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Abstract: A nonlinear system can be modeled using a set of linear models that cover the 
range of operation.  A model-based control strategy then can be employed that uses the 
local models in a cooperative manner to control the nonlinear system.  The decision of 
how many models are sufficient for effective control can be tackled by the use of the gap 
metric that quantifies the distance between two linear operators.  A pH control experiment 
is used to demonstrate the effectiveness of gap metric as a tool for model selection.   
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1. INTRODUCTION 

 
Classical linear design tools have matured to a point 
where one can incorporate robustness and 
performance requirements in a natural fashion. 
However for nonlinear processes strictly linear 
designs may not provide satisfactory performance 
unless they are suitably modified. One approach 
which tries to keep the features of linear design and 
at the same time account for nonlinearities is the 
multi-model approach for controller design (Yu et 
al., 1992; Murray-Smith and Johansen, 1997; Özkan 
et al., 2003). The key concept is to represent the 
nonlinear system as a combination of linear systems 
where classical control design techniques can be 
applied.  The controller design based on the multi-
model approach requires either simultaneous plants 
stabilization using a single controller, subject to 
performance and stability constrains (Schöming et al, 
1995; Galán et al, 2000), or interpolation using 
model validity functions, where local controllers are 
selected as a function of the current state of the 
process (Foss et al, 1995; Banerjee et al, 1997). 
However, in all these approaches the question of how 
many and which models are required remains largely 
unanswered. Although it is common to use a large 
number of local models to improve the piece-wise 
linear approximation of the nonlinear system 
(Narendra et al, 1995), the optimization problem to 

solve the design problem becomes formidable when 
the number of local models is large. 
 
We shall formulate the multi-model control problem 
by assuming a set of local plants and controllers that 
stabilize these plants and by asking the question, “Is 
there a reduced set of controllers, which are based on 
models that are ‘close’ in some sense?” 
 
To determine when two systems are close to one 
other is a nontrivial task, and furthermore, what is 
meant by “close” is not entirely obvious. Since 
systems can be visualized as input-output operators, a 
natural distance concept would be the induced 
operator norm.   Yet, the norm cannot be generalized 
as a distance measure (Vidyasagar, 1985).  The aim 
of this paper is to discuss the application of a 
distance measure between systems, the so-called Gap 
Metric, to select a reduced set of models that contain 
non-redundant process information for robust 
stabilization of feedback systems based on multi-
model controller design 
 
 

2. GAP METRIC 
 
The concept of the gap between the graphs of two 
linear systems goes back to Hausdorf (1935). Later 
the gap and other metrics were used to study how 
close different operators are (e.g. Newburgh (1951), 

     



and using (6) one gets 
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Berkson (1963)). In Zames and El-Sakkary (1980) 
the gap metric was used to establish a topology to 
quantify the tolerable uncertainties, which preserve 
closed loop stability. El-Sakkary (1985) shows that 
the gap metric is better suited to measure the distance 
between two linear systems than a metric based on 
norms.  For more details, the reader is referred to 
these references and Galan et al. (2002).  
 Properties of the gap:  
Let P  be a finite dimensional linear system. Its 
transfer function will be denoted by . The 

transfer function  can be expressed by a 
normalized right coprime factorization: 
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1. The gap defines a metric on the space of 
(possibly unstable) linear systems. 
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The metric defines a notion of distance in the space 
of (possibly unstable) linear systems, which do not 
assume that plants have the same number of poles in 
the RHP. where and  belong to the subspace of real 

rational functions in ;  has a proper inverse, 
and 
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The computation of the gap involves solving two-
block H∞ problems (7). In our examples, we used 
MATLAB µ-Synthesis Toolbox to compute the gap. 
 where . These factorizations can be 

computed using existing techniques (Vidyasagar, 
1988). 

TsDsD )(ˆ)(ˆ * −=
If the gap metric is close to zero, it indicates that the 
distance between two systems is ‘close’. If, on the 
other hand, the gap is closer to 1; then, the two 
systems’ dynamic behaviors are ‘apart’.  In the 
following experimental study, we use the gap metric 
to distinguish between models in a given set.  We use 
the gap analysis to select appropriate linear models to 
control a pH neutralization system using a multi-
linear controller.  

 
The graph of the operator P  is the subspace of 

 (Hardy space of functions) that consists 
of all pairs ( such that . This is 
expressed as 
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 3. EXPERIMENTAL STUDY 

where the operator  is denoted by G .  







N
D  

The model of the process for pH neutralization is 
taken from the paper by Galán et al. (2000).  Based 
on that model, first-order transfer function models 
are derived for five distinct operating regions in the 
steady-state map (Fig. 1).  

 
Let  be the orthogonal projection operator which 
maps any element { in  to { and 
is given by: 

GΠ
}, yx HH × }, uPu

pH

u=qB/qA
0 0.2 0.4 0.6 0.8 1

2
3

4
5

6

7
8

9

10
11

* Experimental
+ Model

Ω5

Ω4

Ω3

Ω2

Ω1

pH

u=qB/qA
0 0.2 0.4 0.6 0.8 1

2
3

4
5

6

7
8

9

10
11

* Experimental
+ Model

Ω5

Ω4

Ω3

Ω2

Ω1

*GGG =Π                  (4) 
The calculation of the gap metric begins with two 
finite dimensional linear systems with the same 
number of inputs and outputs whose normalized 
coprime factorizations are given by: 

)(ˆ)(ˆ)(ˆ 1 sDsNsP iii
−=   (5) 

and their respective “graph” operators  are 
defined as above for i=1 and 2. 

iG

 
It can be shown that the directed gap can be 
computed using the projection operators or the 
coprime factorizations (Georgiou, 1988): 

v
 
Fig. 1. The steady-state map of the process and the 

model prediction, indicating five regions for local 
linear models. 
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Table 2 shows the gap metric between the pairs of 
five linear models representing the operating range 
for the nonlinear system (Fig. 1).  The numbers 
suggest that model subsets  and },{ 42 ΩΩ=ΩHS

},,{ 531 ΩΩΩ=Ω LS  are closer to being “different” 
while the members in each subset are closer to being 
“similar.”  Model 2 is considered different than 

 
Definition 2 (Georgiou, 1988): The gap between two 
systems and is given by: 1P 2P

{ }),(),,(max),( 122121 PPPPPP δδδ
rr
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models 1, 3 and 5 as the gap metric is around 1, but 
close to model 4. This similarity between models 2 
and 4 can be explained physically by the fact that 
those models represent high sensitivity regions 
“ ”, that is, regions with a steep slope (Fig. 1).  
It contrasts with models 1, 3 and 5, which represent 
the low sensitivity regions “ ”. 

HSΩ

LSΩ

)(ˆ sk p

 
Table 2. Distance between Linear Models Using Gap 

Metric. 

δ 1 2 3 4 5 

1 0.0000 0.9331 0.2561 0.8050 0.2619 

2 0.9331 0.0000 0.8885 0.5137 0.9515 

3 0.2561 0.8885 0.0000 0.6892 0.4183 

4 0.8050 0.5137 0.6892 0.0000 0.8567 

5 0.2619 0.9515 0.4183 0.8567 0.0000 

 
 
3.1 Controller Design  
 
Consider a set of N local linear models that, in 
combination, describe the behavior of a nonlinear 
system in a pre-defined operating range.  The key 
issue is how one implements the multi-model control 
scheme with a set of local controllers that are derived 
using the local models.  For this example, the 
controllers for different local operating regions are 
combined to form a complete control system, using 
membership functions to create a transition region in 
the measured variable “y” (de Silva and MacFarlane, 
1989). 
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The subscript p represents the pth member of a set of 
N controllers.  Given the output variable y, the 
membership function returns a number between zero 
and one indicating the level of contribution of the 
local controller at that value of the output.  We 
define the distribution function for a local controller, 
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where py and pσ  are the mean and the standard 
deviation related to the model “p”, respectively.  The 
desired contribution of combined controllers on the 
control signal can be represented as a function of the 
membership functions: 
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The block diagram for the local controllers is given 
in Figure 2.  Given a SISO plant , a controller 

 is designed such that the basic requirements 
of stability, performance and robustness are satisfied 

(Doyle et al., 1992).  This can be done by finding a 
robust controller that minimizes the mixed-sensitivity 
criterion (Skogestad and Postletwaite, 1996), 
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Note that , and T  are the local sensitivity 
and complementary sensitivity functions 
respectively.  Accordingly, ,  and are the 
corresponding weight (penalty) functions chosen to 
shape the closed-loop performance and robustness 
behavior.  
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Fig. 2. Block diagram for the local closed-loop 

system. 
 
 
3.2 Experimental verification 
 
To study the closed-loop performance of these 
controllers based on a subset of models, real-time 
experiments are performed. An acid stream (HCl 
solution) and an alkaline stream (NaOH and NaHCO3 
solution) are fed to a 2.5-liter constant volume, well-
mixed tank, where the pH is measured through a 
sensor located directly in the tank. The control 
objective is to drive the system to different pH 
conditions (tracking control) by manipulating the 
alkaline stream flowrate.     
 
Figure 3 shows the tracking performance when all 
five models are included.  The response is generally 
acceptable, but the aggressive behavior around pH=5 
(region 2) is noted.  We can compare this 
performance with the case where only three models 
(from LSΩ ) are included.  Figure 4 shows that there 
is clearly a loss of performance, especially around 
region 2.  This validates what we have seen before in 
the gap metric analysis, as these models are not 
sufficiently descriptive of the whole operating 
region.  
 
When only two models 1 and 2 or 2 and 3 are used in 
combination (one model from  and one model 

from 
LSΩ

HSΩ ), the results are given in Figs. 5 and 6, 
respectively 

     



 

 
Fig. 3. Tracking performance when all five models 

used. 
 

 

 
Fig. 4. Tracking performance when only models 
from the set Ω  are used. LS

 
The responses are quite similar to the one obtained 
by using all five models as models in region 2 and 4 
sufficiently explain the dynamics within the 
operating region.  In fact, the control action appears 
to be much smoother when only two models are 

considered. The results also indicate that the first 
combination (1, 2) exhibits some degradation in 
performance while the second (2, 3) offers a more 
satisfactory tracking behavior (especially in the 
control action).    
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Fig. 5. Tracking performance when two models used, 
one from each sensitivity region. 
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Fig. 6.  Tracking performance when two models 
used, one from each sensitivity region. 
 

 
 

     



 
CONCLUSIONS 

 
The results of the case study using gap metric, as a 
measure of the distance between two linear plants, 
suggests the potential for a rigorous measure to 
evaluate the number of models in multi-linear model-
based control.  For the case of pH neutralization 
where one intuitively would use five models to cover 
the pH range between 3 and 10, we have shown that 
two models may be sufficient to guarantee 
satisfactory closed-loop performance. 
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