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Abstract: In a chemical plant involving a series of processing units, it is beneficial to have a model
that can accurately forecast the behavior of downstream variables based on upstream measurements.

Such a model can be useful in feedforward and inferential control of the downstream variables to
compensate for various upstream disturbances. However, creating such a dynamic model can be
very difficult. The conventional multivariable identification approach based on minimizing single-
step-ahead prediction error, can result in models leading to poor prediction and control in the
described context. To alleviate this difficulty, we propose a modification to the conventional subspace
identification method geared towards accurate k-step-ahead prediction, where k is a number chosen

according to the estimated dead time. It is shown that the modified subspace identification method
can be used in conjunction with the k-step prediction error minimization (PEM). Using an illustrative

examples involving six mixing units with a recycle loop, we demonstrate the improvement that is
possible from adopting the suggested modification.

1. INTRODUCTION

Most modern plants involve a large number of
interconnected processing units, thus raising the
need to consider the interactions and information
flows among them. A typical plant setup involves
measurements and manipulated variables located
at the upstream and downstream property vari-
ables that need to be controlled. For disturbances
occurring in the feed or upstream units, the up-
stream variables show more immediate responses.
Their quick responses, if measured, can be used to
manipulate upstream processing conditions in or-
der to keep the downstream properties in control
– as in feedforward control or inferential control.
To realize this, the upstream measured process
variables must be accurately related to the down-
stream property variables in a dynamic manner.
The same situation appears in distributed param-
eter systems with a large residence time, such as
a continuous pulp digester.
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Developing a model that accurately captures the
dynamic correlation between upstream and down-
stream variables presents a major challenge. Such
models are likely to involve large time delays and
dynamics of high order and possibly multiple time
scales (due to recycle loops commonly found in in-
dustrial plants). Any one of the above features can
pose difficulties for the existing system identifica-
tion approaches. Furthermore, inferential control
puts a higher demand on the model accuracy.

In the described problem’s context, it is obvi-
ous that long-range prediction performance of the
model is what ultimately matters. Since a large
dead time is involved typically, the short-term
predictions, however accurate they may be, are
not useful. The importance of emphasizing the
long-range prediction over the short-term predic-
tion becomes more clear when one considers the
significant model bias typical in most system iden-
tification carried out in practice. In the literature,
the minimization of k-step-ahead prediction er-
ror in the prediction error minimization (PEM)
method has been suggested and discussed [8][10]
. In addition to the time-domain interpretation,
Wahlberg and Ljung [6] formally showed that the



use of k-step-ahead prediction methods amounts
to emphasizing the accuracy of low-frequency dy-
namics more in distributing the bias, compared to
the conventional one-step-ahead error minimiza-
tion, which tends to put higher emphasis on the
high frequency behavior.

In spite of these developments, understanding of
where and how to use the more general k-step
PEM in process control’s context has been fairly
limited. The few exceptions include papers by
Shook et al [2], and Huang et al [3]. Still, a clear
link between the method and situations or types
of process applications, from which substantial
benefits of the method are likely to be realized, is
not there. Another reason for the lack of its use in
practice is the numerical difficulty associated with
using k-PEM for multivariable systems. In addi-
tion to the usual complexities (e.g., local minima)
associated with the standard PEM, the design
of the prefilter necessary to turn the multi-step-
ahead prediction error minimization into the one-
step-ahead prediction error minimization requires
the noise model, which is usually not known a

priori. In many works, such as the long-range pre-
dictive identification (LRPI) approach advocated
by Shook et al [2], the noise model is assumed
to be fixed a priori. In this case, the quality of
the identified model as well as the performance
of the final predictive controller can be strongly
influenced by the choice of the noise model.

For multivariable identification problems, the sub-
space identification method has many attractive
features, including the numerical robustness and
non-iterative nature of the algorithm [9]. However,
the conventional subspace identification method
is geared implicitly towards providing accurate
one-step-ahead predictions. It is shown in this pa-
per that, for those applications requiring accurate
long-range predictions, the conventional method
can perform poorly. Given the above-mentioned
merits of the subspace method, however, it is use-
ful to consider how the method can be extended to
give higher emphasis on the long-range prediction
performance.

The contribution of this paper can be two-fold.
First, we bring to attention a situation ubiquitous
in the process industries, for which the impor-
tance of fitting a model to optimize its long-range
prediction performance is very high. Second, we
present a modified version of subspace identifi-
cation, in which the emphasis is given to the k-
step-ahead prediction performance, where k is a
general number chosen according to the process
dead-time. We also show how a model obtained
from the modified subspace method can be further
improved through the k-step-ahead prediction er-
ror minimization (k-PEM). An example involving
6 mixing units with a recycle loop is chosen to

show the importance of emphasizing the long-
range performance through the proposed method.

2. PROPOSED MODIFICATIONS FOR
EMPHASIZING THE K-STEP-AHEAD

PREDICTION PERFORMANCE

Here we propose a modification to the conven-
tional identification method with the aim of ob-
taining more accurate k-step-ahead predictions.
We first show the modifications for the subspace
identification method. After that, we discuss how
the resulting model can be improved through the
PEM method.

2.1 Subspace Identification Based on Minimizing

the k-Step-Ahead Prediction Error

The conventional subspace ID approach, such as
the N4SID method described in [9], implicitly
assumes that the purpose of the model is to
provide accurate one-step-ahead prediction. This
is seen in the step where state space matrices
A,B,C,D are estimated through least squares.
In N4SID, data bank for one-step ahead Kalman
state estimate xt+1|t is first created from the
input/output data based on the following multi-
step prediction equation:
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Since we can write the optimal predictions in
terms of the Kalman state estimate (i.e., the es-
timate by the nonstationary Kalman Filterinitial-
ized at t− n̄ + 1 as
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Because state coordinates are not fixed a priori,
one-step ahead state estimate xt+1|t can be cre-
ated by estimating [L1 L2] through least squares



and then finding a set of basis that spans its range
space. In N4SID, this is done through a series
of oblique matrix projections [9]. Once data for
xt+1|t and xt+2|t+1 are created, the state space
matrices are obtained by solving the linear least
squares problem

xt+2|t+1 = Axt+1|t + But+1 + wt+1|t

yt+1 = Cxt+1|t + εt+1|t
(4)

where the residuals w and ε are minimized. Hence,
in this step of the subspace method, one-step-
ahead prediction error is minimized. The covari-

ance matrix for w and ε,

(
Rw Rw,ε

RT
w,ε Rε

)

, is esti-

mated from the residuals of the least squares and
the Kalman filter is designed with the calculated
system and covariance matrices to obtain the fol-
lowing innovation form of the model.

xt+2|t+1 = Axt+1|t + But+1 + Kεt+1|t

yt+1 = Cxt+1|t + εt+1|t
(5)

We may generalize N4SID to emphasize the k-
step-ahead prediction in the following manner. To
create k-step ahead state estimates, the optimal
multi-step prediction equation of (1) can be mod-
ified to
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As before, it follows that
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Following the same procedure as before, data
bank for k-step-ahead state estimates xt+k|t and
xt+k+1|t+1 can be obtained. Then, a state space
model can be obtained by performing least squares
on the following equations:

xt+k+1|t+1 = Axt+k|t + But+k + wt+k|t

yt+k = Cxt+k|t + εt+k|t
(8)

The residual εt+k|t represents the k-step-ahead
prediction error, which is minimized. Note that,

if the data-based Kalman estimates were perfect,
then

wt+k|t = Ak−1K
︸ ︷︷ ︸

K̃

εt+1|t (9)

Also,

εt+k|t =
k−1∑

i=0

q−iHi

︸ ︷︷ ︸

F̃k(q)

εt+k|t+k−1 (10)

where Hi is the ith Markov parameter of the noise
model (A,K,C, I).

Based on these, the procedure for extracting
(A,B,C, ) and K are as follows:

(1) Solve the least squares problem for the out-
put equation to find C that minimizes yt+k−
Cxt+k|t in the 2-norm sense. The residuals
represent the data for εt+k|t.

(2) Solve the least squares for the state equation
to find A,B. The residual can be viewed as
wt+k|t.

(3) On the generated residual of εt+k|t, use a
whitening filter to obtain one-step-ahead pre-
diction error εt+k|t+k−1. A convenient way to
do this is to apply subspace identification to
the data. The ouput residual from this will
be εt+1|t.

(4) Calculate the covariance matrix for w(t+k|t)
and using the whitened residual ε(t + 1|t).
According to (9), the covariance matrix for
the residual wt+k|t and εt+1|t) has the form
of

[
Ak−1 0
0 I

] [
Rw Rw,ε

RT
w,ε Rε

] [
Ak−1 0
0 I

]T

(11)

where

(
Rw Rw,ε

RT
w,ε Rε

)

represents the covari-

ance for wt+1|t and εt+1|t. With the calcu-
lated system matrices and the extracted co-
variance matrix for w and ε, one can proceed
to design the Kalman filter to put the model
in the innovation form. The k-step ahead
predictor can be easily derived from it.

It should be obvious to those familiar with the
subspace identification method that the asymp-
totic properties of N4SID such as unbiasedness
and consistency remain intact with the above
modifications.

2.2 k-Step Prediction Error Minimization

Although the modified subspace ID method puts
higher emphasis on the accuracy of the k-step
ahead prediction in obtaining state space matri-
ces, it does not directly minimize k-step-ahead



prediction error for a finite data set. It has been
suggested in Ljung [1] that the subspace method
be used to initialize PEM, which generally re-
quires a special parameterization and a good ini-
tial guess to be successful. Here we propose to use
the model from the proposed k-step subspace ID
method to start the k-step PEM.

A MIMO state space model,

xt+1 = Axt + But + Ket
yt = Cxt + Dut + et

(12)

can be represented in the following input/output
form:

yt = G(q)ut + H(q)et (13)

where

G = C(qI −A)−1B + D

H = C(qI −A)−1K + I
(14)

The optimal one-step ahead predictor is given by
Ljung [1]

ŷt|t−1 = H−1Gut + (1−H−1)yt (15)

If parameterized models Gθ and Hθ are used,
then the optimal one-step-ahead predictor can be
written as

ŷt|t−1 = H−1
θ Gθut + (1−H−1

θ )yt (16)

Optimal k-step-ahead predictor is

ŷt|t−k = WkGθut + (1−Wk)yt (17)

where

Wk = FkH
−1
θ (18)

and

Fk =

k−1∑

i=0

Hiq
−i (19)

Here, Hi is a ny × ny matrix representing the ith

impulse response coefficient matrix of H(q). The
optimal k-step ahead predictor can also be viewed
as the optimal one-step ahead predictor associated
with the model

yt = Gut + HF−1k εt (20)

where εt is a white noise.

For a SISO system, Fk, if known, can be regarded
as a prefilter and the k-step prediction error min-
imization is the same as the one-step prediction
error minimization with the filtered I/O data.
However, for a MIMO system, because matrices

do not commute in multiplication, prefiltering the
data before applying the one-step ahead PEM
does not work. Therefore, Fk has to be embedded
into the model structure when applying the PEM,
resulting in a structured identification problem.
Let us use the state-space representation of

Fk = (ÃF , B̃G, C̃G, D̃G)
G = (A,B,C,D)
H = (A,K,C, I)

(21)

First, the inverse system F−1k is,

F−1k = (ÃF − B̃F D̃−1F C̃F , B̃F D̃−1F ,

−D̃−1F C̃F , D̃−1F )
(22)

Let us denote

F−1k = (ÃF−1 , B̃F−1 , C̃F−1 , D̃F−1) (23)

where D̃F−1 = I. Then, the combined model
structure HF−1k is,

HF−1k =
([

A KC̃F−1

0 ÃF−1

]

,

[
KD̃F−1

B̃F−1

]

,
[

C C̃F−1

]
, D̃F−1

)
(24)

Now, the final combined model structure of both
G and H is adopted as,

[G HF−1k ] =

([
A KC̃F−1

0 ÃF−1

]

,
[

B K

0 B̃F−1

]

,
[

C C̃F−1

]
,
[
D I

]
) (25)

To solve this structured system identification
problem, a grey box identification method, for
example ‘idgrey’ in Matlab, can be used.

The overall iterative procedure can be described
as follows.

(1) Use the proposed k-step-ahead subspace
identification method to obtain the initial
state space model (A,B,C,D,K).

(2) Obtain Fk from the noise model H = C(qI−
A)−1K + I.

(3) Apply the structured identification approach
to minimize the prediction error for (25) in
order to obtain new (A,B,C,D,K).

(4) Obtain a new prefilter Fk from the new noise
model H.

(5) Go back to step 3. Continue until the model
converges.

3. CASE STUDY

3.1 CST Tanks in Series with A Recycle Loop

The example chosen for illustrative purposes in-
volves a 6 CST mixers and 1 plug flow pipe con-
nected in series, as shown in Fig 1. In addition,



there is a recycle flow, from mixer 6 back to mixer
1. The flowrate of the secondary inlet, represented
by Fu, is assumed to be the manipulated input.
The concentration of the main inlet flow CAd, is
treated as an unknown disturbance variable. Out-
puts are CA1 and CA6. The steady state condition
is Fu = 20, Fd = 100, Fr = 200, CAd = 2, and
Cu = 20. The volume of each mixer is 1000. The
dynamics of the plug flow pipe between mixer 3
and mixer 4 are represented as a pure delay of 10
time units. We assume that CA1 is measured and
we are interested in using this measurement to in-
ferentially control the downstream concentration
CA6.

First identification data are generated by per-
forming simulations with random input variables.
Both the manipulated input and the unknown
disturbance variable are drawn from uniform dis-
tributions with standard deviations of 15 and 0.5
respectively and switching probability of 0.2. 50
data sets are generated for identification, each
with 4000 data points. First, to test the quality
of the deterministic part of the identified models,
two data sets are generated with manipulated in-
put movement only, one with a step input change
and the other with random input changes. Next,
to test the model-based inferential prediction and
control performance, additional 1000 data points
are generated with the same type of input and
disturbance variations as those used to generate
the 50 modeling data sets.

3.2 Simulation Results

The conventional subspace ID method (N4SID)
and the modified subspace ID method (k-N4SID)
are applied to each of the 50 data sets, which
resulted in 50 pairs of state-space models. For
the both identification approaches, models with
8 states are identified, and k is chosen to be 50 in
applying the k-N4SID algorithm.

The resulting 50 pairs of models are first tested on
the two data sets with MV movement only. After
that, the identified models are tested for their final
purpose, inferential prediction and control. These
are done with the validation data set involving the
stochastic disturbances. The control objective is
to regulate the concentration of the last mixer at
the steady-state value. For this, model predictive
controllers are designed based on the identified
models. The controllers decide the adjustments in
the MV based on the inferentially predicted values
of the concentration of the last mixer. For every
MPC controller, the prediction horizon is chosen
to be 200 time units and the control horizon is
chosen to be 10 time units. Also, the input and
output weighting parameters are chosen to be
10−7 and 1, respectively.

Table 1. Comparison of inferential pre-
diction performances of the k-N4SID
and N4SID models obtained from the

50 modeling data sets

1-step inference k-step inference

mean min max mean min max

N4SID 0.6259 0.1732 3.8915 0.7835 0.1593 6.6758

k-N4SID 0.4188 0.1812 0.9344 0.4183 0.1457 0.9691

The benefits of the proposed modification to the
subspace identification method are clearly seen in
the statistical comparison involving the 50 pairs
models obtained with N4SID and k-N4SID. First,
N4SID resulted in more unstable models, 28 com-
pared to 23 by the k-N4SID. Unstable models for
a stable system do not necessarily lead to bad
prediction and control performance as long as a
stable predictor is formed. However, depending on
the location of the unstable eigenvalues, extremely
poor prediction and control performance can re-
sult, even though the predictor may be stable. It
was observed that none of the unstable models
obtained by k-N4SID resulted in bad inferential
prediction and control, whereas many unstable
models obtained by N4SID led to very poor infer-
ential prediction and control results, implying the
unstable modes for the N4SID models were much
faster growing than those found in the k-N4SID
models. Table 1 shows the better performance by
the k-N4SID models over the N4SID models, in
terms of both one-step inferential prediction and
k-step inferential prediction. The subsequent in-
ferential control tests also confirmed the superior
quality of the models by k-N4SID over those by
N4SID.

To further scrutinize the differences, the identified
models were grouped in four categories according
to whether both or one of the N4SID and k-
N4SID methods resulted in an unstable model.
For all four categories, models obtained by k-
N4SID method showed better overall inferential
prediction and control performance than the cor-
responding models by the N4SID method. This
includes the cases, where N4SID gave a stable
model but k-N4SID gave an unstable model. Due
to space limit, only the result from the first cat-
egory, for which the data sets resulted in stable
models with k-N4SID but unstable models with
N4SID, is shown here. The unstable nature of
the models from conventional N4SID can clearly
be seen from Figure 2, which shows for one of
the data sets the open-loop predictions of the two
models for a step change in the MV. Figures 3
and 4 display the corresponding differences in the
inferential prediction and control performances.
We can see that significant improvements in infer-
ential prediction and control performances could
be achieved by using k-N4SID instead of N4SID.
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Fig. 1. The schematic for the example of 6 CST mixers in series with a recycle loop
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the MV movement data for case 1
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