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Abstract

To survive in the face of uncontrollable natural vari-
ations, biological organisms have developed adapta-
tion mechanisms that make them remarkably insen-
sitive to variations in certain variables. Conversely,
outside these ranges of admissible variation, biologi-
cal function may change dramatically, usually in un-
desirable ways (e.g., the organisms die). As a conse-
quence, a set-theoretic control strategy seems quite
appropriate for biologically-based processes like fer-
mentation reactors: many variables do not have to be
controlled to precise setpoints, but they do have to be
maintained within viable operating ranges. This pa-
per proposes a strategy for this kind of set-theoretic
control based on zonotopes, which are the images of n-
dimensional cubes under affine transformations. This
approach is well-suited to the control of linearized
fundamental models or linear empirical models over
a specified range of validity. In addition, the results
presented here establish strong connections with clas-
sical linear control theory. Finally, these results are
extended to positive linear systems, a class that in-
cludes many biological system models (e.g., compart-
mental models arising in pharmecokinetics) and that
are inherently harder to control than unconstrained
linear systems.

1 Introduction

This paper describes target-set control, a control
strategy that leads to the selection of control input

sequences that drive the system state vector into a
specified target set. One motivation for target-set
control is the control of biological processes and sys-
tems, where many variables must be kept within spec-
ified ranges, but variation within those ranges has lit-
tle effect on system performance, due in part to the
well-developed adaptive nature of biological organ-
isms. For example, homeostasis, the term for the co-
ordinated action by which living organisms maintain
equilibrium and sustain life, has several distinguish-
ing characteristics that are important to the engineer
contemplating the control of biological systems:

1. Desired equilibrium conditions are generally in
terms of ranges of acceptable values not precise
point targets as is commonly the case in stan-
dard control engineering;

2. By design, intrinsic system robustness is
achieved by ensuring that multiple combinations
of input variable settings can equally well main-
tain the system at the desired equilibrium con-
ditions. In other words, the problem of main-
taining homeostasis has multiple equally admis-
sible solutions. Contrast this with most stan-
dard control engineering problems for which non-
uniqueness of a control solution may in fact be
undesirable.

3. In their natural ”settings”, the states, inputs and
output variables of typical biological systems are
constrained to be non-negative at all times.

While one can definitely phrase the biological system
control problem within the classical control theory
framework (i.e. employ a model—often defined in
terms of deviation variables—to compute a unique

set of input variable values to drive system states to
a unique set-point, subject to constraints), we believe
that a more natural theoretical control framework for
bioprocesses ought to take their distinguishing sys-
tem characteristics into consideration explicitly.

2 Problem formulation

The basic problem formulation considered here is an
extension of one considered previously [5], but based
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on a more flexible class of uncertainty sets. More
specifically, this formulation assumes the existence of
an approximate linear model of the general form:

x(k + 1) = Ax(k) + Bu(k) + d(k), (1)

where x(k) represents the n-dimensional state vector
at time k, u(k) is the vector of m control inputs at
time k, A and B are compatibly dimensioned ma-
trices, and d(k) is an effective disturbance vector of
dimension n. This model may be obtained by lin-
earizing a fundamental model of process dynamics
about some specified steady-state operating condi-
tion, via empirical model identification, or by any
other means. The effective disturbance vector d(k)
represents the combined effects on the state vector of
linear model parameter uncertainty, neglected non-
linearities, discretization artifacts, and the influence
of unmeasurable external disturbances. The control
problem considered here is the following one:

Given the process model (1), characterize
the set of admissible sequences of control in-
puts {u(k), . . . ,u(k + r− 1)} that will drive
the state vector x(k) into a designated tar-
get set S∗ in Rn.

To solve this problem, we introduce the following sets:

- Σk, the set of all possible values for the state
vector x(k) at time k,

- ∆k, the set of all possible values for the effective
disturbance vector d(k) at time k.

In what follows, given Σk, ∆k, and a specific control
input vector u(k), we first derive an expression for the
set Σk+1 of possible states x(k + 1) and then extend
this result to obtain an expression for the set Σk+r of
possible values for x(k + r) for arbitrary r ≥ 1. This
multi-step result represents one important extension
of our previous results [5]; another extension is the
replacement of spherical uncertainty sets with more
flexible zonotopes, described next.

3 Zonotopes

A zonotope is defined [8, p. 191] as the image of
the p-cube under an affine projection map, where the

p-cube is the set

Cp = {x ∈ Rp | |xi| ≤ 1, i = 1, 2, . . . , p}, (2)

and an affine projection of a set A ⊂ Rp is the set
defined by

M
⊗

A + b = {Mx + b | x ∈ A}, (3)

where M is any n×p matrix and b is any vector in Rn.
For convenience, let Zn(M,b) denote the zonotope in
Rn defined by:

Zn(M,b) = M
⊗

Cp + b

= {x ∈ Rn | x = b +

p
∑

i=1

λimi,

|λi| ≤ 1}, (4)

where mi is the ith column of the matrix M. Note
that if the matrix M is diagonal, the resulting zono-
tope is a parallelepiped, a rectangular polytope in Rp

with its faces parallel to the coordinate axes.
To describe system evolution in terms of zonotopes,

we need the following notion. The Minkowski sum of
two sets A and B is defined by [8]:

A
⊕

B = {a + b | a ∈ A, b ∈ B}. (5)

Now, define Σ0
k+1

as the set of all possible unforced

states x(k + 1), obtained by setting u(k) = 0. This
set is related to Σk and ∆k by the evolution equation:

Σ0
k+1 = [A

⊗

Σk]
⊕

∆k. (6)

To obtain results that are computationally useful
from this general expression, it is necessary to spe-
cialize to a class of sets for which affine projections
and Minkowski sums are easy to compute; zonotopes
represent one such class.

More specifically, the zonotope Zn(M,b) may be
viewed as the Minkowski sum of p line segments in
Rn, each defined by a column of the matrix M, trans-
lated by the vector b. That is,

Zn(M,b) = [`1

⊕

`2

⊕

· · ·
⊕

`p] + b

`i = {x ∈ Rn | x = λmi, |λ| ≤ 1}. (7)
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It follows immediately from this result that the
Minkowski sum of two zonotopes Zn(M,b) and
Zn(N, c) is simply the Minkowski sum of the line
segments defined by the columns of M and N, offset

by b + c. Defining the composite matrix [M
...N] as

[M
...N] = [m1, . . . ,mp,n1, . . . ,nq ], (8)

the Minkowski sum of two zonotopes is given by

Zn(M,b)
⊕

Zn(N, c) = Zn([M
...N],b + c). (9)

Hence, it follows that zonotopes are closed under

Minkowski addition. To see that zonotopes are also
closed under affine transformations, note that

A
⊗

Zn(M,b) + c = A
⊗

[M
⊗

Cp + b] + c

= [AM]
⊗

Cp + [Ab + c]

= Zn(AM,Ab + c). (10)

4 State evolution

To describe state evolution under this framework,
suppose that the initial state homeostatic set is Σk =
Zn(Vk,xk) for some n×p matrix Vk and some nom-
inal state vector xk. Next, assume the uncertainty
sets ∆k+j associated with the effective disturbance
vectors d(k + j) are ∆k+j = Zn(Wk+j ,dk+j) where
Wk+j is an arbitrary n × qj matrix describing the
uncertainty in d(k+j) about its nominal value dk+j .
It follows from Eq. (6) that the one-step unforced
state evolution is described by

Σ0
k+1 = [A

⊗

Zn(Vk,xk)]
⊕

Zn(Wk,dk)

= Zn([AVk

...Wk],Axk + dk). (11)

The control vector u(k) steers the center of the evolv-
ing uncertainty set, giving us the one-step state evo-
lution equation

Σk+1 = Σ0
k+1 + Bu(k) (12)

= Zn([AVk

...Wk],Axk + dk + Bu(k)).

Iterating this result, it follows that the r-step state
uncertainty set Σk+r is the zonotope Zn(Vk+r ,xk+r),
where

Vk+r = [ArVk

...Ar−1Wk

... · · ·
...Wk+r−1] (13)

xk+r = Arxk + Ar−1dk + · · · + dk+r−1

+ Ar−1Bu(k) + · · · + Bu(k + r − 1).

A useful rearrangement of this result is the following
generalization of Eq. (12):

Σk+r = Σ0
k+r + Φv, (14)

where Σ0
k+r represents the r-step unforced evolution

caused by the system dynamics (e.g., decay of ini-
tial conditions) and the influence of external distur-
bances. This term is given explicitly as

Σ0
k+r = Zn(Vk+r ,yk+r), (15)

yk+r = Arxk + Ar−1dk + · · · + dk+r−1.

The term Φv in Eq. (14) describes the influence of
the control inputs applied over this time period:

Φ = [Ar−1B
... · · ·

...B]

v =







u(k)
...

u(k + r − 1)






. (16)

Note that v ∈ Rrm describes the complete sequence
of control moves made in the r steps considered here,
and that Φ is the n × rm controllability matrix.

5 Target-set control

Given the results just presented for uncertain state
evolution, we require one more construct to address
the control problem. The Minkowski difference be-
tween two subsets of Rn is defined by

A ∼ B = {x ∈ Rn | B + x ⊂ A}. (17)

It is important to note that the Minkowski difference
is not the inverse of Minkowski addition; in particu-
lar, these operations are related by [6]:

(A ∼ B)
⊕

B ⊂ A, (18)
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where the inclusion is generally proper. To see the
utility of this construct, suppose the control objec-
tive is to guarantee that the state vector x(k + r)
lies in a specified target set S∗. The set of all possi-
ble “state corrections” that are consistent with this
control objective is then given by

Ωk+r = {z ∈ Rn | Σ0
k+r + z ⊂ S∗}

= S∗ ∼ Σ0
k+r. (19)

Given the sequence of r control moves specified by
the vector v and the r-step controllability matrix Φ,
the set of feasible control moves that are capable of
meeting our control objective is given by

Υk+r = {v ∈ Rrm | Φv ∈ Ωk+r}. (20)

Note that if Φ has rank n, the usual controllability
condition [4, p. 460], Φv can assume any value in Rn,
implying that the r-step control problem is feasible
(i.e., the set Υk+r is not empty) if and only if the set
Ωk+r is not empty.

To determine the set Ωk+r, first note that for any
two sets A,B ⊂ Rn and any two n-vectors a and b,

[A + a] ∼ [B + b] = [A ∼ B] + [a − b], (21)

so the Minkowski difference of two zonotopes becomes

Zn(M,b) ∼ Zn(N, c) = [Zn(M,0) ∼ Zn(N,0)]

+ [b− c]. (22)

Next, suppose P is a parallelepiped in Rn and Z is an
arbitrary zonotope in Rn. By the preceeding result,
there is no loss of generality in assuming that both of
these sets are centered at zero. Hence, the Minkowski
difference between these sets may be written as

P ∼ Z = Zn(M,0) ∼ Zn(N,0)

= {z ∈ Rn | z + Zn(N,0) ⊂ Zn(M,0)}

= {z ∈ Rn | − Mii ≤ zi + yi ≤ Mii,

y ∈ Zn(N,0)}. (23)

Next, note that any vector y ∈ Zn(N,0) may be
written as

y =

p
∑

j=1

λjnj ⇒ yi =

p
∑

j=1

λjNij . (24)

Applying the triangle inequality to this result gives

|yi| ≤

p
∑

j=1

|λj ||Nij | ≤

p
∑

j=1

|Nij |, (25)

since |λj | ≤ 1 for all j. Further, the extreme values in
this inequality are achievable by taking either λj =
sign {Nij} or λj = −sign {Nij} for all j. Hence, the
Minkowski difference result from Eq. (23) may be
written more explicitly as

P ∼ Z = {z ∈ Rn | (26)

−Mii + N�

ii ≤ zi ≤ Mii − N�

ii},

where N�

ii is defined as

N�

ii =

p
∑

j=1

|Nij |. (27)

Defining the matrix N� as the n×n diagonal matrix
with elements N�

ii, Eq. (26) may be written as

P ∼ Z = Zn(M,0) − Zn(N,0) = Zn(M−N�,0).
(28)

Also, note that for the inequalities in Eq. (26) to
be consistent—i.e., for the set P ∼ Z to be non-
empty—it is necessary that Mii − N�

ii ≥ 0 for all i,
meaning that the matrix M − N� is positive semi-
definite. Geometrically, this result means that the
Minkowski difference between any parallelepiped P
and any other zonotope Z is a parallelepiped.

In the context of the control problem of interest
here, suppose each component of the state vector is
constrained to lie in the interval ai ≤ xi ≤ bi. This
constraint corresponds to x ∈ S∗ = Zn(H,x∗) where
the diagonal matrix H and the vector x∗ are

Hii =
bi − ai

2
, x∗

i =
ai + bi

2
. (29)

The set Ωk+r is then given by

Ωk+r = S∗ ∼ Σ0
k+r

= Zn(H,x∗) ∼ Zn(Vk+r ,yk+r)

= Zn(H −V�

k+r,x
∗ − yk+r). (30)

Further, note that this set is nonempty if and only if
Hii − [V�

k+r ]ii ≥ 0 for i = 1, 2, . . . , n. If these condi-
tions hold, the set Υk+r of feasible controls defined
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in Eq. (20) corresponds to the solution set for the
following collection of n simultaneous inequalities:

γ−

i ≤ [Φv]i ≤ γ+

i , (31)

where these bounds are given by

γ−

i = [x∗ − yk+r ]i − [H −V�

k+r]ii

γ+

i = [x∗ − yk+r ]i + [H −V�

k+r]ii. (32)

Recall that for a controllable system, the controlla-
bility matrix Φ has rank n for r ≥ n, from which it
follows that any state correction in the set Ωk+r is
achievable. For a completely controllable system, the
standard (i.e., non set-theoretic) solution would be to
choose v so that [Φv]i falls in the center of each inter-
val defined in Eq. (31), corresponding to a set point
for the state vector of x∗ − yk+r and representing a
standard disturbance rejection strategy. Conversely,
note that if γ−

i ≤ 0 ≤ γ+

i for i = 1, 2, . . . , n, it follows
that one feasible solution is v = 0. This solution
corresponds to the classical statistical process con-
trol (SPC) strategy: no control action is necessary so
long as the controlled variables lie within their target
specification. One advantage of the target-set formu-
lation considered here is that it permits us to consider
a range of alternatives between these two very differ-
ent control strategies. This flexibility is particularly
useful in connection with positive linear systems, as
the following discussion illustrates.

6 Positive linear systems

Positive linear systems are linear systems whose
states, inputs, and outputs are constrained to be non-
negative at all times. The local dynamics of biologi-
cal systems can often be described by positive linear
systems because the variables involved are concentra-
tions, which cannot be negative. An important spe-
cial case of positive linear systems are compartmental

systems, which may be defined as systems composed
of interconnected reservoirs and which correspond to
asymptotically stable positive linear systems [3, p.
147]. It is important to note, however, that this pos-
itivity constraint applies to system models written
in terms of absolute state variables and not to those

written in terms of deviation variables about some
specified steady-state, since such deviations can be
either positive or negative. An important practical
aspect of positive linear systems is that they are in-
herently harder to control than unconstrained linear
systems; for example, controllability conditions are
much more restrictive for positive linear systems [2].
An interesting feature of the results presented in the
preceeding sections of this paper is that they extend
directly to the case of positive linear systems and
provide some additional insights into the differences
between unconstrained and positive linear systems.

To obtain this extension to positive linear systems,
first define the positive p-cube:

C+
p = {x ∈ Rp | 0 ≤ xi ≤ 1, i = 1, 2, . . . , p}, (33)

which is a subset of the positive orthant of Rn, de-
noted Rn

+. Next, define a positive affine projection

of a set A ⊂ Rn
+ as the set M

⊗

A + b, where M

is an m × n matrix whose elements are all nonnega-
tive and b is an m-vector whose components are all
nonnegative. A positive zonotope is the subset of Rn

+

denoted Z+
n (M,b) and defined by any positive affine

projection of the positive p-cube. It is not difficult to
show that the Minkowski sum of positive zonotopes
is a positive zonotope, and that any positive affine
projection of a positive zonotope is another positive
zonotope. As a consequence, all of the state evolu-
tion results (i.e., Eqs. (13) through (16)) carry over
directly to positive linear systems: if the state vector
lies in the set Z+

n (Vk,xk) at time k, these equations
describe its subsequent evolution in response to the
unforced positive system dynamics, nonnegative dis-
turbance inputs characterized by positive zonotopes
∆k+j = Z+

n (Wk+j ,dk+j), and nonnegative control
inputs uk+j .

The most important difference between the posi-
tive system formulation and the unconstrained for-
mulation is that the set Ωk+r defined by Eq. (30)
does not lie in the positive orthant. Since nonnega-
tive input sequences can generate only state vector
changes in Rn

+ for a positive linear system, we must
restrict consideration to the positive part of Ωk+r .
As in the unconstrained case, it is easy to obtain an
explicit expression for this set if the target set S∗ is
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a parallelepiped in Rn
+. Specifically, we have:

Ω+

k+r = [S∗ ∼ Σ0
k+r] ∩ Rn

+

= [Z+
n (H,x∗) ∼ Z+

n (Vk+r ,yk+r)] ∩ Rn
+

= {x ∈ Rn | 0 ≤ xi ≤ Hii −

p
∑

j=1

[Vk+r]ij

+x∗

i − [yk+r ]i, i = 1, 2, . . . , n}. (34)

Given this result, the set Υk+r of admissible control
moves consists of all nonnegative vectors v satisfying
the following conditions for i = 1, 2, . . . , n:

0 ≤ [Φv]i ≤ x∗

i − [yk+r ]i + Hii −

p
∑

j=1

[Vk+r ]ij . (35)

Note that the set Υk+r is non-empty if and only if
the right-hand side of Eq. (35) is nonnegative for all
i. Also, note that these conditions hold if and only

if the SPC solution v = 0 is feasible. This observa-
tion provides a very natural reference case for target-
set control of positive linear systems: given a per-
formance measure of interest and any other feasible
control strategy in Υk+r, how does its performance
compare with that of the SPC strategy?

Finally, note that even if Ω+

k+r is non-empty and
Φ−1 exists, it will generally not be possible to gener-
ate all of the positive state corrections in Ω+

k+r with
nonnegative control input sequences v. In particular,
note that Φ is a matrix with all nonnegative entries:
even if Φ is square and Φ−1 exists, this inverse is
necessarily an M-matrix, which has non-positive off-
diagonal elements [1, ch. 6]. Consequently, unless Φ
is a diagonal matrix, there will be elements of Ω+

k+r

that can only be reached using negative control in-
puts. In practice, diagonality of Φ is an extremely
restrictive condition; one case where this occurs is for
a diagonal B matrix, corresponding to the monomial
matrix condition for controllability discussed by Cox-
son and Shapiro [2]. The contrast between this result
and the unconstrained linear system result (i.e., that
every state correction in Ωk+r is achievable if Φ−1

exists) provides yet another illustration of the im-
portant practical differences between positive linear
systems and unconstrained linear systems.

7 Summary

As one reviewer noted, the target-set control ap-
proach described here bears some important similar-
ities to the geometric approach to control theory [7].
He further argued that geometric control theory is
more powerful because it does not restrict consider-
ation to zonotopes. While we agree with this argu-
ment, we also note that the restriction to zonotopes
has important advantages, both computationally in
the simple construction of explicit sets of admissible
control values and conceptually, as in the connections
between controllability and statistical process control
noted in Sections 5 and 6.
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