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Abstract: We use simulation-based approach to find the optimal feeding strategy for
cloned invertase expression in Saccharomyces cerevisiae in a fed-batch bioreactor. The
optimal strategy maximizes the productivity and minimizes the fermentation time.
This procedure is motivated from Neuro Dynamic Programming (NDP) literature,
wherein the optimal solution is parameterized in the form of a cost-to-go or profit-to-
go functions. The proposed approach uses simulations from a heuristic feeding policy
as a starting point to generate the profit-to-go vs state data. An artificial neural
network is used to obtain profit-to-go as a function of system state. Iterations of
Bellman equation are used to improve the profit function. The profit-to-go function
thus obtained, is then implemented in an online controller, which essentially converts
infinite horizon problem into an equivalent one-step-ahead problem.
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1. INTRODUCTION

A vast majority of industrially important fermen-
tors are operated in fed-batch mode, which in-
volves addition of substrates continuously to an
otherwise batch reactor. Fed-batch reactors are
especially useful when growth or metabolite pro-
duction follows substrate or product inhibition ki-
netics. In such cases, substrates need to be added
in a controlled manner in order to maximize the
productivity with respect to the desired product.
For example, if product formation is inhibited un-
der excess substrate conditions, low substrate con-
centrations are desired for high product yields. At
the same time, higher substrate levels are required
to prevent starvation of cells and to maintain
high growth rates. Thus, there exists an optimum
feed profile that maximizes the productivity of the
process.
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The determination of optimal feed profile is a chal-
lenging problem, as the bioreactors follow com-
plex nonlinear dynamics. Resulting optimal con-
trol problem is therefore a nonlinear programming
(NLP) problem accompanied by various input and
state constraints. The optimization is often non-
convex and the global optimum difficult to achieve
(Banga et al., 1997).

Many authors have used Pontryagin’s maximum
principle to solve the optimal control problem.
However, this approach may be very difficult
for such problems; so several alternative solu-
tion techniques have been proposed. Cuthrell and
Biegler (1989) solved the optimal control problem
of a fed-batch penicillin reactor using successive
quadratic programming (SQP) based on orthog-
onal collocation on finite elements. Luus (1993)
used iterative dynamic programming (IDP) to
find optimal feed profile for the same reactor;
while Banga et al. (1997) presented a fast stochas-
tic dynamic optimization method — called in-



tegrated controlled random search for dynamic
systems, ICRS/DS — for this reactor. Recently,
Bonvin et al. (2002) provided a good review of dy-
namic optimization methods for batch processes,
and also presented algorithms that achieve nearly
optimal performance in the presence of uncertain-
ties.

In this paper, optimal control of a fed-batch fer-
mentor for cloned invertase expression in Saccha-
romyces cerevisiae is considered. The expression
of the enzyme is repressed at high glucose con-
centration. Hence, a fed-batch reactor is ideal for
this process (Patkar and Seo, 1992). Patkar et
al. (1993) proposed a model for this fermentation
process, involving a set of four coupled ODEs.
They used first-order conjugate gradient method
in order to find the optimal feed rate profile for
this system. Later, Chaudhuri and Modak (1998)
used a neural network model into the generalized
reduced gradient method for the same optimiza-
tion problem.

The main disadvantage of the above methods is
that the fermentation ending time should be fixed
a priori in both cases. In order to find the optimal
fermentation ending time, several different fer-
mentation ending times should be guessed and, for
each one of them, one productivity optimization
problem should be solved. This is extremely com-
putationally demanding. Methods such as control
parameterization may be used for free-end-time
problems to obtain open loop optimal policies.
Another drawback of these methods stems from
the fact that they are open loop optimal, which
means that each time an initial condition changes,
a new and different optimization problem should
be solved. Besides, the resulting fixed policies do
not take into account the possible process distur-
bances.

Dynamic Programming (DP) is an optimization
method that can be used to overcome these limita-
tion. It was introduced by Bellman and coworkers
(Bellman, 1957) as a feasible approach to solve the
dynamic optimization that results from an opti-
mal control problem. Here, the aim is to find the
optimal ‘cost-to-go’ function, which can be used
to parameterize the optimal solution as a function
of the system state. This method is promising as
presents a feasible approach to solve any optimal
control problem. However, it suffers from ‘curse
of dimensionality’, which refers to exponential in-
crease in computational cost with increase in state
dimension.

Recently, Neuro-Dynamic Programming (NDP)
was proposed as a way to alleviate the curse of
dimensionality (Bertsekas and Tsitsiklis, 1996).
NDP uses simulated process data obtained under
suboptimal policies to fit an approximate cost-to-
go function – usually by fitting artificial neural

networks, hence the name. The initial approxi-
mate cost-to-go function is further improved by
an iteration procedure based on the so called
Bellman equation. Closely related to NDP are
the methods in AI literature, collectively classi-
fied as Reinforcement Learning (RL, Sutton and
Bartow (1998)). We applied this approach to on-
line control of a continuous bioreactor (Kaisare et
al., 2002) as well as that of a benchmark Van der
Vusse reactor (Lee and Lee, 2001). Simulation-
based NDP method will be applied for optimal
control of the fed-batch Saccharomyces cerevisiae
fermentor. We have considered a deterministic
optimization problem, i.e. the model is known
and full state feedback is assumed. The method
can be expanded to stochastic case. Moreover,
simulation-based NDP methods do not require
the explicit model to be known—methods like Q-
learning (Watkins and Dayan, 1992) developed in
RL community are model-free stochastic learning
techniques.

2. STATEMENT OF THE OPTIMAL
CONTROL PROBLEM

Our objective is to find an optimal feed profile µ
that adapts itself when initial conditions change
or when disturbances occur. The optimal policy is
a function of the system state, represented as

µ(x) = arg max
u,tf

{productivity − λ · tf} (1)

subject to relevant input and state constraints and
following system dynamics. λ is a positive con-
stant that penalizes invertase fermentation time.

In general, the performance index is mathemat-
ically represented as the sum of stage-wise costs
incurred (or rewards obtained) until the end of
horizon.

J(xk) =
tf

∑

i=k

φ(xi, ui) + φ̄t(xtf ) (2)

subject to

Path Constraint: gi(xi, ui) ≥ 0

Model Constraint: ẋ = f(x, u)

Here φ is the stage-wise cost/reward and φ̄p is
the terminal cost/reward. The path constraints
include all input and state constraints. The sys-
tem dynamics appear as model constraints. For
discrete-time system, the model f(x, u) can be
integrated for one time step. Equivalently, model
constraint becomes xk+1 = fh(xk, uk).

The above problem is an infinite-horizon control
problem, as we wish to solve free terminal time
optimal control (i.e. tf is not fixed).



3. NEURO-DYNAMIC PROGRAMMING

We begin this section with the description of Dy-
namic Programming (DP), which is an elegant
way to solve the previously introduced optimiza-
tion problem. In this method, the process is mod-
eled as a chain of consecutive transitions from
one state to another. The way each transition is
made depends on the decision variable, which has
an associated cost or reward. The objective of
dynamic programming is to maximize the total
profit or minimize the total cost, obtained from
the transitions needed to reach the final desired
process state from initial process state.

DP involves stage-wise calculation of the profit-
to-go function 2 to arrive at the solution, not
just for a specific x0 but for general x0. Thus,
the objective function is split into two parts —
one stage reward obtained in going from xk to
xk+1, and total future rewards as a function of
xk+1. The latter is parameterized as profit-to-go
function, which represents the “desirability” of
state xk+1. Using the profit-to-go function, the
multi-stage optimization problem is cast into an
equivalent single-stage optimization that is solved
online.

max
uk

{φ (xk, uk) + J∗ (xk+1)} (3)

where the optimal profit-to-go function is at each
stage is defined as

J∗ = max
u

{ tf
∑

i=k+1

φ(xi, ui) + φ̄t(xtf )

}

(4)

The crucial step in DP is calculation of the profit-
to-go function J∗(x). This involves stage-wise
evaluation of rewards obtained in all possible tran-
sitions from each state in the state space. Without
going into further details, we mention here that
this approach is seldom practically feasible due
to the exponential growth of the computation
with respect to state dimension. This is referred
to as the ‘curse of dimensionality’, which must
be removed in order for this approach to find a
widespread use.

An alternative method, which uses simulations
to overcome the curse of dimensionality, involves
computation of an approximation of the profit-to-
go function. Exhaustive sampling of state space
can be avoided by identifying relevant regions of
the space through simulation under judiciously
chosen suboptimal policies. The policy improve-
ment theorem states that the new policy defined
by µ(x) = arg maxu

{

φ(x, u) + J i(fh(x, u))
}

is an

2 It is customary in DP to use cost-to-go for minimization
problem. We use profit-to-go as we solve maximization
problem. Both cost and profit are exactly equivalent

improvement over the original policy (Howard,
1960). Indeed, when the new policy is as good as
the original policy, the above equation becomes
the same as Bellman optimality equation (5).

J∞(x) = max
u
{φ(x, u) + J∞(fh(x, u))} (5)

Equivalently, for a free-end-time batch optimiza-
tion problem, the above equation can be formu-
lated as

J∞(x) = max
[

φ̄t(x),

max
u
{φ(x, u) + J∞(fh(x, u))}

]

(6)

where the modification accounts for termination
of batch at a state x. In other words, if φ̄t(x) is
greater than the second term, the batch should be
terminated.

Use of the Bellman equation to obtain iterative
improvement of cost-to-go approximator forms
the crux of various methods like Neuro-Dynamic
Programming (NDP) (Bertsekas and Tsitsiklis,
1996), Reinforcement Learning (RL) (Sutton and
Bartow, 1998), Temporal Difference (Tsitsiklis
and Roy, 1997) and such.

In this paper, the basic idea from NDP and RL lit-
erature is used to obtain optimal performance of a
fed-batch bioreactor. Relevant regions of the state
space are identified through simulations of several
heuristic policies, and initial suboptimal profit-to-
go function is calculated from the simulation data.
A functional approximator is used to interpolate
between these data points. Neural network is the
chosen function approximator (hence the name
‘Neuro’ in NDP). Evolutionary improvement is ob-
tained through iterations of the Bellman equation
(7). When the iterations converge, this offline-
computed profit-to-go approximation is then used
for online optimal control calculation for the re-
actor.

3.1 Algorithm

A detailed algorithm was presented in our pre-
vious work (Kaisare et al., 2002), which is repro-
duced in this section. Following notations are used
in this section and rest of the paper. J represents
profit-to-go values. A function approximation re-
lating J to corresponding state x is denoted as
J̃(x). Superscript ()i represents iteration index for
cost iteration loop and k is discrete time. Finally,
J̃(k) ≡ J̃(x(k)) and φ(k) ≡ φ(x(k), u(k)).

The simulation-based approach involves computa-
tion of the converged profit-to-go approximation
offline. The following steps describe the general
procedure for the infinite horizon profit-to-go ap-
proximation.



(1) Perform simulations of the process with cho-
sen suboptimal policies under all representa-
tive operating conditions.

(2) Using the simulation data, calculate the
∞-horizon profit-to-go for each state vis-
ited during the simulation. For example,
each closed loop simulation yields us data
x(0), x(1), . . . , x(tf ), where tf is the termina-
tion time for the specific suboptimal policy.
For each of these points, compute the profit-
to-go value.

(3) Fit a neural network or other function ap-
proximator to the data to approximate the
profit-to-go function — denoted as J̃0(x) —
as a smooth function of the states.

(4) To improve the approximation, perform the
following iteration (referred to as the cost or
value iteration) until convergence:
• With the current profit-to-go approxi-

mation J̃ i(x), calculate J i+1(k) for the
given sample points of x by solving

J i+1 = max
[

φ̄t(xk) max
u
{φ(xk, uk)

+J̃ i(fh(xk, uk))
}]

(7)

which is based on the Bellman Equation.
• Fit an improved cost-to-go approximator

J̃ i+1 to the x vs. J i+1(x) data.
(5) Policy Update may sometimes be neces-

sary to increase the coverage of the state
space. In this case, more suboptimal simu-
lations with the updated policy (maxu φ +
J̃ i) are used to increase the coverage or the
number of data points in certain region of
state space.

Once the value iteration described above con-
verges, the resulting profit-to-go function can be
used for online control. At each time, state es-
timates are obtained (for deterministic problem,
we have the state itself). Single-stage optimization
problem, as shown in Eq. (3), is solved using the
converged profit-to-go function J̃a in place of the
optimal J∗.

4. INVERTASE PRODUCTION
OPTIMIZATION

The fermentation process considered here consists
of production of invertase in Saccharomyces cere-
visiae utilizing glucose for growth. Patkar and
Seo (1992) reported the fermentation kinetics
of invertase production in fed-batch cultures; as
well as experimental data for cell density (c, ex-
pressed as optical density OD), glucose concentra-
tion (s gm/L) and specific invertase activity (i)
obtained with various glucose feeding strategies
in 1.2 liter bioreactor. The productivity of the
reactor at any time is given by

productivity = icV (8)

Thus the optimization problem as defined in Eq.
(1) becomes

max
u,tf

{

icV |tf
− λtf

}

(9)

with constraints u ∈ [0, 0.2722] and V ≤ 1.2. The
model equations are summarized in appendix A.

4.1 Obtaining profit-to-go function

The first step in simulation-based NDP optimiza-
tion is to obtain a suboptimal profit-to-go func-
tion. This was done through simulations of a set of
suboptimal heuristic policies. The heuristics were
selected so that the 4-dimensional state space was
sufficiently covered. The policies involved main-
taining the reactor at initial volume V (0) for cer-
tain amount of time ti and then increasing the
feed rate until end of fermentation time or until
constraints are met (if Vmax is reached before tf ,
feed rate is reduced to u = 0 and reactor is oper-
ated in batch mode until t = tf ). Mathematically,
the feed rate profiles followed were

u(t; ti, b) =
{

0 if t < ti
0.02(1 + b(t− ti)2.2) if t ≥ ti

We used four values of b = [0.05, 0.07, 0.1, 0.13]
and nine values of ti = [1, 2, . . . , 9] to generate 36
different heuristic policies. Each of these policies
were implemented for three different initial values
of V (0) = [0.4, 0.6, 0.8].

For each of the heuristic policies, the optimal
ending time was determined — as the time that
yielded the maximum profit value calculated ac-
cording to Eq. (A.5). The productivity thus cal-
culated gives the terminal reward function φ̄t =
icV |tf

. Stage-wise reward is given by φ(xk) =
λ∆tk. Thus, for each of the states corresponding
to a specific heuristic policy, the profit-to-go func-
tion is calculated as

J(xk) = icV |tf
− λ · (tf − tk)

where tk = k.∆t is the “current” time for xk.

We obtained a total of 9328 states and correspond-
ing profit-to-go values through simulation of the
heuristic policies. Next, a function approximator
was used to correlate the profit-to-go as a func-
tion of system state. A backpropagation neural
network was used that had 4 input nodes (cor-
responding to 4 state variables), 1 output node
(profit-to-go) and two hidden layers with 17 and 5
nodes respectively. We denote this approximation
as J̃0.



Policy Profit icV |tf
tf

Patkar (1993) 3.70 7.30 12
Chaudhuri (1998) 3.50 7.10 12
Best heuristic 3.72 7.23 11.7
NDP 3.80 7.25 11.5

Table 1. Optimal control results for
V (0) = 0.6.

Given this initial approximation of profit function,
Bellman equation was used iteratively to improve
the optimality of the profit-to-go approximation.
For each of the 9328 data points, following equa-
tion was solved

J̃ i+1 = max
[

icV |xk

max
uk

{

−λ∆tk + J̃ i(xk+1)
}

]

Here, superscript i represents the iteration index.
∆t represent time steps, which were taken to be
constant and equal to 0.1 hours. Value iterations
were performed as elaborated in section 3.1. Three
iterations were required for the profit function
to converge with 1-norm less than 0.2. The best
neural network structures for each of the iterations
were 4-17-5-1, 4-17-5-1 and 4-13-5-1 respectively.

Simulations using the converged profit-to-go ap-
proximator resulted in visits to regions of state
space previously unvisited by heuristic controller.
Hence, policy update was performed by including
these unvisited states, and value iteration of Bell-
man equation was performed again. It took just
one iteration for the profit function to converge.
The neural network structure was found to be 4-
15-5-1, and this J̃4 was used for control.

5. RESULTS

The fourth trained neural network was imple-
mented into online optimal control. The reactor
was started with V (0) = 0.6. This was the case
solved by Patkar et al. (1993) and Chaudhuri and
Modak (1998). The results are shown in Table 1.
State space plots for online controller performance
are shown in Fig. 1. It can be seen from the figure
that the optimal policy results from interpolation
in the state space and not in the policy space.

The controller was then tested with different ini-
tial volume V (0) = 0.5. The results are shown in
the second column in Table 2. This condition was
not “seen” before by the function approximator.
Next, we tested the controller in presence of un-
known disturbance: abrupt cell death occurs at 9
h resulting in a 50% decrease in cell concentra-
tion. The NDP method still gives most optimal
performance over the other methods. The best
heuristic reported above is the heuristic that gave
maximum profit value. It should be noted that

Policy Profit Profit
V0 = 0.5 Cell death

Patkar et al. (1993) 3.74 0.62
Best heuristic 3.58 1.88
NDP 4.06 1.97
Table 2. Control results for a different

V0 and unknown disturbance cases

we found different heuristics to be the best for
different V (0) values. Thus, the optimal controller
does not select any particular heuristic policy;
instead it “patches” solution of various heuristics
to come with a different, optimal policy.

6. CONCLUSIONS

A simulation-based Neuro-Dynamic Programming
(NDP) strategy was applied to obtain optimal
feeding profile for different initial conditions for
invertase production in a fed-batch bioreactor.
Simulation from suboptimal heuristic laws is used
to identify relevant regions of the state space and
to initialize the profit-to-go function approxima-
tion. The profit-to-go approximator is then im-
proved by performing iterations of Bellman equa-
tion over only the relevant regions of the state
space. The profit-to-go function thus obtained was
then used for online optimal control. This method
gives nearly optimal performance for different ini-
tial conditions without requiring to recompute
the profit-to-go function. This method therefore
has a promise in controlling fed-batch reactors in
presence of disturbances.
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Appendix A. FED-BATCH REACTOR MODEL

Mass balance equations

( ˙cV ) = (RrYcr + RfYcf ) cV (A.1)

( ˙sV ) = usf −RtcV (A.2)

( ˙icV ) = (π − kdi) cV (A.3)

V̇ = u (A.4)

where u is the feed rate, c(OD), s(g/L) and
i(units/OD/l) represent concentrations of cell,
substrate and invertase respectively. The rate ex-
pressions are

Rr =
0.55s

0.05 + s
Rt = max

{

1.25s
0.95 + s

,Rr

}

π =
6.25s

0.1 + s + 2s2 Rf = Rt −Rr

Ycr = 0.6, Ycf = 0.15, kd = 1.85.

Operating conditions: c(0) = 0.15, s(0) = 5,
i(0) = 0.1, sf = 10, V (0) = {0.4, 0.5, 0.6, 0.7, 0.8.

Objective function:

max
u

{

icV |tf
− λtf

}

(A.5)

subject to constraints 0 ≤ u ≤ 0.2722, V ≤
1.2. Here, tf is fermentation time, λ = 0.3 and
sampling interval is ∆t = 0.1.


