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Abstract: Product quality variables for many electronics and materials processes are set 
at the nanoscale and smaller length scales. Although the control of these processes is of 
scientific and industrial interest, there is a shortage of feedback controller design methods 
based on the noncontinuum models that describe such nanoscopic phenomena. In this 
study, linear, gain-scheduled, and nonlinear feedback controllers are designed for a 
coupled kinetic Monte Carlo-finite difference code that simulates the manufacture of 
copper interconnects. The feedback controller designs incorporate a low order stochastic 
model constructed from the coupled continuum-noncontinuum code.
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1. INTRODUCTION 
 
The vast majority of the literature on feedback 
controller design is based on continuum models, 
which are described by systems of algebraic, 
ordinary differential, and partial differential 
equations (Levine, 1995). The continuum modeling 
approach, however, is inadequate for modeling much 
of the molecular and mesoscale phenomena that 
occur in the complex chemical processes that 
constitute the attention of today’s scientists and 
engineers (Maroudas, 2000). This is especially 
apparent in microelectronics processes, for which the 
critical phenomena occur at the nanometer and 
smaller length scales. Hence in recent years 
increasing efforts have been directed towards the 
development of noncontinuum models, such as 
kinetic Monte Carlo (KMC) simulation models, for 
which most existing controller design techniques are 
not directly applicable. The design of feedback 
controllers based on such noncontinuum models is an 
open research problem in the field of control 
(Murray, 2002). 

Global competition has increased the importance of 
feedback control for the complex chemical processes 
that are best described by noncontinuum models. 
There is probably no place where this is more 
apparent than in the microelectronics industry, which 
has had an average annual growth of 20%, with sales 
of $200 billion in 2001. It is generally accepted that 
high performance feedback control will be required 
to achieve the small length scales required to provide 
high computational speed in future microelectronic 
devices (Sematech, 2001). 
 
Here feedback controllers are designed for a coupled 
KMC-finite difference (FD) code that simulates the 
electrochemical deposition of copper into a trench, a 
key step in the manufacturing on-chip interconnects 
for microelectronic devices (Andricacos, et al., 
1998). The industrial need is to deposit copper 
uniformly into trenches and vias of small dimension 
(less than 100 nm) under galvanostatic (constant 
current) conditions. This industrial importance has 
motivated numerous experimental and simulation 
studies on the modeling of copper electrodeposition 



in recent years (Alkire and Eliadis, 1999; 
Andricacos, et al., 1998; Georgiadou, et al., 2001; 
Gill, 2001; Harper, et al., 1999; Merchant, et al., 
2000; Moffet, et al., 2000, Moffet, et al., 2001). The 
goal of the feedback controller is to maintain the 
current (or current density) at a constant specified 
value. This feedback controller allows the KMC 
simulations to operate under industrial operating 
conditions. 
 
The paper is organized as follows. First, the coupled 
KMC-FD copper electrodeposition simulation code 
is described. This is followed by construction of a 
low order stochastic model that is used to design 
feedback controllers and associated filters to handle 
the non-Gaussian stochastic noise produced by the 
KMC code. Then the closed-loop responses of the 
controllers are compared in simulations of the low 
order stochastic model and the KMC-FD simulation 
code. 
 
 
2. COUPLED KINETIC MONTE CARLO-FINITE 

DIFFERENCE SIMULATION CODE 
 
Kinetic Monte Carlo (KMC) methods are used to 
simulate structural properties of matter that cannot be 
represented by a macroscopic continuum description, 
and are widely used for simulating dynamic chemical 
and materials processes. A KMC simulation is a 
realization of the Master equation (Fichthorn and 
Weinberg, 1991): 
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where σ and σ' are successive states of the system, 
P(σ, t) is the probability that the system is in state σ 
at time t, and W(σ',σ) is the probability per unit time 
that the system will undergo a transition from state σ' 
to σ. For a particular system being studied, the KMC 
code chooses randomly among the possible 
transitions of the system and accepts particular 
transitions with appropriate probabilities. After each 
accepted or attempted transition, the time variable is 
incremented by one Monte Carlo time step, and the 
process is repeated. If the probabilities satisfy certain 
conditions, the real time variable t corresponding to 
the number of Monte Carlo time steps can be 
computed. 
 
Electrochemical deposition of a copper film into a 
trench is simulated in this application. A KMC 
method was used since traditional continuum codes 
are not convenient for simulating the evolution of the 
roughness of the surface, which is an important 
characteristic of the produced copper film. The KMC 
code describes the mesoscale with a cubic lattice, 
where each subdomain in the simulation space 

represents a cluster of molecules (referred to as a 
mesoparticle) of a given species in the deposition 
bath (see Fig. 1). Each subdomain is cube of 12.5 nm 
on a side and is assumed to be homogeneous in both 
phase and composition. Similar mesoscale KMC 
methods have been applied by various researchers to 
a number of systems (Bird, 1994; Birdsall and, 
Langdon, 1985; Katsoulakis, et al., 2002; Lu and 
Kushner, 2001). While molecular-scale simulations 
are of interest, this coarser mesoscale representation 
results in an efficient computational method that can 
simulate devices on the same scale as in the real 
system (Drews, et al., 2003). The Monte Carlo 
simulation domain is a trench with aspect ratio 2:1, 
40 subdomains wide, 80 subdomains high, and 6 
subdomains deep.  
 

 
 
Fig. 1. Architecture of the KMC-FD simulation 

operating under feedback: FD denotes the finite 
difference code, KMC denotes the kinetic Monte 
Carlo code, and C denotes the controller. The 
KMC domain is on the left. 

 
The kinetic Monte Carlo code simulates deposition 
phenomena by considering the likelihood of various 
actions that each mesoparticle can take at a given 
time step. These actions are bulk diffusion, surface 
diffusion, the reaction A�B, a combination reaction 
A+B�C, a splitting reaction A�B+C, and 
dissolution. All actions are computed as frequencies, 
with units of sec-1. At a given Monte Carlo time step, 
a mesoparticle can make a maximum of one move. 
The possible moves that each species can make are a 
function of the location of the mesoparticle in the 
simulation space, as well as the number and type of 
the six nearest neighbors. 
   
The Monte Carlo domain has periodic boundary 
conditions in the x and y directions, an impenetrable 
boundary at the electrode surface (in the z-direction), 
and a link to a continuum code at the top boundary in 
the z-direction. The continuum code is a one-
dimensional FD code that provides diffusion fluxes 
of Cu2+ into the Monte Carlo domain by solving the 
diffusion equation. The KMC code provides the 
concentration of Cu2+ to the continuum code. The 
height of the continuum domain was set to 50 µm, 
which is close to the actual diffusion boundary layer 

C 

KMC

FD 



thickness that corresponds to typical processing 
conditions. In both the FD and KMC codes, an 
additive-free bath is simulated. The KMC code also 
produces a signal that is the charge passed during 
deposition, and reads as input the applied potential η. 
These signals serve as the input and output of the 
feedback controller (see Fig. 1). 
 
Three time steps are tracked in the KMC simulation 
code: (1) the time step over which the continuum 
code is called for updated flux information, (2) the 
sampling interval for the feedback controller, and (3) 
the Monte Carlo (MC) time step. In order to capture 
the full dynamics of the system, the MC time step 
must be small enough to capture the action of the 
fastest species. For all the processes in this 
application, the Monte Carlo time step was computed 
to be ~2.8 µs. A complete KMC simulation run 
typically requires 1.08×108 MC time steps before the 
copper fills the trench. In this particular study, the 
linking time step and the sampling interval for the 
feedback controller are set to be 10-7 s and 10-2 s, 
respectively. 
 
To carry out the galvanostatic (i.e., constant current) 
simulations associated with industrial operations, the 
feedback controller must manipulate the applied 
potential η to control the current i, based on the 
charge transferred as a function of time. There are 
two main performance requirements for the feedback 
controller. First, the feedback controller should have 
a tracking response as fast as possible. Second, 90% 
of the fluctuations in the applied potential should be 
within ±0.01 V. An additional requirement is for the 
controller to be low order, so that its computational 
cost is negligible compared to the cost of the KMC-
FD calculations. The potential η enters the surface 
reaction frequencies in a nonlinear manner. This 
suggests that nonlinear control may give better 
performance than linear control. The next section 
describes how a low order stochastic model was 
constructed from input-output data collected from the 
KMC-FD code, and how this model was used to 
design feedback controllers. 
 
 

3. IDENTIFICATION OF A LOW ORDER 
STOCHASTIC MODEL 

 
The KMC-FD code is computationally expensive, 
highly stochastic, and nonlinear. To design low order 
feedback controllers, a low order stochastic model is 
constructed that is capable of capturing the most 
essential input-output behavior of the coupled KMC-
FD code. This low order model is incorporated into 
model-based controller design and used for filter and 
controller tuning.  
 
The output of the KMC-FD code is the cumulative 
charge passed up to current simulation time. To 

emulate the real physical system as closely as 
possible, the charge signal is converted to a current 
density signal. The current density was computed as 
the total charge passed in each 0.01 s, divided by 
0.01 s and the surface area in cm2. A larger time step 
interval could be used to compute the current from 
the charge, but this would lead to a more sluggish 
response, causing an inherent performance limitation 
in the feedback controller. On the other hand, 
decreasing the time step leads to more highly noise-
corrupted signal. The manipulated variable is the 
applied potential, which affects the kinetics of the 
mechanisms simulated in the KMC-FD code and 
hence directly affects the current generation.  
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Fig. 2. Step input implemented on the KMC-FD code 

and the resulting step response. 
 
The current density for a series of steps in the applied 
potential sent to the KMC-FD code is reported in 
Fig. 2. The applied potentials are selected to be 
within the normal operating condition of the KMC-
FD simulation. Autocorrelations indicate that the 
current density reaches steady state within one 
sampling instance.  
 
Upon reaching steady state, the output signal is 
bounded and its mean remains constant. These 
conditions justify the assumption that the signal is 
quasi-stationary (see Fig. 3). This assumption is 
verified by comparing the probability mass function 
of different time segments. The stochastic 
fluctuations are non-Gaussian and asymmetric, and 
can be modeled by a Poisson distribution for all 
normal operating conditions. To ensure consistency 
and accuracy, the identification procedure was 
repeated with different seed numbers. These sets of 
input-output data were used in the parameter 
estimation of a low order stochastic model: 
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where { }Ζ∈−∈ nn,0025.0κ  and Z is a set of non-
negative integers. The form of the nonlinearity was 
motivated by the expression for the surface kinetics. 
Figure 3 compares the stochastic current density 
produced by the low order model (2)-(3) and the 
KMC-FD code for a range of applied potential. 



 

Fig. 3. Current density distributions for the low order 
model (solid line) and the KMC-FD code (× and o 
correspond to simulation data with different seed 
numbers). 

 

Fig. 4. Block diagram for the closed-loop system 
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Fig. 5. Model gain of the KMC-FD code computed 
from step data. 

 
 

4. FEEDBACK CONTROLLER DESIGN 
 
Linear, gain-scheduled, and nonlinear inversion-
based controllers were designed based on the low 
order stochastic model (2)-(3). Each controller 
incorporates a first-order filter (see Fig. 4): 
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with filter constant α. This filter is used to reduce 
fluctuations in the manipulated variable without 
filtering the reference signal. The linear and 
nonlinear feedback controllers incorporate the 
deterministic part of the low order model (2)-(3):  
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An alternative deterministic model used by the gain-
schedule controller is to directly compute the model 
gain as a function of the manipulated variable (see 
Fig. 5). The model gain is computed based on the 
initial steady state condition at zero applied potential. 
The best least-squares quadratic fit to the model gain 
is: 
 

212 101912.6102074.26058.4 −−−−−−−− ××××++++××××++++==== ηηK  (6) 
 
The two plant descriptions give almost the same 
output prediction. 
 
 
4.1 Linear Controller 
 
The range in system gain is given by 
 

}1417.005.0,{ ≤≤ℜ∈ KKK            (7) 
 
where the upper bound was selected to exceed 
slightly the steady-state value for regulating the 
current density at –0.015 A/cm2.  
 
The linear feedback controller was designed using 
internal model control. Many other controller design 
techniques such as generic model control, direct 
synthesis, and geometric control give the same or 
similar control structures. The desired closed-loop 
response is first-order-plus-time-delay: 
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where τ is the desired closed loop time constant. This 
equation is rearranged to give the feedback controller 
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where )/exp( τφ t∆−−−−==== . Applying the small gain 
theorem to systems with time varying perturbations 
(Braatz and Morari, 1997) shows that choosing K = 
0.1417 in the linear controller provides robustness 
for the full range of time-varying model gains in (7). 
The value τ = 10-5 s ensures fast response yet not 
faster than the dynamics of the KMC-FD simulation 
which is on the order of 10-6 s. The tuning of the 
filter constant α is discussed in Section 4.4.  
 
 
4.2 Gain-scheduled Controller 
 
The structure of the gain-scheduled controller is 
identical to the linear feedback controller. The only 
difference is that the gain K in (9) is updated at every 
time step using (6). 
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4.3 Nonlinear Controller 
 
The nonlinear controller inserts an inverter derived 
from (5): 
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before the plant in the block diagram in Fig. 4. The 
plant combined with the inverter is a simple one-
delay system that is controlled using the linear 
feedback controller with K = 1 in (9).  
 
 
4.4 Filter Design 

 
The filter constant α is tuned to ensure that at least 
90% of the fluctuations in the applied potential are 
within ±0.01 V over the entire operating regime, 
while avoiding too much filtering which leads to 
unnecessarily sluggish response. The filter constant 
is designed based on the probability density 
distribution of the applied potential at the final time, 
that is, the time required to fill up the trench with 
copper. The reason for using the final time to design 
the filter coefficient is that the applied potential is the 
most negative at the final time, and the stochastic 
fluctuations are largest when the applied potential is 
the most negative. A filter coefficient that adequately 
filters the stochastic fluctuations at the final time also 
provides adequate filtering at earlier times. 
 
A primary goal of this study was to create a filter and 
controller design procedure that can be quickly 
repeated when physicochemical parameters in the 
KMC-FD code are changed. Due to the high 
computational cost of running the KMC-FD code, its 
use in filter and controller design is limited to the 
creation of data for constructing the low order 
stochastic model (2)-(3). The low order model is then 
used to design the filter and controller. The 
probability density distribution of the applied 
potential at the final time was obtained by running 
the closed-loop simulation of the low order stochastic 
model 10,000 times at several α values. From this 
probability density distribution, the mean and the 
deviation corresponding to the 90% confidence level 
were estimated. Figure 6 shows how the deviation 
varies with the filter constant α. Table 1 reports the 
filter constants that result in 90% of the applied 
potential being within ±0.01 V at the final time. 
 
Table 1. Filter constants for the three controllers 
 

Controller type α 
Linear 0.03806 
Gain-scheduled 0.03951 
Nonlinear 0.03260 
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Fig. 6. The relationship between the filter constant α 
and the deviation around the mean at the final 
time corresponding to the 90% confidence level 

 
 

5 RESULTS AND DISCUSSION 
 
The controllers were implemented in the KMC-FD 
code and the low order stochastic model (2)-(3). 
Figure 7 shows agreement between the closed-loop 
predictions of the original and low order models. As 
specified, the applied potential is within ±0.01 V of 
its steady-state value 90% of the time, except for the 
initial transient.  
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Fig. 7. Closed-loop responses for the linear, gain-
scheduled, and nonlinear inversion-based 
controllers implemented on the low order model 
(2)-(3) and the KMC-FD code 

 
Figures 8 and 9 focus on the initial time responses. 
The closed-loop performance is similar for the 
controllers, with the gain-scheduled controller 
slightly better than the others. Differences between 
the closed-loop simulations obtained with the low 
order stochastic model (2)-(3) and the KMC-FD code 
are within the stochastic variation in the responses. 
This is further support that use of the low order 
model for filter and controller design was justified. 
The applied potential in Fig. 8 reaches a quasi-
steady-state value in ~0.5 s. Since the process 
dynamics are very fast, the unfiltered current density 
(not shown due to extremely large stochastic noise) 
reaches a quasi-state-value in ~0.5 s. The filtered 
current density, which includes the filter lag, reaches 
a quasi-steady-state value in 1 s. 
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Fig. 8. The applied potentials for the three controllers 
implemented on the low order model (2)-(3) and the 
CED code 
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Fig. 9. The filtered current density for the three 

controllers implemented on the low order model 
(2)-(3) and the CED code 

 
 

6. CONCLUSIONS 
 
This paper demonstrates the design of low order 
linear, nonlinear, and gain-scheduled feedback 
controllers for a coupled kinetic Monte Carlo-finite 
difference code that simulates infill of a trench 
during copper electrodeposition. The feedback 
controllers and associated filters were constructed 
from a low order stochastic model constructed from 
data collected from the KMC-FD code. The 
controllers enable the KMC-FD code to operate with 
nearly constant current, which is the industrial 
operating condition. 
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