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1 INTRODUCTION
Spatially uniformity is necessary for high yields in a
number of crucial processes of the semiconductor
manufacturing industry, such as etching or deposition
of thin films and chemical-mechanical planarization
(CMP). In plasma etching, good spatial uniformity is
the result of both appropriate design of etching tools as
well as development of successful recipes.  For either of
these tasks, the designer or operator must be able to
assess spatial uniformity characteristics, understand
similarities and differences between tools or recipes,
and apply criteria for the monitoring of spatial
uniformity from tool to tool or run to run. Because
uniformity is usually expressed in terms of a single
number (e.g., 3σ/[average etch depth]) very different
spatial uniformity profiles may result in the same
numerical value of uniformity (Figure 1), thus masking
important information that could be useful in a number
of ways related to tool or recipe performance.

    
Figure 1 – Etch rate profiles on 300-mm wafer surface,

interpolated over 49 measurement points (black dots).
Both wafers correspond to virtually the same numerical
uniformity value, but exhibit very different etch patterns.

In this presentation we provide a brief tutorial overview
of the fundamentals of reduced-rank analysis, a topic
that has found widespread use in chemical engineering.
We show how it can be applied to the analysis,
comparison, monitoring, and control of images
corresponding to etch patterns of silicon wafers. Similar

rank reduction techniques, especially Karhunen-Loeve
(KL) transform, have been used to study spatiotemporal
patterns on catalyst surface by Krischer et al.(1993) and
in analyis and control of paper machines by Rigopoulos
and Arkun (1996).

2 COMPRESSION OF COLLINEAR DATA VIA
SVD

2.1 Basic case:  Deterministic signals, no noise

Figure 2 – Etch rate measurement points
An unrealistic but instructional example setting
Suppose that etch rates, x1, x2, x3  are exactly measured
at three points (edge/center/edge) along the diameter of
a wafer, as shown in Figure 2. We want to know if the
etch profiles are similar and etching process consistent.
Noiseless data are collected
Note that, for now, the data are assumed to be exact, i.e.
there is no measurement noise. A set of data collected
is shown in the matrix X below, and   
Figure 3.

Figure 3 – Hypothetical etch rate profiles for 12 wafers (left)
and Hypothetical local etch rates vs. wafer # (right).
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Data collinearity and computation of matrix rank
Are the variables 1 2 3, ,x x x  linearly dependent? i.e. is

there a nonzero vector 1 2 3[ ]ˆ Ta a a=a  such that

1 1 2 2 3 3 0 0Ta x a x a x+ + = ⇔ =x a (2)
If so, the data satisfy the relationship (model equation)

1 1 2 2 3 3 0a a a+ + = ⇔ =x x x Xa 0  for ≠a 0 (3)
A numerically robust method to check whether eqn. (3)
is valid is the singular value decomposition (SVD).
Detailed treatment of SVD can be found in a number of
standard texts such as Horn and Johnson (1985). In
SVD a matrix of rank r is decomposed as
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Application of SVD (e.g. in Matlab ®) to the data
matrix X, eqn. (4) yields that the rank of X is 2, and the
matrix X can be decomposed as
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The above eqn. (5) implies that each row of the matrix
X can be written as a linear combination of the row
vectors loading1 and loading2, i.e.
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score scoreT loading loading

x x x y y= +v v

x
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Because V is orthonormal, eqn. (6) yields the sought

eqn. (2), i.e.

3 0T =x v . (7)

Loadings can be interpreted as basic shapes that can be
used to represent the raw data
Note that the row vectors loading1 and loading2 in eqn.
(6) are the same for all rows of data triplets 1 2 3, ,x x x ;
they appear to be related to the system and not to any
individual wafer.  Therefore, loading1 and loading2 can
be interpreted as two basic shapes (Figure 4), whose
linear combination (sum weighted by score entries) can
produce any of the 12 measured shapes.
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Figure 4 – Loadings, eqn. (5). The two shapes attempt to
capture the curvature in the etch rate profile.

Monitoring scores gives a complete picture of the data
It follows from the preceding discussion that one can
simply observe the scores (compressed data, values of
principal components – hence PCA), to capture all
information about the original data. In other words,
instead of looking at   
Figure 3, one can look at Figure 5.

Figure 5 – Scores for the data in Figure 2, according to eqn.
(5).  Note that Score 3 is identically 0, which is precisely
the equation sought in eqn. (2).

 ( ) 2rank =X  implies data points fall on a plane
Figure 6 shows 3-D plots of the data from two different
viewpoints. The second viewpoint clearly shows that
data fall on a plane.

 
Figure 6 – 2-D world in 3-D data (“collinearity”).

Loadings can also be thought of as weights used to
relate original data to scores (compressed data)
If the score vectors y1, y2 are thought of as
corresponding to two new variables, y1, y2, then y1, y2

are related to x1, x2, x3 as follows: Because the loadings
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are orthonormal, we can post-multiply eqn (4). by vj to
get

1 1 ˆ

" "

m n n m
j j j j

score j

σ× × ×= =X v u y123 (8)

or, row by row,

1[ ] TT
j n j j jy x x= ≡ =v x v v xL (9)

or, in vector/matrix form,
T= ⇔ =y V x x Vy (10)

(The new variables y are also called principal
components, see section 2.3.)
Thus, for this particular example we get, using eqn.(9),
that the two nonzero score variables are
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and that the last score variable should be trivially equal
to zero, i.e.
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which is the same as eqn. (7).

This gives us the second interpretation of loadings:
They are the vectors of coefficients by which we weight
the original variables in linear combinations that
produce a new set of variables (the “scores”).
The preceding findings about X can be used to monitor
the system
If the system etches subsequent wafers in the same way,
it is reasonable to expect that data points 1 2 3( , , )x x x
will be produced that are related as before, i.e. by eqn.
(2).  That means, equivalently, that if one first
constructs 2 new variables 1 2,y y  in terms of eqn. (9)
then the value of the residual error (cf. eqn. (6))
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for each new data triplet should be equal to zero, or,
equivalently,

2 0 ( ) 0ˆ T T T= = ⇔ − =e e e x I PP x (14)
where the matrix P consists of the first r columns of V.
(The reason for using eqn. (14), instead of simply

=e 0 , is that it can easily be extended to handle noisy
data, as will be shown below).

Consider now the new data shown in Figure 7 .

Figure 7 – Data set from 10 new wafers.

Applying the test of eqn. (14) to the data shown above
yields the results of Figure 8. It is clear that two data
points (#7 and #8) do not fall on the zero line as they
should. These points indicate that the behavior of the
system that etched these wafers is different from before.

Figure 8 – (Errors)2 for 10 new data sets, Figure 7.

2.2 Noisy signals

SVD on the noisy counterpart of X reveals similar
relationship among x1, x2, x3.

Table 1 – Noisy data

If measurements of 1 2 3, ,x x x
are obtained with
measurement noise as shown
in the data of Table 1, SVD on
the data of Table 1 yields
singular values of 20219,
1206.5, 226.15 (cf. eqn.(5)).
The eigenvalues (singular
values squared) are shown in
Figure 9. The smallest
singular value is two orders of

magnitude smaller than the largest one, indicating that
it is probably equal to zero. But the second singular
value is also an order of magnitude smaller than the
largest singular value. Is it really non-zero or zero?
How many singular values should be retained? What is
the underlying rank of the data?  How many singular
values of X are really nonzero?
Let us call the noiseless data matrix Ξ and

= Ξ +X E (15)
where E is a matrix that contains measurements errors.
Note that for the data in Table 1

( ) 3 ( ) 2rank rank= > Ξ =X (16)
The singular values of X, σX, can be bounded by
bounds such as (Horn and Johnson, 1985):

max2( ) ( ) ( )i i i− Ξ ≤ =X E Eσ σ σ (17)

Two simple criteria for detecting the number of
essentially nonzero singular values of X are
(a) visual inspection of the singular value plot such as

in Figure 9, and
(b) fidelity of reconstruction of the original data in X

# x1 x2 x3
1 2585 3373 3353
2 2874 3586 3374
3 2809 3311 2861
4 2759 3355 2562
5 3175 3602 2763
6 3071 3753 3258
7 3424 3933 3486
8 3368 3974 3263
9 3526 3887 2709
10 3523 4034 2735
11 3546 4209 2910
12 3666 4381 3417
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Figure 9 – Squared singular values (eigenvalues) for data in
Table 1.  (a) individual, (b) cumulative.

Figure 10 – 2-D world in noisy 3-D data.(cf. Figure 6).

Singular values quantify the goodness of data fit by a
matrix of reduced rank
If only a “small” number of principal components is
important, what is the best estimate of Ξ (with rank
r n< ) given the data in X? Answering this question
will allow us to construct scores and loadings, and to
monitor the system, in the same way as we did in the
noiseless case. The difference is that what should have
been ideally zero errors, eqn. (13) should now be
“small” (more in the sequel).
To find the best estimate Ξ̂  of Ξ given X  we can
minimize the distance between Ξ and X, i.e. find

( )
min

rank r nΞ = <
− ΞX (18)

When the norm in (18) is induced 2 norm or Frobenius
norm, the solution is given by SVD as

1
ˆ r T

i i ii=Ξ = ∑ u vσ (19)

Moreover, the optimal difference can be shown to be

2 2 1
( )

ˆmin i i r
rank r n

+
Ξ = <

− Ξ = − Ξ =X X σ (20)

and
2

1( )
ˆmin n

F F r ii rrank r n
+= +Ξ = <

− Ξ = − Ξ = ∑X X σ (21)

Note that the singular vectors (loadings) of X could be
very different from the singular vectors (loadings) of
Ξ (Stewart, 1991). Figure 11, shows loadings for X.
Comparison with  Figure 4 shows little difference.

Figure 11 – Loadings(with error bounds) for noisy data of
Table 1 (by PLS-toolbox®) (cf. Figure 4).

Process monitoring by looking at residual errors
Once the relationship among x1, x2, x3 has been
identified by the counterpart of eqn. (7) with noisy
loading v3, the value of the residual error (i.e.
counterpart of eqn. (13) for noisy loadings) for each
new data point (x1, x2, x3) arriving in the future can be
checked. If the relationship among x1, x2, x3 remains the
same, then the residual error should be “small”. This
leads to the counterpart of eqn. (14) for noisy data.
Specifically, if the residual error is normally distributed

(very often a reasonable assumption) then 2 T=e e e
follows a chi-square distribution, from which one can
construct Q-confidence as (cf. eqn. (14))

2( )T T T= − <e e x I PP x δ (22)

2.3 Stochastic signals

For multiple random variables principal components
are uncorrelated new variables, a few of which capture
most variance
SVD can provide additional insight if the vector
variable x is stochastic. The analysis is known as
principal component analysis (PCA) (Jolliffe, 1986).

Consider the random variable vector 1[ ]ˆ T
nx x=x L ,

and assume that [ ]E =x 0 1 where E denotes expected
value. Denote the covariance matrix of x by

[ ]T n nE ×= ∈ℜC xx (23)
It can be shown that we can use the modal matrix

[ ]1ˆ n=A a aL  of C (i.e. the matrix whose columns
are the orthonormal eigenvectors of C) to construct a
new, zero-mean, vector random variable y as

T= ⇔ =y A x x Ay (24)
(principal components) that has the following
important property

( )
2 1

[ ] 0

var( ) max var
i

i j i

T
i i i

E y y

y

<

=
=

= =x
α

α λ , (25)

That is, each principal component, yi is a weighted sum
of the original variables x1, …, xn, (eqn. (24)) such that
(a) its variance is maximal and equal to the i-th

eigenvalue of the original covariance matrix C
(eqn. (25)), and

(b) yi  is orthogonal to all previous principal
components i jy − , 2, 1,..., 1i j i≥ = −  (eqn. (25)).

                                                       
1 If the average of x is not zero, a new deviation variable can trivially
be defined as [ ]E−x x . There is much higher chance that deviation
variables (as opposed to original variables) are linearly dependent.
Indeed, if the variables x satisfy the relationship ( ) =f x 0 , Taylor
series expansion around [ ]E x  yields

( )
[ ]

( ) ( [ ]) [ ] ˆ
E

E E
=≈

∂
= ≈ + − = ⋅ ∆

∂ x x0

f
0 f x f x x x B x

x14243
which implies linearly dependent ∆x .
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SVD on covariance estimate produces values of
principal components
Because the matrix C is unknown, it has to be estimated
from data. The best estimate of C is

1
1

T

m
≈

−
C X X (26)

where X is a matrix that contains the data for each
random variable in a column. Then, the

eigenvalue/eigenvector pairs ( , )wκ  of 
1

1
T

m −
X X  are

estimates of the eigenvalue/eigenvector pairs ( , )aλ  of
C, which implies that

(a) the eigenvectors w of 
1

1
T

m −
X X  (hence the

estimates of eigenvectors of C) are equal to the
singular vectors v of X (eqn.(4)), and

(b) the eigenvalues of 
1

1
T

m −
X X  (hence the estimates

of eigenvalues of C) are equal to ( 1)m −  times the
squares of the singular values of X
Consequently, one can look at the values of

2 2

2 2
1 1[ ]

i i i
T

r rE
= =

+ + + +x xL L
σ σ λ

σ σ λ λ
  1, ,i r= L (27)

to assess what percentage of the total variance  of x, is
captured by each of the principal components. By
looking at the first few principal components, one can
monitor the system that produces the data
(a) visually, e.g., by plotting PC1 vs. wafer #, PC2 vs.

wafer #, etc. or PC1 vs. PC2 vs. PC3.
(b) numerically, by monitoring statistics such as the

Hotelling statistic [5].
Principal components are directly related to
multivariate SPC
If the zero-mean vector random variable x has (non-
degenerate) covariance C, then one can construct the
Hotelling (scalar) random variable

{ {
2

1 1 1

1
ˆ

T

n
T T T T i

ii

y− − −

=

= Λ = Λ = ∑
yy

x C x x A A x y y
λ

(28)

i.e. the Hotelling random variable is the sum of n
independent random variables, 2 /i iy λ . If some
eigenvalues are zero, then we stop the summation in
eqn. (28) at r, the rank of C, to ensure 0i ≠λ .

3 CASE STUDY 1

Etch profiles (49 measurement points 1 49,...,x x ) from 9
different etching tools were collected, thus creating a
9 49×  matrix X. Figure 12 indicates that 2 or 3
principal components result in less that 10% or 5%
error, respectively.  Corresponding scores are shown in
Figure 13. Loadings are shown as weights in Figure 14

and as basis surfaces in Figure 15.  The quality of
reconstruction of the original data by 3 principal
components is excellent, in that it captures curvature
characteristics, as indicated by the samples shown in
Figure 16.

Figure 12 – Cumulative fraction of total variance captured by
principal components (left) for variables 1 49,...,x x

scaled by subtraction of sample averages 1 49,...,x x
(right).

Figure 13 – Scores for the first 3 principal components (cf.
Figure 5). (Confidence bounds by PLS-toolbox®)

Figure 14 – Loadings as weighting coefficients for all 9
principal components.  Semi-disk size and orientation
denote magnitude and sign, respectively.
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Figure 15 – Top and angle views of loadings as contour

surfaces  for the first 3 principal components.

Figure 16 – Original etch profile (column 1), etch profile
reconstructed from 3 principal components (column 2)
and approximation error (column 3) for two sample
wafers (cf. Figure 1)

4 CASE STUDY 2
18 200-mm silicon wafers were etched in an inductively
coupled plasma reactor at Lam Research Corporation’s
facilities in Fremont, CA. Etch rates were measured at
49 points on the wafer, and a 18 49×  data matrix X was
constructed. Three principal components account for
99.94% of variation in data and are considered
significant. The three loadings are shown in Figure 17.
The scores are shown in Figure 18.

Figure 17 – Loadings of 3 principal components.
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Figure 18 – Scores for PCs for experimental data

It can be observed that PC1 score varies far more than
PC2 or PC3 score. There is a strong linear correlation
between PC1 score and u1, u2 with 2 0.9686R =  and

200.24F = . This implies that the first shape can be
easily removed from the etch patterns and indeed we
can see for wafer 9, PC1 score is almost zero. This
information can be used to design better recipes.

5 CONCLUSIONS
Silicon wafer images depicting etch depth uniformity
can be analyzed efficiently and effectively using
reduced-rank multivariate methods.  Two industrial
case studies exemplify the basics summarized in this
work.
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