # ti � ti * 1 & can be
sufficiently well approximated by a sample and hold
staircase related to the sampling time δs of the D/A
converters see Figure 1. Since the sampling time is
often significantly faster then the recalculation time,
the remaining approximation error can be seen as an
(small) input disturbance, which NMPC under certain
conditions is able to handle (Findeisen et al. 2003). @

applied input

u

trecalculation instantt1t0

u ��� ;x � t1 ���

u ����� ;x � t0 ���
u ��� ;x � t0 ���

sampling time δs

Fig. 1. Recalculation time, sampling time and sample
and hold.

The next section outlines a simple approach to con-
sider the necessary solution time in the NMPC prob-
lem and gives conditions under which stability of the
closed loop can be guaranteed.

3. NMPC AND COMPUTATIONAL DELAY

The approach we propose is based on the idea to
continue applying the input from the last recalculation
instant ti also during the (maximum) time δ̄c needed
for solving the open-loop optimal control problem. In
comparison to (6), the open-loop input that is applied
to the system is thus given by:

u � τ ��� u
� � τ;x � ti ���
� τ 	$# ti % δ̄c � ti * 1 % δ̄c ��+

Since the input for the time # ti � ti % δ̄c � is now given
by the previous recalculation, it is not any longer
available as degree of freedom in the open-loop op-
timal control problem (3). Thus problem (3) must be
adapted to account for this new situation. In principle
one can add the additional constraint

ū � τ ��� u
� � τ;x � ti 	 1 � � τ 	 # ti � ti % δ̄c � (8)

to (3) or one can use u
� � τ;x � ti 	 1 � � τ 	�# ti � ti % δ̄c � to

predict x � ti % δ̄c � and solve the open-loop optimal
control problem for this “initial” state. For simplicity
of notation we follow the first approach. For this
reason we require additionally that Tp � π̄ % δ̄c, i.e.
the prediction horizon is long enough to at least span
to ti * 1 % δ̄c. The resulting open-loop optimal control
problem that is solved at every recalculation instant ti

is give by

min
ū � � � J � ū ������� x � ti ��� (9a)

s.t. ˙̄x � f � x̄ � ū ��� x̄ � t �!� x � ti � (9b)

ū � τ �!� u
� � τ;x � ti 	 1 ����� τ 	$� ti � ti % δ̄c & (9c)

ū � τ �"	 U � x̄ � τ � 	 X � τ 	$# ti � ti % Tp & � (9d)

x̄ � ti % Tp �"	 E � (9e)

with J given by (3e). Note that the notation u
� � τ;

x � ti ��� ti � ti % Tp � is not totally correct. The optimal input
u

�
now also depends on the input at ti 	 1.

In the following we state a theorem establishing con-
ditions for stability of the closed-loop. The theorem
is along the lines of the results in (Fontes 2000, Chen
and Allgöwer 1998), which do not consider the com-
putational delay.
Theorem 3.1 (Stability of sampled-data
NMPC considering computational delay)
Suppose there exists a set E and a terminal penalty E
such that



(a) E 	 C1 and E � 0 ��� 0,
(b) E � X is closed and connected with the origin

contained in E ,
(c) � x 	 E there exists a input uE : # 0 � π̄& � U such

that x � τ � 	 E � � τ 	4# 0 � π̄ & and

∂E
∂x

f � x � τ ��� uE � τ ��� % F � x � τ ��� uE � τ ����� 0 (10)

(d) the NMPC open-loop optimal control problem
has a feasible solution for t0.

Then the state of the nominal closed-loop system de-
fined by (9), (8), and (3e) converges to the origin
for all partitions π that satisfy π � δ̄c, Tp � π̄ % δ̄c.
Furthermore, the region of attraction R is given by the
set of states for which the open-loop optimal control
problem (9) has a solution.

Note that we achieve stability in the sense of conver-
gence to the origin (=steady state).
Proof.
As usual in predictive control the proof consists of two
parts: a feasibility part and a convergence part.
Feasibility: Take any time ti for which a solution exists
(e.g. t0). After solving the open-loop optimal con-
trol problem, the optimal input u

� � τ;x � ti ��� correspond-
ing to x � ti � is implemented for τ 	 � ti % δ̄c � ti * 1 % δ̄c & .
Since we assume no model plant mismatch and since
the open-loop input from the previous recalculation,
which is applied during the solution of (9) is taken into
account, the predicted open-loop state x̄ � ti * 1 � at ti * 1

coincides with x � ti * 1 � . Thus, the remaining piece of
the optimal input u

� � τ;x � ti ����� τ 	$# ti * 1 � ti % Tp & satisfies
the state and input constraints if “applied” to (9b),
and x̄ � ti % Tp;x � ti ��� u � � τ;x � ti � ���"	 E . According to The-
orem 3.1 (c) E and E are chosen such that for every
x � t � 	 E there exists at least one input uE �,�-� that ren-
ders E invariant over π̄. Consider the following input
candidate for ti * 1,

ũ � τ ��� �
u

� � τ;x � ti ����� τ 	$# ti * 1 � ti % Tp &
uE � τ ��� τ 	$� ti % Tp � ti * 1 % Tp & (11)

which is a concatenation of the remaining old input
and uE �,�-� . This input satisfies all constraints and leads
to x � ti * 1 % Tp;x � ti * 1 ��� ũ �,�-��� 	 E . Thus, feasibility at
time ti implies feasibility at ti * 1, i.e. if the open-loop
optimal control problem has a solution for t0 it also has
a solution afterwards. Furthermore, if one can show
that the states for which (9) has a (initial) solution
converge to the origin, it is clear that the region of
attraction R consists of the points for which (9) posses
a solution. This is established in the next part of the
proof.
Convergence: We denote the optimal cost at every
recalculation instant ti as value function V � x � ti � � �
J

� � u � �,� � x � ti ��� . We show that the value function is
strictly decreasing. This allows to establish conver-
gence of the state to the origin. Remember that the
value of V at the recalculation instant ti is given by:

V � x � ti � �!� ( ti * Tp

ti
F � x̄ � τ;x � ti ��� u � ��� ;x � ti ��� ��� u � � τ;x � ti ��� dτ

% E � x̄ � ti % Tp;x � ti ��� u � �,� ;x � ti ������+
Consider now the cost resulting from the application
of ũ a starting from x � ti * 1 � :

J � ũ �,�-��� x � ti * 1 ���!� ( ti � 1 * Tp

ti � 1

F � x̄ � τ;x � ti * 1 ��� ũ ����� ��� ũ � τ ��� dτ

% E � x̄ � ti * 1 % Tp;x � ti * 1 ��� ũ ����� ����+
Reformulating yields

J � ũ ������� x � ti * 1 � �!� V � x � ti � �
? ( ti � 1

ti
F � x̄ � τ;x � ti ��� u � �,� ;x � ti ��� ��� u � � τ;x � ti � ��� dτ

? E � x̄ � ti % Tp;x � ti ��� u � �,� ;x � ti � ��� �
% ( ti � 1 * Tp

ti * Tp

F � x̄ � τ;x � ti * 1 ��� ũ �,�-����� ũ � τ ��� dτ

% E � x̄ � ti * 1 % Tp;x � ti * 1 ��� ũ �,�-��� �
Integrating inequality (10) over τ 	 # ti % Tp � ti * 1 % Tp &
we can upper bound the last three terms by zero. Thus,
we obtain

V � x � ti � � ? J � ũ �,�-��� x � ti * 1 ���
� ? ( ti � 1

ti
F � x̄ � τ;x � ti ��� u � ��� ;x � ti � ����� u � � τ;x � ti ��� � dτ

Since ũ is only a feasible, but not the optimal input for
x � ti * 1 � it follows that

V � x � ti � � ? V � x � ti * 1 ���
� ? ( ti � 1

ti
F � x̄ � τ;x � ti ��� u � ��� ;x � ti ��� ��� u � � τ;x � ti ����� dτ (12)

This establishes that for any partition with π � δ̄c

(the time between two recalculations is sufficiently
long to allow the solution of the open-loop optimal
control problem) and with Tp � π̄ % δ̄c (the prediction
horizon spans sufficiently long into the future) the
value function is decreasing. Since the decrease in (12)
is strictly positive for � x � u � 1� � 0 � 0 � it is possible,
similar to (Fontes 2000, Chen and Allgöwer 1998), to
employ a variant of Barbalat’s lemma to establish that
the states converge to the origin for t � ∞.

4. DISCUSSION

The conditions for stability in Theorem 3.1 are, similar
to the results in (Fontes 2000), rather general. We do
not give specific details on how to obtain a suitable
terminal region or terminal penalty term, since most
NMPC approaches with guaranteed stability and do
not take the computational delay into account can
be simply adapted. Examples for suitable approaches
are the zero terminal constraint approach (Mayne and
Michalska 1990), quasi-infinite horizon NMPC (Chen
and Allgöwer 1998), control Lyapunov function based
approaches (Jadbabaie et al. 2001), and the so called
simulation approximated infinite horizon NMPC ap-
proach (De Nicolao et al. 1998).



In comparison to the scheme presented in (Chen et
al. 2000) that takes the computational delay into ac-
count, the outlined approach is applicable to a wider
class of systems and does not require to consider a
quadratic cost function. Furthermore, the presented
conditions even allow to design NMPC controllers
that can stabilize systems which can not be stabilized
by a feedback that is continuous in the state, com-
pare (Fontes 2000).
The key reason for including the computation time
into the open-loop optimal control problem is that if
it is neglected, it is strictly not possible to establish
stability, as also shown in the example in the next
section. Only if the delay due to the numerical solu-
tion is sufficiently small, it can be consider it as an
disturbance which NMPC under certain conditions is
able to handle (Findeisen et al. 2003).

5. EXAMPLE

To illustrate the outlined method and the general influ-
ence of a neglected computational delay, we consider
the control of classical continuous stirred tank reac-
tor (CSTR), for the exothermic, irreversible reaction
A � B as outlined in. The model under the assump-
tion of constant liquid volume takes the following
form (Henson and Seborg 1997):

ċA � q
V

� cA f ? cA � ? k0e � E
RT cA

Ṫ � q
V

� Tf ? T ��% ? ∆H
ρCp

k0e � E
RT cA % UA

VρCp
� Tc ? T ���

where UA, q, V , cA f , E, RT , ρ, k0, ? ∆H, Cp are con-
stants, cA is the concentration of substance A, T is the
reactor temperature, and Tc is the manipulate variable
– the coolant stream. The objective is to stabilize the
operating point Ts � 375K, cAs � 0 + 159mol/L via the
coolant stream Tc (Tcs � 302 + 84K), where Tc is lim-
ited to the interval # 220K � 330K & . As NMPC method
quasi-infinite horizon NMPC is applied. The terminal
penalty term E and the terminal region E are obtained
considering the quadratic “stage cost” F � xT

�
4 0
0 4 � x %

2 � T ? Tcs � 2, where x � � ca 	 cAs
T 	 Ts � , using the direct semi-

infinite optimization approach as outlined in (Chen
and Allgöwer 1998). For simplicity we assume that
the recalculation instants are equally apart, i.e. ti � iδr,
where δr � 0 + 15min. Furthermore we assume, that the
maximum required solution time δ̄c coincides with the
recalculation time, i.e. δ̄c � δr. The prediction horizon
horizon is set to Tp � 3min. The open-loop optimal
control problem is solved using a direct optimization
method (see e.g. (Biegler and Rawlings 1991)) that
is implemented in Matlab. For this purpose the input
signal is parametrized as piecewise constant with a
sampling time that also coincides with the time be-
tween the recalculation instants, i.e. δs � δr. Figure 2
and 3 show the simulation result for the initial condi-
tion cA � 0 �
� 0 + 5mol � L and T � 0 ��� 350K. Shown are
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Fig. 2. Resulting states considering an ideal NMPC
controller, an NMPC controller that does neglect
the delay, and an NMPC controller that accounts
for the delay.

the results for an ideal (theoretical) NMPC controller
(ideal NMPC), i.e. assuming that the optimal control
problem can be solved immediately, an NMPC con-
troller in which the computational delay is not taken
into account (NMPC delay neglected), and the scheme
outlined in Section 3 (NMPC delay considered). As
expected the best performance is achieved for the ideal
NMPC controller (which can not be implemented in
practice). The more realistic setups, in which a delay
occurs, show degraded performance. Clearly it can be
seen, that if the delay is not taken into account, that
the performance degrades dramatically (curve NMPC
delay neglected), i.e. no convergence to the desired
steady state is achieved, even so that the delay of
0 + 15min is rather small. This is also clearly visible
in implemented input as shown in Figure 3. Notably,
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Fig. 3. Resulting input signals.

the NMPC controller that takes the delay into account,
achieves very similar performance if compared to the
ideal NMPC controller. The remaining difference is
mainly due to the initial delay time up to t � 0 + 15min,
in which the old steady state input is applied to the
system. Overall it becomes clear, how important the



correct consideration of the never avoidable computa-
tional delay for stability and good performance.

6. CONCLUSIONS

In this paper we considered the sampled-data NMPC
of continuous time systems taking the necessary so-
lution time of the open-loop optimal control problem
directly into account. As shown, if the computational
delay is not taken into account, the performance of the
closed-loop can degrade or even instability can occur.
In the approach we outlined, the open-loop input from
the previous recalculation is applied until the solution
of the optimal control problem is available. Since the
“old” input is also taken into account in the open-loop
optimal control problem the predicted open-loop tra-
jectory and the closed-loop trajectory coincide in the
nominal case. Based on this and suitable assumptions
on the terminal region constraint and terminal penalty
term, we outlined conditions under which the closed-
loop is stable. The assumption on the terminal region
constraint and the terminal penalty term are rather
general and allow to obtain suitable candidates using
various methods such as quasi-infinite horizon NMPC.
Overall, the outlined method allows to employ NMPC
even in the case that the solution time of the optimal
control problem is not negligible.
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