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Abstract: Canonical variates state space (CVSS) modeling is a popular subspace
linear model identi�cation technique. A nonlinear extension of CVSS modeling
approach was proposed (DeCicco and Cinar, 2000). The modeling procedure consists
of two steps: development of a multivariable nonlinear model for a set of latent
variables and the linking of the latent variables to outputs of the process. The
nonlinear model is structured like a Generalized Additive Model (GAM) and is
estimated with CANALS, a nonlinear canonical variate analysis algorithm. This
communication presents the methodology and an illustrative example of chemical
reactor modeling using data generated from a detailed polymerization reactor model.
Copyright c 2003 IFAC.
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1. INTRODUCTION

Canonical variate analysis (CVA) and canoni-
cal variate (CV) regression are powerful meth-
ods used for developing linear dynamic models.
Most notably they are used in subspace modeling
to estimate linear state space models (Larimore,
1990b). Subspace methods are attractive because
of their ease in which they can model multivariate
systems. An extension of linear CVA for �nd-
ing nonlinear state space models was examined
(Larimore, 1990a) where use of alternating condi-
tional expectation (ACE) algorithm (Breiman and
Friedman, 1985) was suggested as the nonlinear
CVA method. The examples used linear CVA to
model a system by augmenting the linear system
with polynomials of past outputs.

Subspace modeling can be cast as a reduced rank
regression (RRR) of collections of future outputs
on past inputs and outputs after removing the
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e�ects of future inputs. CVA performs this RRR.
In the case of a linear system, an approximate
Kalman �lter sequence is recovered from this re-
gression. The state space coeÆcient matrices are
recovered from the state sequence. The nonlinear
approach extends this regression to allow for pos-
sible nonlinear transformations of the past inputs
and outputs, and future inputs and outputs before
RRR is performed. The model structure consists
of two sub-models. The �rst model is a multi-
variable dynamic model for a set of latent vari-
ables, the second relates these latent variables to
outputs. The latent variables are linear combina-
tions of nonlinear transformations of past inputs
and outputs. These nonlinear transformations or
functions are found using CANALS (van der Burg
and de Leeuw, 1983). Using nonlinear CVA to �t
dynamic models is not new. ACE algorithm was
used to visually infer nonlinear functions for single
output additive models (Chen and Tsay, 1993).
This work di�ers in that the nonlinear functions
estimated are directly utilized for prediction. Also,
a collection of multiple future outputs is consid-



ered, which leads to the latent variables model
structure. The latent variables are then linked to
the outputs using linear projection type nonlin-
ear model structures such as projection pursuit
regression (PPR) (Friedman and Stuetzel, 1981)
or a linear model through least squares regression.

2. NONLINEAR MODEL STRUCTURE
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where h� are scalar coeÆcients, �p and �p are
nonlinear functions, and � is the past window
length. The model structure linking the latent
variables to a single output is

yit = yiss +

MX
j=1

ni;j j
�
lTj xt

�
; (3)

where ni;j are scalar coeÆcients, lj are n � 1
coeÆcient vectors,  j is some nonlinear function,
and yiss is a steady state operating point.

The structure for the latent variables model in (2)
is of a generalized additive model (GAM) (Hastie
and Tibshirani, 1990). But it is developed using a
nonlinear CVA method discussed in Section 4.

3. LINEAR MODELING

A number of methods fall under this framework
including CVA (Larimore, 1990b) and N4SID
(Van Overschee and De Moor, 1994). An esti-
mate of Kalman �lter states can be recovered
from a RRR of a collection of future outputs
on past collection of inputs and outputs, and fu-
ture inputs in linear systems (Van Overschee and
De Moor, 1994). "Past" and "future" discriminate
previously observed historical data used in the
estimation of a causal dynamic model.

De�ne the collection of past and future observed
outputs:

y�(t) = [yTt yTt+1 : : : yTt+��1]
T ; (4)

y(t) = [yt+� y
T
t+�+1 : : : yTt+��1]

T ;

where � = �+ and  is the future window length.
The collections of past and future inputs (u� and
u) are de�ned in the same manner. Let t+�� 1
represent the present time. Observations of the
above collections are

Y� = [y�(1) : : : y�(N)] (5)

Y = [y(1) : : : y(N)]

Collections of observed past and future inputs
are U� and U , respectively. The objective is
to extract a causal model that predicts future
outputs using assigned future input values:

Y = L1U� + L2Y� + L3U (6)

where L1, L2, and L3 are coeÆcient matrices.

The RRR problem that leads to approximate state
variables sequence is formulated as

min
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2
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problem has a reduced rank structure in that
[L1 L2] = �H, where � and H both have rank n.
The CVA RRR solution is derived by settingW =�
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(Jansson and Wahlberg, 1999).

Estimates of � and H are obtained from singular
value decomposition (SVD)
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The real matrices Q and S contain the canonical
variate vectors, and � contains the canonical
correlations of the CVA decomposition (8). The
estimates become
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The approximate state variables sequence is

X =H

�
U�

Y�

�
; (11)

with X = [x̂(� + 1) : : : x̂(� +N)]. With the esti-
mated state variables sequence (11) and the ob-
served inputs and outputs it is possible to estimate
the model coeÆcients of the linear state space
model including the Kalman �lter gain (Larimore,
1990b; Van Overschee and De Moor, 1994).

4. NONLINEAR MODEL IDENTIFICATION

The nonlinear model identi�cation is an extension
of the linear approach. First nonlinear transforma-
tions of observed data are sought in the regression



of future outputs (Y) on past inputs and out-
puts, and future inputs (U� , Y� , and U). This
leads to a set of latent variables that are nonlinear
functions of past inputs and outputs. Then, the
reduced rank structure and coeÆcient matrices
are estimated using CVA as in the linear case. Fi-
nally, the model structure between latent variables
and outputs is developed using projection pursuit
(Friedman and Stuetzel, 1981) or other methods.

4.1 Latent Variable Model Identi�cation

The nonlinear transformations are estimated by a
modi�ed version of the nonlinear CVA technique
CANALS (van der Burg and de Leeuw, 1983).
Once the nonlinear transformations are found,
linear CVA is used to �nd the linear combinations
that form the latent variable model. The regres-
sion model (6) is �rst generalized as

Z = L1V� + L2Z� + L3V ; (12)

where L1, L2, and L3 are coeÆcient matrices, Z ,
Z� , V , and V� are nonlinear transformations of
the past and future inputs and outputs:
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The observed inputs and outputs have been cen-
tered around their means or some steady state
operating point of the process.

CANALS was originally developed for analysis of
categorical data (van der Burg and de Leeuw,
1983) and did not utilize a locally adaptive regres-
sion technique. A modi�ed version of CANALS
estimates the nonlinear functions with nonpara-
metric regression (DeCicco and Cinar, 2000). The
�nal nonparametric estimates are interpolated by
Chebychev polynomials to allow a smooth in-
terpolation. The modi�ed CANALS is used to
estimate the coeÆcient matrices and nonlinear
transformations. CANALS seeks to minimize

min
~L;L4;G;Z

k L4Z � ~LG k2 (13)

where L4 is a canonical variate coeÆcient matrix,
~L = [L1 L2 L3], and GT =

h
VT
� ZT� V

T


i
. The

loss function (13) is minimized such that the non-
linear functions have zero mean and unit variance
with the constraints:

L4 ~Z

�
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�T
= (N + �� 1)I;

~LG
�
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�T

= (N + �� 1)I;

where I is the identity matrix.

CANALS uses alternating least squares (ALS) to
estimate coeÆcient matrices and nonlinear trans-
formations. The ALS method works iteratively
until convergence of (13). L4 and ~L are esti-
mated by CVA RRR. The nonlinear transforma-
tions are estimated using a back-�tting approach
(Hastie and Tibshirani, 1990). The supersmoother
of (Friedman, 1984) is used to estimate the non-
linear functions in the back-�tting step.

The number of latent variables and linear combi-
nations of nonlinear functions that make up these
latent variables are determined by using linear

CVA between the Z and ~P� =
h
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The linear combinations of estimated states are
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The latent variable sequence becomes

~X(t) = H� ~P� ; (15)

where ~X(t) = [~xt+� ~xt+�+1 : : : ~xt+�+N�1]. This
leads to the latent variable model structure

~x(t+ �) = H�

�
v�(t)
z�(t)

�
(16)

where h�i is the ith column of H�, and (16) is
a generalization of (2). The number of latent
variables n is chosen by inspecting the singular
values of � in (14). Signi�cant latent variables
have relatively large singular singular values.

4.2 Link Function

The relationship between latent variables and out-
puts is generalized by a PPR model. This type



of model structure includes linear least squares
and GAM model structures. We build a linear
model estimated by CVA regression and a PPR
model, and compare their performances. The lin-
ear model is a special case of the PPR structure.
If a linear model is adequate the overall model
structure is simpler. The multivariable version of
(3) relating latent variables to outputs is

yt = yss +

MX
i=1

ni i
�
lTi xt

�
: (17)

PPR seeks to minimize the loss function
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with respect to ni;j , li,  i, and M . A back-�tting
procedure is utilized to perform the regression.
First, li is found by minimizing (18) using nu-
merical optimization. Next,  i is found by non-
parametric regression and lastly ni is estimated
with CVA regression. The number of terms M is
chosen by using (18) (See Figure 1).

With the estimated latent variable sequence ~X(1)
of (15) the loss function (18) may be written as
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4.3 Nonlinear Function Estimation

ALS and back-�tting approach in CANALS and
PPR algorithms for estimating �, �, and  in-
volve use of a regression technique capable of
capturing nonlinear relationships. There are sev-
eral regression techniques such as orthogonal poly-
nomials, neural networks, local polynomial re-
gression, smoothing splines, and kernel smoothers
that may be grouped in terms of their common
properties such as parametric/ nonparametric,
�xed/adaptive, or local/global. No one technique
is strictly superior to the others.

The modeling procedure requires a exible, auto-
mated, and robust regression technique. Kernel re-
gression, smoothing splines, and local polynomial

regression techniques are exible since they easily
adapt to data because they are not constrained
to any global parametric structure. Automating
such techniques is a diÆcult task especially for
serially correlated data. These techniques require
the selection of some parameter value which deter-
mines the degree of smoothing such as bandwidth.
Cross-validation is used frequently to determine
the degree of smoothing, but for serially correlated
data it may over-smooth or under-smooth. To
avoid such diÆculties, a �xed bandwidth is used
throughout the regression.

These techniques are also sensitive to outliers.
Robust techniques exist such as locally weighted
scatter plot smoothing (LOWESS) (Cleveland,
1979). LOWESS iteratively smoothes with local
polynomials. At each iteration, weights that are
inversely proportional to the magnitude of resid-
uals from the previous iteration are assigned to
data and the regression is repeated. This greatly
reduces sensitivity to outliers. In this work, assign-
ment of weights to data and iterative smoothing
are carried out by a supersmoother (Friedman,
1984) which is a local, adaptive, nonparametric
regression technique. The functions �, � and  

based on supersmoother estimates are local in the
sense they are only de�ned within the domain of
the data from which they are developed. Outside
this domain, a linear relationship can be assumed.
Let  (x) represent the estimated supersmoother
function where l � x � u. The �nal function
including extrapolation is '(x)

'(x) =

8<
:

al + blx : x < l

 (x) : l � x � u

au + bux : x > u

(20)

Initial estimates of al, bl, and au, bu are found
by regressing the lower and upper quartiles of
observed  (x) on x, respectively. The intercept
terms al and au are then adjusted such that al +
blmin(x) =  (min(x)) and au + bumax(x) =
 (max(x)). Shifting of the intercepts allows for
a smooth transition between domains. The func-
tions estimated by the supersmoother are not con-
sidered continuous functions. Interpolation is done
by regressing observed  (x) on x using orthogonal
Chebychev polynomials.

5. CSTR POLYMERIZATION MODELING

Data from a poly-vinyl acetate CSTR simula-
tion (Teymour, 1989) is used to illustrate model
identi�cation. The outputs are reactor tempera-
ture (yT ) and number average molecular weight
(MWn) of the polymer (yM ), and the manipulated
input is residence time. The steady state gain
of the system is not constant in the region of
operation selected.



The input and outputs are sampled at 5 min

intervals, and there is a time delay of 5min for the
input. The base input residence time levels are set
at random from a uniform distribution between 10
and 90 min with a switching probability of 0.95.
Added to this input is a signal with levels between
-5 and 5. The range of input was chosen to
exaggerate the nonlinearity of the system. Input
switch levels are based on a uniform distribution
with a switching probability of 0.95 and 0.80. 3000
samples of inputs and outputs are collected. To
avoid numerical round o� errors, MWn is divided
by 1000 before model development. A known
steady state operating point at a residence time
of 50min was used to center the data. Gaussian
random measurement noise was added to outputs
prior to model development.

Latent Variable Model Identi�cation. The
latent variable model identi�cation requires the
speci�cation of , �, and n. For this example,
future and past horizons of 10 is used ( = � =
10). The number of latent variables n is chosen
by investigating the singular values of (14). For
comparison, a linear model is also developed by
linear CVA subspace identi�cation.

Figure 1 shows the canonical correlation squared
for linear and nonlinear models. The singular val-
ues for the linear and nonlinear model drop o�
signi�cantly after 5 and 10 latent variables, re-
spectively. The singular values can be interpreted
as the canonical correlation between the future
outputs and past inputs and outputs, after the
e�ect of future inputs is removed. The canonical
correlations of the nonlinear model are greater
than the linear model. This is expected because
the CANALS nonlinear CVA algorithm seeks to
�nd nonlinear transformations of the original vari-
ables that maximize the canonical correlation.
Model Comparison. A linear state space model
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Fig. 1. Latent variable and PPR order selection.

found with CVA subspace modeling was compared
to the nonlinear model with a linear or PPR link

function. In-sample and out-of-sample prediction
is evaluated by sum of squared error (SSE). Pre-
diction consists of initializing the models from
observed data then recursively simulating future
outputs based on actual measured inputs and ei-
ther past predicted states in the case of the state
space model, or past predicted outputs in the case
of the nonlinear model. To determine the form
of the link function PPR was compared to linear
least squares. The PPR model developed had 5
terms (M=5). The relative magnitudes of SSE in
Figure 1 indicates that 3 terms are suÆcient. A
plot of the in-sample prediction of reactor temper-
ature for various models (Figure 2) indicate that
nonlinear models outperform the linear model.
The SSE used for comparison is

SSE =
X
t

"�
yM (t)� ŷM (t)

�M

�2

+

�
yT (t)� ŷT (t)

�T

�2
#

where y and ŷ are the actual and predicted out-
puts respectively, and � is the standard deviation
of the observed variable. The SSE is 530 for the
nonlinear model with linear link function, 558
for the nonlinear model with PPR link function,
and 930 for the linear state space model. For the
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Fig. 2. Actual (-) and predicted (- -) reactor tem-
perature. Top: nonlinear model with linear
link; Center: nonlinear model with PPR link,
and Bottom: linear model.

out-of-sample comparison 20 runs with di�erent
inputs and noise sequences were simulated in the
same manner as the in-sample case. Nonlinear
models clearly outperform the linear model with
respect to SSE (Figure 3). The nonlinear models
with linear and PPR link function have compa-
rable performance with the linear link function
model with slightly better performance. Steady-

State Analysis. Numerical continuation is im-
plemented with AUTO (Doedel et al., 1998) to
determine the steady-state characteristics of the
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Fig. 3. SSE for 20 runs for (A) linear model,
(B) nonlinear model with linear link, and (C)
nonlinear model with PPR link.

empirical model. AUTO uses numerical continu-
ation to trace out the �xed point solution given
an initial steady state. The resulting steady-state
curve is then compared to the steady-state curve
of the physical model. For this comparison the
linear link model was used. Let yssM and yssT be the
steady state values of the outputs that correspond
to the input uss. For the case of a least squares
linear link function the model at steady state is

yssM =

�X
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a1jy
ss
M +

�X
j=1

b1jy
ss
T +

�X
j=1

c1ju
ss; (21)

yssT =
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a2jy
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M +

�X
j=1

b2jy
ss
T +

�X
j=1

c2ju
ss: (22)

Figure 4 compares the actual and predicted �xed
point steady state solutions. The nonlinear model
predicts the �xed point solution inside the domain
of the experimental data and the linear approxi-
mation works well outside.
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Fig. 4. Fixed point steady state solution of the ac-
tual physical model (-) and nonlinear empir-
ical model (- -). The domain of experimental
data is inside the dashed box (:).

6. CONCLUSION
The multivariate nonlinear empirical dynamic
modeling technique is the extension of linear CVA
subspace identi�cation. A case study on model-
ing a polymerization in a CSTR illustrates the
modeling approach and the dynamic and steady
state performance of the nonlinear model which
are better than the linear model performance.

7. REFERENCES

Breiman, L. and J. H. Friedman (1985). Estimat-
ing Optimal Transformations for Multiple Re-
gression and Correlation. J. Amer. Statist.

Assoc. 80, 580{598.
Chen, R. and R. S. Tsay (1993). Nonlinear Ad-

ditive ARX Models. J. Amer. Statist. Assoc.
88(423), 955{967.

Cleveland, W.S. (1979). Locally-weighted Regres-
sion and Smoothing Scatterplots. J. Amer.
Stat. Assoc. 74, 829{836.

DeCicco, J. and A. Cinar (2000). Empirical Mod-
eling of Systems with Output Multiplicities
by Multivariate Additive NARX Models. In-
dust. Eng. Chem. Research 39(6), 1747{1755.

Doedel, E. J., A. R. Champneys, T. F. Fairgrieve,
Y. A. Kuznetsov, B. Sandstede and X. Wang
(1998). AUTO 97: Continuation and Bifurca-
tion Software for ODEs).

Friedman, J. and W. Stuetzel (1981). Projec-
tion Pursuit Regression. J. Am. Stat. Assoc.
76, 817{823.

Friedman, J. H. (1984). A Variable Span
Smoother. Technical Report No. 5. Dept. of
Statistics, Stanford University.

Hastie, T. and R. Tibshirani (1990). Generalized
Additive Models. Monographs on Statistics
and Applied Probability. Chapman & Hall.

Jansson, M. and B. Wahlberg (1999). A Lin-
ear Regression Approach to State-Space Sub-
space System Identi�cation. Signal Process-
ing 52(2), 103{129.

Larimore, W. (1990a). Identi�cation and �ltering
of nonlinear systems using canonical variate
analysis. In: Nonlinear Modeling and Fore-

casting. Addison-Wesley.
Larimore, W. (1990b). Canonical Variate Analy-

sis in Identi�cation, Filtering, and Adaptive
Control. In: Proc IEEE Conf. Decision Con-

trol.
Teymour, F. (1989). The Dynamic Behavior of

Free Radical Solution Polymerization Reac-
tions in a Continuous Stirred Tank Reactor.
PhD thesis. University of Wisconsin.

van der Burg, E. and J. de Leeuw (1983). Nonlin-
ear Canonical Correlation. British J. Math.

Statist. Psychol. 36, 54{80.
Van Overschee, P. and B. De Moor (1994). N4SID:

Subspace Algorithms for the Identi�cation of
Combined Deterministic-Stochastic Systems.
Automatica 30(1), 75{93.


