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Abstract: A novel inferential strategy for controlling end-product quality properties using 
complete trajectories of manipulated variables is presented. Control through complete 
trajectory manipulation using empirical models only is possible by controlling the process 
in the reduce space (scores) of a latent variable model rather than in the real space of the 
manipulated variables. Model inversion and trajectory reconstruction is achieved by 
exploiting the correlation structure in the manipulated variable trajectories captured by a 
Partial Least Squares (PLS) model. The approach is illustrated with a condensation 
polymerisation example for the production of nylon. The data requirements for building 
the model are shown to be modest. Copyright ©  2002 IFAC 
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1. INTRODUCTION 
 
Batch/semi batch processes are commonly used 
because their flexibility to manage many different 
grades and types of products. In these processes, it is 
necessary to achieve tight final quality specifications. 
However, this is not easily achieved because batch 
operations suffer from constant changes in raw 
material properties, variations in start-up 
initialisation, and in operating conditions, all of 
which introduce disturbances in the final product 
quality. Moreover, compensating for these 
disturbances is difficult due to the non-linear 
behaviour of the chemical reactors and to the fact 
that robust on-line sensors for quality variable 
monitoring are rarely available.  
 
Several approaches based on complex theoretical 
models and computationally intensive control 
strategies have been presented to control quality 
properties in batch processes (Kozub, 1989.) 
However, these strategies are difficult to implement 
because they require almost perfect model 
knowledge. Empirical modelling, on the other hand, 
has the advantage of using information routinely 
collected and of ease in model building. Yabuki and 

MacGregor, (1997) used empirical models for the 
control of product quality-properties. However, 
control action was restricted to only a few 
movements in the manipulated variables (injection of 
reactants) due to effective control action can only be 
applied at certain reaction stages.  
 
In batch operation is not uncommon to find processes 
in which the quality properties must be controlled by 
adjusting several manipulated variables trajectories 
(MVT) through most of the duration of the process 
(for example, reactor temperature or pressure). In this 
case, the conventional approach is to coarsely 
segment the MVT into a few intervals or decision 
points (usually 5-10) and characterize them by slope 
and level (stair-case parameterisation, Russell et al., 
1998). Therefore, in controlling a new batch, only the 
level and/or the slope of such intervals need to be 
adjusted because it is assumed that the MVT remains 
constant (same level/slope) until the next decision 
point. In this form, the number of parameters to be 
estimated from identification experiments remains 
relatively small. Studies involving this type of 
parameterisation can be found in Russell et al., 
(1998), and Lee, et al., (2001) among others. 
However, if fine trajectory segmentation is required 



     

or if smoother MVTs need to be implemented, a 
much more comprehensive experimental design need 
to be performed to allow for an adequate 
identification of the effect of MV’s on the controlled 
variables over the entire batch trajectory. Moreover, 
model inversion would be usually difficult because a 
large number of highly correlated control actions 
need to be determined at every decision point.  A 
solution to this dilemma is to project such highly 
correlated process trajectories (MVT and 
measurements) into lower-dimensional spaces and to 
perform the control computation in the reduced 
dimension space. By projecting the original 
correlated trajectories into a lower dimension we are 
obtaining a few orthogonal variables that summarizes 
the original information. In this form, the model 
parameter estimation is more efficient and the 
control computation easier. In spite of the inherent 
advantages in controlling the MVT’s of batch 
processes in the latent variable space, no literature 
has yet addressed this issue.  
 
Statistical controllers for continuous processes based 
on Principal component analysis (PCA) have been 
proposed (Cheng and McAvoy, 1996; Chen et al., 
1998), which also express the control objective in the 
score space of the PCA model. However, the 
approach taken here is different. 
 
The purpose of this study is to introduce a novel 
inferential control strategy that allows a much finer 
characterization and smoother reconstruction (model 
inversion) of manipulated variable trajectories than 
those obtained using staircase parameterisation, 
without increasing the complexity and number of 
identification experiments needed for model 
building. These objectives are made possible by 
formulating the control strategy in the reduced 
dimensional space of a latent variable model, and 
then using the model to invert the solution for the 
MVT’s. The contents of this work are as follow: in 
section 2 the methodology is introduced; in section 3, 
the control approach is illustrated with a 
condensation polymerisation case study for the 
production of nylon 6,6.  In section 4, conclusions 
are drawn. 
 

2. CONTROL METHODOLOGY 
 
2.1 Model building 
 
The proposed methodology uses historical-data bases 
and a few complementary identification experiments 
for model building. The empirical model is obtained 
using Partial Least Squares (PLS). However, other 
projection methods such as principal component 
regression may also be applied. 
 
The database from which the PLS model is identified 
consists of a regressor matrix (X) composed of k row 
vectors (xT) of on-line process variable trajectories 
(xon) and possibly off-line measurements (xoff), 
collected occasionally through the batch, 

]x[xx T
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T
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T
m = , full manipulated variable 

trajectories (MVT) uc, and the matrix (Y) of quality 

properties measured at the end of the batch. Full 
MVT’s are obtained through trajectory segmentation 
as illustrated in Figure 1. In this Figure is shown that 
the MVT’s are finely segmented and that decision 
points (θi, i=1,2,… ), where control action is taken, 
are chosen. Notice that the segment size is not 
necessarily uniform and that decisions points may be 
chosen arbitrarily. (However, the decision points will 
usually be selected using prior process knowledge.) 
In the limit, control action can be taken at every 
segment (i.e. every segment would represent a 
decision point). 

 
Fig. 1. Fine segmentation of MVT and decision 

points. 
 
Linear PLS regression is performed by projecting the 
mean centered and scaled variables onto lower 
dimensional subspaces:   
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where T are new latent variables T=XW* that 
capture most of the data variability, PT is the loading 
matrix, and E and F are residual matrices. Non-linear 
PLS regression can also be used (Flores-Cerrillo, 
2003). However, for simplicity, through this 
presentation linear models will be assumed. 
 
The control methodology used in this work consists 
of two stages: 1) at predetermined decision times (θi, 
i=1,2,… ) an inferential end-quality prediction using 
on-line and possible off-line process measurements 
(xm) and the MVT’s (uc) up to the current time is 
performed to determine whether or not the controlled 
end-qualities (y) fall outside a non-control region, 
and if needed, 2) model inversion to obtain tne 
modified MVT for the remainder of the batch that 
will yield the desired final qualities. This two-stage 
procedure is repeated at every decision point (θi) 
using all available measurement and MVT’s 
information up to that time. The novelty of the 
proposed approach is that the model inversion stage 
is performed in the reduced dimensional space (latent 
variable or score space) of a PLS model rather than 
in the real space of the MVT’s. Due to the high 
correlation of measurements and control actions, the 
true dimensionality of the process, determined in the 
score variable space (ta, a=1,2,… ,A) of the PLS 
model, is generally much smaller than the number of 
manipulated variables points obtained from the MVT 
segmentation (uc). Therefore, the control 
computation performed in the reduced latent variable 
space (t) is much simpler than that performed in the 
real space. In the following the control methodology 



     

is described for one control decision point during the 
batch. This is repeated at each future decision point. 
 
2.2 Prediction  
 
For on-line end-quality estimation ( ŷ ), when a new 
batch k is being processed, at every decision point 
(θi, i=1,2,… ) 0≤ θi ≤θf, there exists a regressor row 
vector xT composed of, at least, the following 
variables
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The regressor vector x consists of 1) all measured 
variables (xm,measured) available up to time θi (0≤ θ 
≤θi), 2), unmeasured variables (xm,missing) not 
available at  θi, but that will be available in the future 
(θi+1 ≤ θ ≤θf), implemented control actions 
uc,implemented (0≤ θ ≤θi-1), and future control actions 
uc,future, (θi ≤ θ ≤θf) which will be determined 
through model inversion. Note that at the model 
building stage, the xm,missing and uc,future vectors are 
available for each batch. 
 
To estimate whether or not the quality properties, for 
a new batch, will lie within an acceptable region, the 
prediction is performed considering uc,future = 
uc,nominal  (i.e. assuming that the remaining trajectory 
will be kept at their nominal conditions) using the 
PLS model: 
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W* and QT are projection matrices obtained from the 
PLS model building stage (Geladi et al., 1986). 

presentt̂  is the projection of the x vector onto the 
reduced dimension space of the latent variable model 
(scores) at time θi, and ŷ  is the vector of predicted 
end-quality properties. From the above equations, it 
can be noticed that changes in batch operation 
detected by process measurements (xm) or produced 
by changes in the MVT’s (uc) would produce 
changes in the scores ( presentt̂ ) and therefore in the 
end-quality properties (i.e. changes in the end-
qualities can be detected through changes in the 
scores). 
 
From equation (3), it can be noticed that in order to 
compute presentt̂  and ŷ , it is necessary to have an 
estimate of the unknown future measurements 
( missingm,x ) from (θi+1 ≤ θ ≤θf).  These can be obtained 
using efficient missing data algorithms available in 
the literature (Nelson et al., 1996). Alternatively, a 
multi-model approach in which a model is identified 
at every decision point can be used as discussed in 
Russell et al., (1998). The decision of one alternative 
over other depends on the number of decision points 
and/or performance of the missing data algorithm. In 
the example shown in this paper a single PLS model 

is used for control and the estimation of unknown 
future measurements is done by a missing data 
algorithm. 
 
The non-control region can be determined in several 
ways, such as the one that takes into account the 
uncertainty of the model for prediction (Yabuki and 
MacGregor, 1997), from product specifications or 
from quality data under normal (“in-control”) 
operating conditions. In this work a simple control 
region based on product quality specifications will be 
used (section 3). 
 
If the quality prediction is outside the non-control 
region, then model inversion to obtain the MVT is 
needed. Obtaining of the full MVT consist of two 
stages: 1) Computation of the deviation of the scores 
from the quality targets and 2) Model inversion to 
obtain the real MVT using the correlation structure of 
the PLS model. These two stages are explained in as 
follows.  
  
2.3 Control Computation 
 
At every decision point (θi), the distance that the 
scores need to be changed ( t∆ ) to track the end-
qualities closer to their set-points (ysp) can be 
obtained by solving the linear quadratic regulator (5): 
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where TTT
present

ttt ˆ−=∆ , Q1 is a diagonal weighting 

matrix, Q2 is a movement suppression matrix, T2 is 
the Hotelling’s statistic, 2

as  is the variance of the 
score ta, and λ is a weighting factor. Hard constrains 
in the adjustment to the scores ( maxmin ttt ∆≤∆≤∆ ) 
are problem dependent and may or not need to be 
included. 
 
Equation (5) is a quadratic programming problem 
that can be restated as:  
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and whose interpretation is given in Figure 2 for a 
two dimensional space. As can be seen in this Figure, 
the aim of equations (6-7) is to reduce the distance of 

presentt̂ , by an amount ∆t, to get closer to the score 
value corresponding to the quality set-points 
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T1T

sp yQQ)(Qt −= ). Due to the movement 

suppression matrix (Q2) and/or λ, the achieved t may 
not achieve tsp, but will be closer to it.  If we desire 
to obtain the ∆t that would force the calculated 

TT
sptt = , we could use a minimum-variance like 

controller. Under this situation equation (5), with 
Q2=I and λ=0, can be restated as:  
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and whose solution can be easily obtained as: 
 

 
)Q(QQQtt

QQQQtyt
TTT

present
T
sp

TT
sp present

ˆ

))(ˆ( 1

−

=−=∆ −TTT

           (9) 

If we consider y to be deviations from ysp, then tsp=0 
and the last equation is reduced to: 
  
   QQQQtt TT
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A detuning factor (δ) may be included for this 
minimum-variance like controller to achieve some 
robustness against model error:    
 QQQQtδt TT

present

1))(ˆ( −−=∆ TT       (11) 

where 0≤δ≤1. t∆ is computed at every decision point 
(θi). 
 
Notice that the matrix QQT has dimension m × m (m 
being the number of quality properties). Therefore, in 
order to do not have an ill-conditioned matrix 
inversion, the quality properties should not be highly 
correlated. This poses no problem since one can 
always perform a PCA on the Y quality matrix to 
obtain a set of orthogonal variables (τ) that can be 
used as new controlled variables, or perform 
selective PCA (Jackle and MacGregor, 1998) on the 
Y matrix to determine the best independent subset of 
quality variables to be controlled. Removal of a high 
correlated y variable should not be detrimental to its 
control since, by controlling the other quality 
variables, that quality variable will also be 
controlled. 
 
2.4 Inversion of PLS model to obtain the MVT’s 
 
Once the low dimensional (1×A) vector ∆t is 
computed via one of the control algorithms in the last 
section, it remains to reconstruct from it, the high 
dimensional trajectories for the future process 
variables ( missingm,x ) and for the future manipulated 
variables ( futurec,u ) over the remainder of the batch. 
These future trajectories can be computed from the 
PLS model (1) in such a way that their covariance 
structure is consistent with past operation. If there 
were no additional restrictions on the trajectories, 
such as might exits for a control action at θ=0, then 
the model for the X-space can be used directly to 
compute the x vector trajectory for the entire batch  
(Jaeckle and MacGregor, (1998)) as: 
 
  T]Pt[x TT ∆=∆        (12) 

 

 
Fig. 2. Control in the reduce space (score control). 

 
However for control intervals at times θi >0, there 
already exits observed trajectories for the interval 0 ≤ 
θ <θi, for the measured process variables ( measuredm,x ) 
and for the already implemented manipulated 
variables ( dimplementem,u ) that must be respected when 
computing their trajectories for the remainder of the 
batch (θi ≤ θ ≤θf). From equation (3) it can be seen 
that the changes in the score vector, ∆t, is related to 
the changes in the nominal trajectories according to: 

      
*]WΔ uxΔ ux[

]Wx[t

futurec,missingm,dimplementec,measuredm,

TTTT

TT

∆∆

=∆=∆      (13)                                      *

 

If one is currently at decision time θi, then clearly 
0x measuredm, =∆ and 0Δ u dimplementem, = , and the 

remaining trajectories to be computed for θi ≤ θ ≤ θf 
(i.e. missingm,x∆  and futurec,Δ u ) should satisfy the 
following relation: 

        (14)                                                      
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uxx ∆∆=∆ is the vector 

representing the change in future measurements and 
remaining MVT (θi ≤ θ ≤θf), and *

2W its 
corresponding  projection matrix. Then, 
  *

2]Wx[t TT
2∆=∆        (15) 

Furthermore, in order for the MVT and missing 
values to keep their correlation structure according to 
the PLS model (equation 12) the following condition 
must hold: 
  T

2Pαx TT =2Δ            (16) 

This ensures that the relationship among all the 
process and manipulated variables trajectories that 
are being computed, will respect the nature of those 
trajectories in the data used to build the PLS model. 
 
α can be estimated by substituting (16) in (15) 
according to:    
  *

2
T
2 WPαt )( TT =∆  

  1*
2

T
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and by substituting (17) in (16), the MVT are 
obtained (θi ≤ θ ≤θf): 
                    T
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It is easy shown that this reduces to the relationship 
in (12) when θi =0 where there are no previous 
trajectory measurements or manipulated variables. 
 
The final control algorithm, in the case of linear 
models and no constrains, is obtained by substituting 
(11) in (18): 
 T

2P1)*
2WT

2Q(PTQQTQ
present

tδx −−
−=

1))(ˆ(
2

Δ TT   (19) 

This inferential algorithm (19) is then repeated at 
every decision point (θi) until completion of the 
batch. Inversion of the (A × A) matrix PTW* is nearly 
always well conditioned.  
 

3. SIMULATION STUDIES 
 

In the batch condensation polymerisation of nylon 
6,6 the end product properties are affected by 
disturbances in the water content of the feed. In plant 
operation feed water content disturbances occurs 
because a single evaporator usually feeds several 
reactors (Russell et al., 1998). The non-linear model 
used in this work for data generation and model 
performance evaluation was developed by Russell et 
al., (1998). For a complete description of the model, 
and model parameters the reader is referred to the 
original publication.  
 
Russell et al., (1998) studied this system and 
proposed several control strategies including 
conventional control (PID and gain schedule PID), 
non-linear model based control and empirical control 
based in linear state-space models. In their data-base 
approach, control of the system is achieved by 
reactor and jacket pressure manipulation. These two 
manipulated variables were segmented and 
characterised by slope and level (stair-case 
parameterisation) leading to 10 control variables. A 
total of 7 intervals (decision points) were used. The 
empirical state space model was identified from 69 
batches arising from an experimental design. Several 
differences between the control strategy used by 
Russell et al., and the one proposed here can be 
noticed, the two most important being that: (i) the 
control is computed in the reduce latent variable 
space rather than in the real space of the MVT’s, and 
that (ii) a much finer MVT reconstruction is achieved 
without increasing the complexity and number of 
experiments to be used in model building. 
 
Control objectives and Trajectory segmentation. 
The control objective is to obtain nylon 6,6 with an 
end-amine concentration (NH2) of 49.33 and number 
averaged molecular weight (MWN) of 13533 (total 
reaction time 200 min), when the system is affected 
by changes in the initial water content (W). The 
MVT’s used to control the end-qualities are the 
jacket and reactor pressure trajectories. These 
trajectories are finely segmented every 5 min. 
starting at 35 min. (of the beginning of the reaction) 
until 30 min. before the completion of the batch, 
giving a total of 40 control variables. Two control 
decision points at 38 and 75 min. were found to be 
necessary to yield adequate control for the conditions 
used in this example. In order to predict NH2 and 

MWN, on-line measurements of the reactor 
temperature (Tr) and venting (v) are considered 
available every two minutes. 
 
Data Generation: In the example that follows, a PLS 
model with 5 latent variables (determined by cross-
validation) was built from a data set consisting of 15 
batches in which W was randomly varied and 30 
batches in which some movement in the MVT (at the 
two decision points) was performed (some of this 
data set may be available from historical data). 
However, adequate control performance has been 
achieved using only a total of 15 batches (Flores-
Cerrillo, 2003). 
 
3.1 Results 
 
To illustrate the control performance of the 
algorithm, some results are presented. The first step 
is to determine if the prediction of the PLS model at 
the decision points is adequate. In Figure 3, the final 
qualities are shown for the case in which the water 
content randomly varies for 15 batches in the range 
of ±10%. The end quality property prediction should 
be performed at every decision point to determine if 
the next control action should be implemented or not. 
In Figure 3 prediction results at 38 min are shown. 
As can be seen in this figure, the predicted quality 
properties (□ ) using the PLS model are in good 
agreement with the observed values (o).  Slight 
improvement in the predictions at high MWN and 
NH2 values could be obtained with a non-linear PLS 
model (Flores-Cerrillo, 2003). However, the linear 
PLS model is very good in the target region (mid-
values) and adequate in the extremes.  
 
In Figure 4 is shown the performance of the 
controller algorithm (equation 19 with δ=1.0) to the 
end-properties when the process is affected by the 
disturbances in the initial water concentration 
discussed above. In this Figure (o) represents what 
would happen if control action were not taken and 
(□ ) the qualities obtained after control is performed. 
As can be seen in this Figure, the proposed control 
scheme tracks on target all bad batches (inside the 
dotted box of quality specifications). Figure 5a and 
5b show the jacket and reactor pressure MVT 
respectively for runs 1 and 15 together with their 
nominal conditions.  
 

 4. CONCLUSIONS 
 
A novel control strategy for final product quality 
control in batch and semi-batch processes is 
proposed. The strategy recomputes on-line the entire 
remaining trajectories for the MV’s at several 
decision points.  However, in spite of the fact that the 
resulting controller consist of high dimensional 
manipulated variable trajectories (MVT’s) the 
control algorithm involves only the solution for a 
small number of latent variables in the reduced 
dimensional space of a PLS model. The strategy uses 
empirical PLS models identified from historical data 
and a few complementary experiments. The strategy 
is illustrated using a simulated condensation 



     

polymerisation process. Since smooth and 
continuous MV trajectories can be obtained, the 
approach seems well suited for use in processes and 
mechanical systems (robotics) where such smooth 
changes in the MV’s are desirable. 
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Fig. 3. Observed (o) and predicted (□ ) end-quality 

properties using PLS model. 

 
Fig. 4. Control results. (o) End-quality properties 

without control and (□ ) after control is taken. 
 

a) 

b) 
Fig. 5a, 5b. Manipulated Variable Trajectories. (- - -) 

set-point, () when the disturbance is – 10% in 
W, and (- − -) when disturbance is +10% in W. 
Reaction time 200min. 
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