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Abstract: A novel control concept for multicomponent distillation columns is pre-
sented. The concept is based on nonlinear wave-propagation phenomena that occur
in counter-current separation processes. On this basis a reduced order model has
been developed in previous work that not only considers profile positions but also
the profile shape itself. The reduced model gives direct access to key parameters
of the plant, such as the separation front positions. Furthermore, it allows real-
time computations for multicomponent distillation columns. Such a model is used
for both, the nonlinear model predictive control (NMPC) and the observer design.
The observer uses temperature measurements and gives estimated temperature and
concentration profile positions as well as compositions in the product streams. The
robustness of the observer is shown intuitively and in simulation studies. The control of
multicomponent distillation is formulated within the NMPC framework by penalising
the deviation of the front positions from their reference points and ensuring the
product specifications by means of constraints. By directly taking account of product
specifications the presented control concept differs from inferential control schemes
known from literature. Due to the fact that the concept is based on simple temperature
measurements an industrial application seems easily possible.

Keywords: multicomponent distillation, wave phenomena, nonlinear model
predictive control, nonlinear observer

1. INTRODUCTION

In the past a vast number of studies has been done
in the area of distillation column control. A review
of the work produced in this field until early 90s is
given by Skogestad (1997). Most of the approaches
consider linear control methods. Although there
exist a number of studies on nonlinear control of
distillation columns, e.g. (Groebel et al., 1995)
they mainly concentrate on high purity binary
distillation; a study together with a review on
this field is presented in (Balasubramhanya and
Doyle III, 1997).

In previous studies tray temperatures are fre-
quently used as controlled variables instead of
product compositions (Luyben, 1973; Yu and Luy-
ben, 1984), since temperatures are easily mea-
sured online. For high purity binary distillation,
the controlled temperatures are easily selected.
In general, sensors are located at points where
the temperature profile has a sharp transition
and this corresponds to some distance away from
the column ends. However such inferential control
relies on the correlation between the tempera-
ture on the measurement trays and the product

composition. This correlation becomes poor for
multicomponent systems and consequently con-
trolling temperatures alone may result in a con-
siderable violation of the product specifications
(Moore, 1992). These difficulties may be overcome
by composition estimators derived on the basis of
temperature measurements, as proposed by e.g.
(Lang and Gilles, 1990; Mejdell and Skogestad,
1991b; Mejdell and Skogestad, 1991a; Quintero-
Marmol et al., 1991; Baratti et al., 1998; Dodds
et al., 2001).

In the last decade a new low order modelling ap-
proach based on nonlinear wave propagation the-
ory was developed for counter-current separation
processes (Marquardt, 1990) taking into account
proper profile shapes (Kienle, 2000). This type
of wave models offers a more precise insight to
the dynamic mechanisms of distillation processes.
Additionally they explicitly take into account the
separation fronts that determine the quality of the
separation.

In (Shin et al., 2000) a nonlinear profile observer
together with a profile position control for bi-



nary distillation columns is presented. That work
makes direct use of the fact that in binary distil-
lation the composition follows from the temper-
ature, which is not possible for multicomponent
systems. In contrast, this contribution aims at
directly controlling the product composition by
adjusting the front position. The capabilities of
wave position observers was shown recently in
(Roffel et al., 2002) for binary distillation.

Recent developments in the area of nonlinear
model predictive control (NMPC) (Allgöwer et
al., 1999) provide an efficient control technique
that is able to deal with the multi-variable nature
of distillation processes and the process operating
constraints. Furthermore, it is directly possible to
utilise the nonlinear process model.

In this contribution, the advantages of the wave
model together with the benefits of NMPC are
used to control separation front positions such
that the product specifications are met. At the
same time further operation limits are respected.
Together with an observer that is also based
on the wave model, this contribution presents
a consistently designed control system that is
directly applicable to multicomponent distillation
columns.

2. NEW CONCEPT FOR DISTILLATION
CONTROL

Most common distillation column models are
based on modelling each tray separately. In con-
trast, the wave model is based on integral balances
and regards the concentration profiles by the use
of suitable wave functions.

In previous studies it was realized that controlling
temperatures on individual trays may have prob-
lems in the precences of disturbances in the feed
composition. I.e. an adjustment of the setpoints
may be come necessary even for binary distilla-
tions in order to operate in specification.

Due to these problems wave propagation based
concepts have been successfully applied to the
control of binary distillation columns (Han and
Park, 1993; Balasubramhanya and Doyle III,
1997). An extensions of those concepts to multi-
component distillation columns is not trivial and
hence such applications are still missing.

Using the wave model introduced in (Kienle,
2000), the concept can be expanded to multicom-
ponent distillation. In this case there are NC − 1
traveling wave fronts, where NC stands for the
number of components. From among NC−1 fronts
the key separation front has to be selected. The
position of this front is used as controlled vari-
able afterwards. The selection can be made by
analysing the concentration profiles obtained at
the desired operating conditions. The key front
is the front which performs the main separation
with respect to the product specifications, e.g. in
Fig. 2 the fronts s1top and s

2
bot near tray 11 and 40

are selected. The key front is typically a balanced
front, i.e. it is a front with zero propagation ve-
locity standing in the middle of a column section.

manipulated variables

estimated front positions

estimated product composition

measured temperatures

product compositioncolumn

observer

NMPC
(wave model)

(wave model)

reference front positions

desired product composition

Fig. 1. Control setup

All other fronts are either pushed to the top or
bottom of the column section and not able to pass
the balanced front. The control aim is to balance
the key front in the presence of disturbances and
load changes.

2.1 Control scheme

Nonlinear model predictive control (NMPC) is
chosen as control strategy since it is able to handle
constraints on the states. Hence, in contrast to
inferential control, the desired product specifica-
tions are respected at any time by including them
as constraints.

The NMPC technique used in this contribution is
based on the following main components: a non-
linear process model, measurements, a state esti-
mator and an optimisation algorithm. As the wave
fronts are not measurable, a suitable observer is
designed to reconstruct the whole system state by
measuring one temperature per column section. In
this study, the same nonlinear wave propagation
model is employed within both the NMPC and
the observer. This makes it less time consuming
to set up the complete control environment and
only one parameter set has to be identified. The
resulting control setup is shown in Fig. 1.

The feasibility of NMPC in real-time by the use of
special high performance optimization algorithm
is shown in (Diehl et al., 2001b; Diehl et al., 2003)
for the control of a binary distillation column.
Compared to the equilibrium stage model used
in (Diehl et al., 2001b), which has 42 differential
states, a wave model based on similar assumptions
only needs 7 differential states. The benefits of
such an immense order reduction, are twofold.
First it is possible to solve NMPC problems with
limited computational power in real-time. Second
the NMPC approach can be further exploited
by the use of highly sophisticated, more time
consuming, optimization strategies.

2.2 The wave model

In this section, the used wave model will be
sketched, for details the reader is referred to
(Kienle, 2000). The column is divided into sections
by in- or outflows like feed or side streams. Each of
these sections, e.g. the rectifying or the stripping
part, is described by a wave model. Wave models
are derived from the constant pattern wave phe-
nomena appearing in distillation processes. The
main equation is the integral component material
balance

dhi
dt

= ṅi,in − ṅi,out i = 1 . . . NC − 1 (1)



over one column section. The integral amount hi
of the component i is calculated with the relation

hi =

NS∑

k=1

nkxi,k i = 1 . . . NC − 1 (2)

where n is the molar liquid holdup and xi the
mole fraction at each of the NS trays. The vapour
holdup is neglected. Both nk and xi,k depend on
the wave position and are calculated from the
wave function. The slope of this wave mainly de-
pends on the wave asymptotes and a mass transfer
coefficient. Furthermore, constant relative volatil-
ities and constant molar holdups are assumed.

The other parts of the column like feed tray,
condenser and reboiler are described by standard
equilibrium models.

3. OBSERVER DESIGN

As pointed out one of the key components of the
proposed operating concept for multicomponent
distillation columns is the observer. Therefore the
main idea is explained in the following and the
robustness of the approach is shown intuitively.
All ideas will be shown for the case of a ternary
distillation, but they can be transfered to distilla-
tions with any number of components.

3.1 Main Idea

The observer is built up of a plant model that
acts as a simulator part and is augmented by
an error injection. The error injection is designed
by insight into the process dynamics (Lang and
Gilles, 1990).

The main idea for the observer design is that the
error injection has to try to match the estimated
fronts with those of the plant. The following
rules for the error injection can be figured out
by analyzing the temperature and composition
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Fig. 2. Columns profiles after a reflux reduction
by 25%. The fronts move in the direction of
the arrows. The dotted line marks the feed
location.

profiles shown in Fig. 2.

The key separating front in the top section, la-
beled s1top in Fig. 2, is located near tray 11 at

the desired operating point. If the estimated tem-
perature at this tray is too high the front has to
be moved down, away from the condenser. This
can be achieved by increasing the mole fraction of
component 1 and decreasing that of component 2
via error injection.

The same analysis can be applied to the key sepa-
rating front s2bot in the bottom section. However,
component 1 does not contribute to the movement
of the front. Consequently there is no sense in
changing the mole fraction of component 1.

This observer design will work in a very robust
way since no assumptions regarding the model
structure as well as the precise parameter values
have been made so far. This idea has been already
successfully applied to a reactive distillation col-
umn in (Grüner et al., 2001).

In the following the placement of the temperature
measurements and subsequently the application
of the proposed error injection to the wave model
which is used as simulator will be shown.

3.2 Sensor Placement

Usually finding the right locations for the sensors
is a difficult and important task in the observer
design for spatially distributed systems. Wrong
sensor placement may even make the process
unobservable.

However, for distillation columns nonlinear wave
propagation theory provides the necessary infor-
mation. From the theory it follows, that there can
be at most one balanced wave, i.e. a wave with
zero propagation velocity in each column section.
All other waves are either pushed against the top
or the bottom boundary of the column section.
Even the smallest changes in the flow rates or the
feed composition will make this balanced wave
move up or down in the column section. Con-
sequently, this wave is the most sensitive to no
matter how small a disturbance to the process is.
Thus a temperature measurement in the middle
of that front at its nominal location will detect
all these movements and is the perfect location
for a sensor. In addition to these considerations it
should be noted that the control aim is to keep
this front at its nominal location. Hence, in stable
closed loop operation the wave will never be too
far away from the sensor.

3.3 Error Injection

As pointed out the idea of the error injection is
to move fronts up and down in the column. This
can be achieved by injecting the estimation error
into the integral component material balances (1)
of the wave model. The resulting equation for one
section, i.e. either stripping or rectifying section is
as follows:

dĥ

dt
= ṅin − ṅout

︸ ︷︷ ︸

simulator

+α
(

Tm − T̂m

)

︸ ︷︷ ︸

error injection

, (3)



where Tm is the measured temperature and α

the NC − 1-dimensional vector of correction co-
efficients. The sign of the components of α in
the integral material balances is chosen according
to the reasoning in Section 3.1. Elements corre-
sponding to compositions that do not contribute
to a front movement may be set to zero. In order
to reduce the number of tuning parameters, the
absolute value of the elements of α is assumed to
be equal, resulting in one tuning parameter per
column section.

The final magnitude of α can only be determined
in closed loop simulation studies. For the following
observer performance analysis the α were chosen
to be αrect = [20, 20]T and αstrip = [0,−20]T .

It is pointed out, that the proposed observer not
only gives estimates for the front positions, but
also for the complete temperature and compo-
sition profiles. I.e., in contrast to e.g. (Shin et
al., 2000), it also estimates the product compo-
sitions. In addition, the proposed observer is ap-
plicable to multicomponent distillation.

3.4 Observer Performance

In order to investigate the performance of the
proposed observer in the presence of unmeasured
disturbances, simulation studies were carried out
by using a much more detailed model, represent-
ing the plant. This model is a tray to tray constant
molar overflow model using saturation pressures
to describe the vapour-liquid equilibrium.

Very difficult disturbances to distillation columns
are changes of the feed composition as shown in
Fig. 3. But even for such a critical disturbance the
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Fig. 3. Response of the observer to a step change
of the feed composition at t=1.0 by 10% and
back to the nominal value at t=10.0. (Initial
profiles in bold, thin profile at t=10.0, solid
lines process, dashed-dotted lines observer)

observer shows good performance.

Taking into account that besides other differ-
ences the vapour-liquid-equilibrium of the ob-
server model is different from that of the plant
model the observer gives good quantitative esti-
mates for the product compositions, especially at
the nominal operating point where the estimates
are almost indistinguishable from the plant values.

Even more important for a good closed loop per-
formance of the observer is its ability to capture
the plant dynamics. The time plots of the prod-
uct compositions shown in Fig. 3 verify that the
observer is well able to render the dynamics of the
plant.

Besides the simulation study shown in Fig. 3
numerous other simulation studies were done.

These simulation studies show the robustness and
good performance of the proposed observer and
give full confidence for good closed loop perfor-
mance.

4. CONTROLER DESIGN

In this study, the nonlinear wave propagation
model is employed within the NMPC framework.
In the light of the discussion in Section 2 the
control aim can be defined as to maintain the
wave front positions at their required set points,
while at the same time the product specifications
have to be fulfilled. This has to be achieved in the
presence of disturbances and constraints on the
input and output variables.

The process model required for the NMPC frame-
work is a DAE model of index one in the following
form :

ẋ(t) = f(x(t), z(t),u(t)),
0 = g(x(t), z(t),u(t)),

(4)

together with suitable initial conditions, where
x(t) and z(t) are the differential and algebraic
state vectors, u(t) is the control vector and t is
the time.

The NMPC open-loop optimal control problem to
solve for a prediction horizon [0, Tp], with horizon
length Tp, is given by

min
u(·),x(·)

∫ Tp

0

{

‖Si(t)− Srefi ‖22

}

dt. (5)

The controlled variables are the key front posi-
tions, Si, and desired front positions are denoted

by Srefi . Subscript i corresponds to the column
section. The state and control inequality con-
straints are formulated by

c(x(t), z(t),u(t)) ≥ 0 for t ∈ [0, Tp]. (6)

In this particular case

c(u) =

[

u− umin
umax − u

]

(7)

define lower and upper bounds for the controls.
The important constraints on the top and bottom
product compositions, xT and xB , are given by

[

xT (t)− xrefT

xrefB − xB(t)

]

≥ 0 for t ∈ [0, Tp]. (8)

The constraints on the states, Eq. (8), are treated
as soft constraints using slack variables which are
added in the objective function as linear penalty
terms. Such an approach is particularly useful
when output constraints represent the control
objectives rather than hard limits in the process.
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Fig. 4. Closed loop simulation experiment after
50% increase and decreasing to the original
value of the light component in the feed.
(dashed lines: boundaries, dotted lines: set-
points)

To ensure nominal stability of the closed system
a practical approach based on the result given in
(Chen and Allgöwer, 1998) was taken. This is done
by dividing the prediction horizon into a control
horizon [0, Tc] and a prediction interval [Tc, Tp]
along which the controls are kept constant at their
final values.

In order to show the advantage of the proposed
control concept at first a NMPC closed loop simu-
lation study for the binary separation of methanol
and 1-propanol is presented in Fig. 4. Controlling
the only existing front in the binary problem is
equivalent to controlling the key separation front
in the ternary case.

The reflux flow-rate, L, and the heat input, Q,
into the reboiler (which corresponds to the vapour
flow rate out of the reboiler) are considered as
manipulated variables (LV configuration).

The scenario considered in the following is a 50 %
step increase of the light component in the feed
occurring after 100 seconds and a decrease to its
original value after 1500 seconds. Tc, is selected
as 1200 seconds with 10 control intervals and
Tp is 30000 seconds. The product concentration
constraints are set to xT (t) ≥ 0.998 and xB ≤
0.001. As shown in Fig. 4 the fronts have to
be shifted to fulfill the product specification at
the top of the column. After the disturbance
disappeared the fronts are shifted back to their
reference points.

If one chooses the inferential control scheme for
the same binary distillation system, the controlled
temperatures would be on trays 15 and 29 similar
to (Diehl et al., 2003) and as Fig. 4 clearly
shows, set-points of the temperature controllers
have to be modified to guarantee the product
specifications.

The NMPC computations are carried out on a
Unix workstation running under Linux (1 Ghz
AMD Athlon processor), using an efficient dy-
namic optimisation algorithm which is based on
a direct multiple shooting approach and available
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as the dynamic optimisation software, MUSCOD-
II (Diehl et al., 2001a).

The application of the control concept to mul-
ticomponent systems is demonstrated for the
ternary system of methanol/ethanol/1-propanol.
The two key fronts to be controlled are s1top and

s2bot located near tray 11 in the rectifying sec-
tion and near tray 40 in the stripping section at
the nominal operating point respectively. Manipu-
lated variables, the reflux ratio, L/D, and the heat
input, Q ( L/D,V configuration) are computed in
6 control intervals each of 900 seconds length and
Tp is 30000 seconds.

Fig. 5 shows the input and state trajectory ob-
tained as a solution to the NMPC open loop opti-
mal control problem in the face of a disturbance in
the feed concentration (33 % step decrease of the
light component). The key front positions, Sr and
Ss are kept nicely around desired reference values.
Meanwhile constraints on the product concentra-
tions, xT ≥ 0.99 and xB ≥ 0.85, are satisfied. The
dynamic optimisation problem for Case II was
solved within the process simulation environment
DIVA(Kröner et al., 1990). A standard Sequential
Quadratic Programming (SQP) algorithm from
NAG library is used. 1

5. CONCLUSION

A novel concept for the control of multicomponent
distillation columns has been proposed. The main
idea of the control concept is based on the ob-
servation that the product composition is mainly
influenced by the key separating front.

The control achieves the desired product spec-
ifications by adjusting the position of the key
separation front in each column section, while the
product specifications are ensured by constraints
in the NMPC. Due to the fact that a direct spec-
ification of the product composition is possible,

1 Current work is on the NMPC closed loop application
for the ternary system within MUSCOD-II environment
and results are likely to be presented at the conference.



the control concept is a direct control concept in
contrast to the many inferential control concepts
in the literature. The capability of the concept
was shown in two case studies for a binary and a
ternary distillation.

The NMPC is provided with the necessary infor-
mation by an observer. Both, observer and NMPC
use the same wave model. The robustness of the
observer with respect to parameter errors as well
as model-plant mismatches is intuitively shown
and validated by simulation studies for a ternary
separation.

In the future the control concept will be applied to
a ternary separation of e.g. methanol/ethanol/1-
propanol in a system of two coupled distillation
columns. This will be done first in simulation stud-
ies and then at the pilot scale plant at the Institut
für Systemdynamik und Regelungstechnik.
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