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Abstract: Glucose concentration controllers for Type I diabetic patients are synthesized using
model–based methods. A physiologically–based model of the insulin–dependent diabetic is
employed as the patient. For modeling and control purposes, the patient is approximated
using nonlinear Volterra series models. These data–driven models are then employed in two
nonlinear controller synthesis strategies: internal model control using partitioned inverses
(Doyle III et al., 1995), and model predictive control.
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1. INTRODUCTION

In the normal patient, proper glucose control is
maintained by the pancreatic β–cells; these cells
alter their secretion of insulin, a potentiator for
glucose removal from the bloodstream, in response
to changing glucose levels. In the Type I (or insulin–
dependent) diabetic patient, this control mechanism
does not function properly, leading to sustained
elevated blood glucose concentration and a condition
known as hyperglycemia (defined as blood glucose >
120 mg/dL). The Diabetes Complications and Control
Trial (1993; 1996) has shown that this condition is
responsible for many of the long–term effects of
diabetes, such as blindness, kidney failure, and limb
loss. While classical injection therapy can return
the patient to near normoglycemic levels (glucose
between 70 and 120 mg/dL), two primary drawbacks
result from this treatment. First, the non–continuous
nature of treatment often leads to wide variations
in glucose concentration. In addition, over–delivery
of insulin can result in significant drops in blood
glucose concentration into the hypoglycemic range (<
60 mg/dL). This low–glucose condition deprives the
cells of fuel and can lead to coma and patient death.
The maintenance of glucose within tight physiological

limits is of supreme importance for the survival of
diabetic patients.

The treatment of insulin–dependent diabetes currently
employs insulin injection, inhalation delivery systems,
or continuous infusion pumps. The inherent drawback
of all of these approaches is their reliance on patient
compliance to achieve long–term glucose control. The
patient is normally required to adjust their insulin dose
levels prior to meals, exercise, and sleep, and it is
assumed that the patient delivers a correctly estimated
dose at the proper time. The loss of glucose control
may result from an incorrect estimate of insulin need
or a missed dose. In an effort to remove the patient
from the control loop, this work focuses on the
development of a closed–loop insulin delivery system
using periodic glucose measurements to calculate and
deliver an insulin dose that will maintain the patient
within the normoglycemic range in response to a
variety of physiological disturbances.

Three primary components would compose a closed–
loop insulin delivery system. Patient glucose mea-
surements would be accomplished with an in vivo
glucose concentration sensor; a significant effort is
ongoing in this area (Jaremko and Rorstad, 1998). To



deliver variable amounts of insulin to the patient, there
exist a variety of pump mechanisms (Cohen, 1993;
Minimed Corporation, 1999). Linking the sensor and
the delivery device is the control algorithm, on which
this paper is focused. Classical feedback algorithms
are inadequate for glucose control, due to the
existence of system constraints and their interactions
with the patient dynamics. The following work
evaluates two candidate advanced control structures,
nonlinear internal model control using partitioned
model inverses (PNLI–IMC) and nonlinear model
predictive control (NMPC), as well as their linear
counterparts, with respect to their glucose control
performance in response to glucose concentration
challenges.

2. DIABETIC PATIENT CASE STUDY

The structure used as the diabetic patient in this
work is the physiologically–based pharmacokinetic /
pharmacodynamic model given in (Sorensen, 1985;
Parker et al., 2000). This model uses a compartmental
technique to account for the connectivity and
interaction of the various organs important to glucose
and insulin metabolism and dynamics. From an input–
output perspective, the steady state behavior is shown
in Figure 1. In the local region of the nominal
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Fig. 1. Steady state locus for the diabetic patient.
Nonlinear patient model (dashed), linear model
(solid).

condition (uss ≈ 23.9 mU/min, yss ≈ 81.1 mg/dL),
the diabetic patient displays linear behavior. However,
more severe hypo– and hyperglycemic states elucidate
the nonlinear character of the diabetic patient glucose–
insulin response. The shape of the steady state locus
motivates the use of polynomial empirical models
to approximate the system behavior. Advantages of
this approach include the relative ease with which
empirical models can be identified and updated, as
compared to more physiologically relevant models.
Furthermore the calculation of the model inverse, for
use in the control algorithm, can be facilitated by
selecting certain model structures, as discussed in
greater detail below (Doyle III et al., 1995).

3. MODEL DEVELOPMENT

Model–based control systems require an accurate
dynamic patient model. Given the significant vari-
ability observed in biomedical systems (Puckett
and Lightfoot, 1995), an easily customizable model
is preferable. These requirements lead to the use
of empirical model structures for capturing patient
dynamics. If a linear model is required, which facil-
itates controller synthesis, then discrete–time transfer
functions can be employed. Alternatively, Volterra
series, a member of the class of nonlinear moving
average models, are effective in approximating
nonlinear process dynamics (Boyd and Chua, 1985;
Zheng and Zafiriou, 1994; Zheng and Zafiriou, 1995).
Both structures are straightforward to update, and the
decision about which model to employ depends on the
control structure and desired performance.

3.1 Volterra Series

In an effort to capture the nonlinear characteristics of
the diabetic patient, a nonlinear Volterra series model
was selected to approximate the input–output behavior
of the diabetic patient. Previous work (Florian and
Parker, 2002) developed a Volterra model for the
patient process described in Section 2. The remainder
of this subsection will highlight those results as they
form the basis for the model employed in the control
studies.

The general Volterra series model has the form:

ŷ(k) = y0 +
N

∑
i=1

M

∑
j1=1

. . .
M

∑
jN=1

hi( j1, . . . , jN)×

u(k− j1) . . .u(k− jN) (1)

The diabetic patient can be approximated using the
above discrete–time nonlinear model because the
glucose–insulin dynamics display fading memory
(Boyd and Chua, 1985); inputs further in the past have
a lesser effect on the output than more recent input
changes, up to a memory of M, beyond which the
input effects are no longer significant. By selecting a
model memory, M and model order, N, a truncated
Volterra series can be employed to model a given
system. Model coefficients (hi( j1, . . . , jN)) identified
from patient data provide an empirical relationship
(the Volterra model) between past insulin infusion
rates (u(k − i)) and glucose concentration (y(k)) for
a given patient at each sample time (k).

Starting from the general Volterra series model in
equation (1), Florian and Parker (2002) showed
that a third–order diagonal structure provides a
good trade–off between identifiability (from limited
clinical data) and predictive accuracy. The diagonal
structure reduced the number of unknown model
coefficients from 12,341 to 121, and decreased the



data requirements by orders of magnitude. This
Volterra model can be decomposed as:

y(k) = h0 +
�

(k)+ � 2(k)+ � 3(k) (2)

�
(k) =

M

∑
i=1

h1(i)u(k− i),

� 2(k) =
M

∑
i=1

h2(i, i)u
2(k− i),

� 3(k) =
M

∑
i=1

h3(i, i, i)u
3(k− i),

Here
�

denotes the linear terms, and diagonal
terms of order N are given by � N . To facilitate
the identification procedure, y(k) and u(k) are in
scaled deviation form. In order to capture the dynamic
response of the diabetic patient, the glucose sampling
rate, Ts, and the model memory, M, were selected
such that ≈ 99% of the patient step response was
captured by M coefficients, resulting in Ts = 10 min
and M = 40. This is a reasonable memory length for
application in controller synthesis, and the glucose
sampling interval of 10 minutes is characteristic of
current sensor development goals.

In model identification, tailored input sequences can
dramatically reduce the amount of data necessary
for model development while simultaneously offering
improved coefficients (Parker et al., 2001a). An input
sequence of at least four discrete levels is required
to identify a third–order Volterra model (Nowak and
Van Veen, 1994). As in (Florian and Parker, 2002),
a tailored five–level sequence was constructed that
excited only the diagonal terms. The input sequence:

u(k) =















































γ1 k = 0
0 1 ≤ k ≤ M

−γ1 k = M +1
0 M +2 ≤ k ≤ 2M +1
γ2 k = 2M +2
0 2M +3 ≤ k ≤ 3M +2

−γ2 k = 3M +3
0 3M +4 ≤ k ≤ 4M +3

(3)

is a special case of a continuous–switching–pace
symmetric random sequence, where the sequence
levels represent deviations from the nominal input
value. In the previous identification study (Florian
and Parker, 2002), it was established that |γ1| < |γ2|
provided superior estimates of model coefficients due
to the lesser effect of the finite memory assumption
for smaller inputs. Furthermore, the second–order
diagonal coefficients were identified only from the γ2
magnitude pulse responses, as these provided better
stimulation of nonlinear behaviors. The sequence used
to identify the Volterra model in equation (2) is shown
in Figure 2

The identification objective was chosen to be
minimization of model prediction error:
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Fig. 2. Input sequence (top) and output response
(bottom) for linear plus nonlinear diagonal
coefficient identification.

J =
4M+3

∑
k=0

e2(k) =
4M+3

∑
k=0

[y(k)− ŷ(k)] (4)

In combination with the input sequence above,
coefficient estimators can be analytically derived as in
(Florian and Parker, 2002):

ĥ0 =
y(0)+ y(M +1)

4
(5)

+
y(2M +2)+ y(3M+3)

4

ĥ1(k) =
γ3

2 (y(k)− y(k +M +1))

2γ1γ2(γ2
2 − γ2

1 )
(6)

−
γ3

1 (y(k +2M +2)− y(k +3M+3))

2γ1γ2(γ2
2 − γ2

1 )

ĥ2(k,k) =
(y(k +2M +2)− y(2M+2))

2γ2
2

(7)

+
(y(k +3M +3)− y(3M+3))

2γ2
2

ĥ3(k,k,k) =
γ2(y(k)− y(k +M +1))

2γ1γ2(γ2
2 − γ2

1 )
(8)

−
γ1(y(k +2M +2)− y(k +3M+3))

2γ1γ2(γ2
2 − γ2

1 )

These estimators were updated from (Parker et
al., 2001a) to include third–order diagonal model
estimation effects and the use of a partial sequence for
second–order coefficient estimation. These estimators
show superior performance in the absence of
measurement noise; by repeating the input sequence
in Figure 2, noise effects can be averaged over the
number of repeats, as in (Parker et al., 2001a).

4. CONTROLLER SYNTHESIS

While a significant amount of work has been
performed in the area of controller synthesis for
insulin–dependent diabetic patients (see (Parker et
al., 2001b) for a survey) the majority of these
controllers employ linear patient models. The key



Table 1. Controller and model struc-
ture evaluation chart. The cells include
the abbreviation used for the particular

controller–model pairs.

Controller
IMC MPC

Linear LIMC LMPC
Model

Nonlinear PNLI-IMC NMPC

contribution in the present study is the evaluation and
comparison of two control structures, internal model
control (IMC) using a partitioned model inverse and
model predictive control (MPC), when the models
employed are clinically–relevant empirical models of
the Volterra type. Table 1 provides the abbreviations
used for the controllers under evaluation. In all cases,
the controllers were designed to accommodate a
sampling rate of 1 measurement per 10 min. Based on
current sensor research (Jaremko and Rorstad, 1998),
this sampling rate provides a reasonable trade–off
between the capabilities of sensing technology and the
controller performance needs.

4.1 IMC Synthesis

Synthesis of a linear discrete–time IMC controller can
be accomplished using a variety of techniques (dis-
cretization of a continuous–time controller, discrete–
time synthesis, etc.) (Ogunnaike et al., 1994). In the
present work, a discrete–time transfer–function model
(G(z)) was constructed to approximate the linear
Volterra series model. By appending a first–order filter
(time constant φ ) to the linear inverse, the discrete–
time IMC controller was synthesized. The resulting
transfer function model and LIMC controller were:

G(z) =
−0.458

z−0.849
(9)

Q(z) =
(1−φ)z−0.849(1−φ)

−0.458z+0.458φ
(10)

The quality of model fit can be seen in Figure 3.

Partitioned nonlinear inverse controller synthesis was
accomplished using the approach of Doyle III et al.
(1995), in discrete–time with the third–order diagonal
Volterra model. If the linear inverse exists, then a
nonlinear system � that can be partitioned as

� = (
�

+ � ) =
�

( � +
� −1 � )

can be analytically inverted yielding:

� −1 = ( � +
� −1 � )−1 � −1

In block diagram form, this can be constructed as
shown in Figure 4. Here the linear controller (

� −1)
is the transfer function in Equation (9), written in
difference equation form. The nonlinear controller
component ( � ) is comprised of the � 2 and � 3
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Fig. 3. Comparison of model dynamics. Solid: actual
patient (continuous); dashed: linear Volterra;
dash–dot: transfer function.
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Fig. 4. PNLI–IMC schematic

components of the Volterra model (2). The difference
equation formulation facilitates the “while” loop
structure required for the controller loop to converge,
an effect of the direct–feed nature of the controller
and the static nonlinearities in the feedback loop. The
convergence criterion is a difference in consecutive
insulin infusion rate calculations of 1×10−4 mU/min.

The IMC controller (in both linear and PNLI–
nonlinear forms) contains a single tuning parameter:
the filter time constant. Since the controller is
designed primarily to reject meal disturbances from
a pseudo–steady state, the value of the filter constant
could be selected to be small (in this case φ =
0.1) to allow aggressive disturbance rejection. Should
setpoint changes become a concern, or if sharp
discontinuities were to occur in the measurement
signal, the controller would have to be detuned
significantly (to approximately φ = 0.7) to maintain
stability.

4.2 MPC Synthesis

Model predictive control is an algorithm that employs
a process model to predict future dynamic behavior
based on past inputs. This is an optimization–based
control algorithm, executing at each sample time, and
it uses the following objective function:

min
∆ � (k|k)

‖Γy [ � (k +1)− � (k +1|k)]‖2
2

+‖Γu∆ 	 (k|k)‖2
2 (11)



Over a future prediction horizon of p steps, a series
of m ≤ p manipulated variable moves is calculated
in order to minimize the objective in Equation (11).
The matrices Γy and Γu are used to trade off
setpoint tracking error and manipulated variable
movement, respectively. Additional constraints on
the manipulated and controlled variables can be
implemented in a straightforward fashion, as this
is an optimization problem. In the case of a
linear process model, the resulting problem is a
quadratic programming problem. This changes to
a nonlinear programming problems when nonlinear
process models are employed. To solve the quadratic
and nonlinear programming problems, the fmincon
optimization routine of MATLAB (©2002, The
Mathworks, Natick, MA) was employed.

Selecting the tuning parameters for a model predictive
control algorithm is typically done on an ad hoc
basis; there is no optimal tuning algorithm available.
In general, the move and prediction horizons are
adjusted to provide sufficient aggressiveness in control
action, as well as adequate model prediction. The
tuning matrices are used to alter the setpoint tracking
performance (Γy) and to suppress noise–induced
manipulated variable adjustment (Γu).

4.3 Results and Discussion

The results of using nonlinear compensation within
the IMC framework to reject a meal disturbance of
50 grams (glucose) at time t = 50 min can be seen
in Figure 5. A slightly more aggressive controller
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Fig. 5. 50 g meal disturbance simulation comparing
LIMC (dashed) and PNLI–IMC (solid). The filter
time constant was selected as φ = 0.1 in both
cases.

results from using the PNLI–IMC framework, as the
nonlinear controller both increases and decreases the
insulin delivery rate more rapidly than the linear
controller. The sum–squared error (SSE) was reduced
by 6.5%, with a small (3.7%) improvement in glucose
concentration undershoot to a minimum of 65.5 mg/dl.

Simulation results evaluating the model predictive
control algorithm for the same disturbance as above
are shown in Figure 6. The increased aggressiveness
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Fig. 6. 50 g meal disturbance simulation comparing
MPC (dashed) and NMPC (solid). The tuning
parameters for both controllers were Γy = 3, Γu =
1, m = 3, p = 8.

of the nonlinear controller can be clearly observed
in the manipulated variable profile, where the insulin
delivery rate is elevated more quickly and to a higher
maximum delivery rate. This leads to the glucose
concentration decrease observed between t = 150 and
t = 200 min. Furthermore, the nonlinear controller
decreases its delivery rate more quickly, thereby
compensating more efficiently for the hypoglycemic
excursion around t = 270 min. For an 0.3% increase in
total insulin delivery, the nonlinear controller provides
a 13% decrease in sum–squared error and a more rapid
reaction to hypoglycemic excursions.

The increased ability to tailor the performance
objective in MPC leads to a marked increase in
performance as defined by sum–squared error, as
shown in Table 2. This improvement in error is a

Table 2. Controller performance compari-
son. Absolute (mg2/dl2) and comparative

(%) metrics versus linear IMC shown.

Linear Nonlinear
SSE % SSE %

IMC 213 0 199 6.5
MPC 187 12 163 23.3

result of decreasing the magnitude and duration of
the hyperglycemic excursion (between t = 100 and
t = 200), as well as the return to steady state after
the hypoglycemic excursion. The NMPC algorithm
is particularly responsive to the depressed glucose
concentrations between t = 220 and t = 270 min, and
its aggressive response leads to superior performance.
The fact that this nonlinear control algorithm responds
so aggressively to the hypoglycemic excursion is
imperative for diabetic patients in whom dramatically
suppressed glucose levels can lead to coma and death.
One minor penalty for improving the SSE is increased



undershoot. Both MPC controllers lead to minimum
glucose concentrations of about 2 mg/dl less than
the IMC controllers. However, the difference is well
within the noise band of present sensors.

5. CONCLUSIONS

This paper presents an analysis of linear and nonlinear
model–based control algorithms as employed in
simulation on insulin–dependent diabetic patients.
By employing a previously–developed parsimonious
nonlinear Volterra series model (Florian and Parker,
2002) in the control structure, nonlinear control
algorithms (IMC with partitioned inverses and MPC)
were synthesized. These algorithms were then tested
with respect to their capabilities in meal disturbance
rejection. Nonlinear compensation proved beneficial,
especially as the patient deviated from the nominal
condition of 81 mg/dl. Given the performance metric
of SSE, the NMPC controller is superior; however,
if constraints are not imposed and a closed–form
controller solution is required then linear MPC would
be the best choice. In all cases, the utility of empirical
model structures identified from patient data have
proven effective in controlling glucose concentration
in the presence of meal disturbances.
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