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Abstract: This paper presents a method to handle input constraints when a large scale
system is to be controlled by a model predictive control algorithm which uses a reduced
order model of the process under consideration. A paper machine is used throughout to
motivate and illustrate the method.

1. INTRODUCTION

In control of large scale systems controller reduction
is one method to handle the computational and im-
plementational difficulties arising in a real-time en-
vironment. In their earlier work (Arkun and Kayi-
han, 1998; Rigopoulos, 1999) the authors have ad-
dressed the cross-directional (CD) control of paper
machines which are equipped with large number of
CD actuators. In order to reject disturbances certain
transformations are computed to map a given large
scale input-output system to a lower dimensional sub-
space which captures most of the process dynamics.
Next reduced order controllers are designed in this
lower dimensional space and the resulting controller
inputs are transformed back to the original dimension
and implemented on the real plant. Arkun and Kayi-
han (1998) has used reduced order unconstrained IMC
as controller, whereas (Rigopoulos, 1999) has used a
reduced order constrained model predictive controller.
The goal of this paper is to show how the original
constraints are preserved during the three steps of
model reduction, reduced order MPC design and final
implementation.

2. RATIONALE FOR A REDUCED ORDER
CONTROLLER DESIGN. A MOTIVATING

EXAMPLE: PAPER MACHINE

Paper machines are equipped with large number of
CD actuators (slice lips on the headbox) and scan-
ners provide measurements of the property of interest
(e.g. thickness, basis weight) at many measurement
points across the paper sheet. In addition control in-
puts can be tightly constrained due to the physical
limitations of the actuators. In this work the full order
system model used for CD control is given by (see
(Rigopoulos, 1999)):

yN�k� � g�q�1�GsuN�k��d�k� (1)

whereyN�k� � ℜ N is the measured output (sheet ) to
be controlled at sampling timek ; g�q�1� accounts
for CD dynamics;Gs is the steady state CD actuator
gain matrix;uN�k� � ℜ N is the vector of CD control
elements; andd�k� is the disturbance affecting the
property of interest. Here dimensionN can be very
large (several hundreds).

The idea of building a reduced order representation
of the full system (1) originated from the reduced
order modeling of the disturbances using the method
of Karhunen Loeve Expansion (KLE). KLE generates
a model with only a few degrees of freedom (dL�k�)
that capture the most significant disturbance patterns
(Rigopouloset al., 1997)



d�k� ��LtL�k���N�LtN�L�k� (2)

where� � �φ1� � � � �φL� � � � �φN� consists of the or-
thonormal basis vectors. They are in fact the eigenvec-
tors of the covariance matrix of the random process
d�k�. They can be computed sinced�k� is available
through (1) (we assume that control inputs and outputs
are measured). The vectort is computed by projecting
d onto the set of basis functions, i.e.

tL�k� � ��L�Td�k� (3)

The subspace orderL directly identifies the amount
of sheet variance that is captured by using only the
L most significant modes. Here the interest is in the
design of a constrained feedback controller that is
capable of rejecting theseL significant modes. The
reduced order subspace in which controller design
takes place has been derived in the following way
(Rigopoulos, 1999) Start with the original system (1)
and substitute for disturbance its KLE (1):

yN�k� � g�q�1�GsuN�k�

��LtL�k���N�LtN�L�k� (4)

Perform an orthogonal projection fromℜ N to ℜ L by
multiplying both sides by��L�T :

yL�k� � g�q�1���L�TGsuN�k�� tL�k� (5)

Defining

uL�k� � ��L�T GsuN�k� (6)

the reduced order model for controller design becomes

yL�k� � g�q�1�uL�k�� tL�k� (7)

Once the optimal solutionuL��k� is computed for (7)
it needs to be projected to the full order system (1) so
that it can be implemented on the real plant i.e

uN�k� � ÃuL�k� (8)

For an uncontrained minimum variance type con-
troller Rigopoulos (1999) has shown that the follow-
ing transformation is optimal:

Ã � G�
s �

L (9)

whereG�
s is a generalized inverse ofGs. Final feed-

back configuration is schematically shown in Figure
1.

In many applications disturbances may not be classi-
fied as stationary. In this case KLE and above trans-
formations can still be applied using the most recent
disturbance data; thus, they become time-dependent
and we use subscriptk to denote the time dependence
of retained basis functions�L

k .

Fig. 1. Feedback configuration.

The transformation of the full order system to a sys-
tem that has, potentially, much fewer variables (trans-
formed actuators) is done without explicitly consider-
ing the original actuator constraints. This is because,
there is no way of a-priori knowing which of the
original constraints would be active at the optimum, at
every iteration. Finding the active set would amount
to solving the full-order system. When the actuator
constraints are mapped onto the reduced order space,
the (transformed) feasible region may be empty. The
proposed reduced order design is able to recover from
this by splitting the problem in two steps:

� Step 1: The originalN dimesional input/output
system is transformed into anMk-dimensional
system withL � Mk disturbance modes. The
subscript ’k’, which denotes sampling time, is
included to explicitly show that the input/output
dimensions of the transformed system are time-
varying. The same transformation matrix that
was used in the unconstrained case is also used
here to map the actuator values of the reduced
order system to the original full order system.
Construct the mapping of constraints from the
full to the reduced order system. Check for fea-
sibility of that set, possibly by doing a phase-I
simplex. If the set is feasible, go to step 2. Oth-
erwise, increaseMk by one, and redo this step.
Since the original full order system is considered
to be always feasible, there will be anMk � N
value for which the reduced order system will
also be feasible.

� Step 2: Construct all other quantities necessary
to form the objective function of the QP for
the MPC, and solve the QP,using the feasible
solution of step 1 as the initial value.

Since this method reduced the dimensions of both
input and output spaces, the resulting system is (po-
tentially much) smaller in size than the original one,
hence the reduced memory requirements. It is also
faster, because although the number of constraints
stays the same in the reduced order system, the num-
ber of decision variables (transformed actuators) has



(considerably) decreased, thus, it takes less time to
compute the active set, and thus the optimum solution.

2.1 Actuator Constraints and their Impact on the
Reduced Order Controller Design

There are three types of actuator constraints that are
usually encountered in the production of paper and
other sheet forming processes:

� Lower and upper bound constraints

umin � uN�k�� umax (10)

where usually, because of the problem geometry
and that the actuators are expressed in deviation
form, umax��umin � 0, andumax� INumax.

� Adjacent actuator constraints

mmin �DuN�k�� mmax (11)

where D � ℜ N�N, and for the same reasons
as above,mmax � �mmin � 0, with mmax �
INmmax. In paper machines this constraint effec-
tively penalizes the bending stress of the slice lip.

� Rate constraints

�∆uN�k�� � ∆umax (12)

where,∆uN�k� � uN�k�� uN�k� 1�. Again, it
is common to have∆umax � IN∆umax. This
constraint is imposed in order to avoid drastic
changes in the magnitude of each actuatorwithin
two consecutive time periods, which can lead to
excessive wear and tear of the actuator hardware.

It is assumed that the above set of inequalities isal-
ways consistent, i.e. for the operating conditions for
which the system was designed, there always exists
a feasible solution vectoruN�k�. The situation is dif-
ferent in the case of the reduced order constrained
controller design. In particular, the above set of in-
equalities in the transformed domain becomes

umin � ÃkuL�k� � umax (13)

mmin � DÃkuL�k� � mmax (14)

�∆umax� Ãk�1uL�k�1� � ÃkuL�k�

� ∆umax� Ãk�1uL�k�1� (15)

Thus thenumber of constraints has stayed the same,
but thenumber of decision variables was reduced from
N to L. This point is very important because, assum-
ing that the objective function is quadratic, the com-
putation time for solving a QP problem will depend
heavily on the number of variables, because the latter
sets the upper bound on the number of constraints that
may be active at the optimum. Finding the active set is
one of the most time consuming operations, especially
in the presence of tight constraints. This is why the

reduced order controller design with a low ratioα �
L
N

becomes so appealing.
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Fig. 2. Contour plot of the objective function arising
from a controller with no dynamics (g�q�1� � 1),
N � 2, andL � 1.

On the other hand, because transformation matrix
Ã was constructed based on the unconstrained case,
some of the above inequalities may become infeasible.

Even in the case where no rate constraints are im-
posed,the closed loop performanceobtained from ap-
plication of the reduced order controller may be unac-
ceptable. This arises again from the fact that the range
of Ãk forcesuL�k� to lie in that region ofℜ N where
significant disturbances also lie. But in the presence
of constraints this locus may be far from the full order
constrained minimum. Fig. 2 shows the problem for
a simple example with no dynamics (g � 1), N � 2,
L � 1 and a quadratic objective function. The feasible
region is the rectangleS � ��x�y�� �1� x� 1� �1�
y� 1�. The unconstrained minimum denoted byu N�

unc
is located at�3 �1�T , and it is the same for the full and
for the reduced controller designs. In the presence of
constraints, however, the optimal full order minimum
uN� � �1 �1�T with an objective function minimum of
-9. On the other hand, the locus ofÃuL is the straight
line that passes through points�0 0�T anduN�

unc. The
constrained optimum arising from the reduced order
controller is atuN

� � �1 � 1
3�

T and is equal to -7.22,
which corresponds to a 20% drop in performance over
the full order case that may be deemed unacceptable.

A modification to the reduced order design will be
described now that addresses any feasibility issues
and allows for improvement of the closed loop perfor-
mance. The key idea is toallow the actuator subspace
order to be different from the disturbance subspace
order.Thus the reduced order system will haveL dis-
turbances, andMk � L inputs and outputs. Following
an approach very similar to the one used for the deriva-
tion of Eq. (7) one gets:

yMk�k� � g�q�1�uMk�k��RT
k tL�k� (16)

whereRk � �IL 0L��Mk�L��.

With regard to the above system the following obser-
vations are in order



� ObtaininguN
�
�k� from uMk��k� presents the same

problems as before. Again, a linear relation is
postulated

uN�k� � ÃkuMk�k� (17)

whereÃk � ℜ N�Mk . Eq. 16 can be written more
explicitly as

�
yL�k�

yMk�L�k�

�
� g�q�1�

�
uL�k�

uMk�L�k�

�

�

�
IL

0�Mk�L��L

�
tL�k� (18)

where the top block is completely separate from
the bottom and identical to theL-dimensional
system. Thus, one can apply the results of that
design directly to get̃AL

k � G�
s �

L
k , whereÃk �

�ÃL
k ÃMk�L

k �.

� ÃMk�L
k is obtained by considering the con-

strained minimization problem. In particular, the
inclusion of additional inputsuMk�L�k� is done
so as to increase the number of elements of set
Su � ℜ N where uN

� �k� belongs. This increase
is maximized by appropriately selecting̃AMk�L

k
to maximize the number of elements that be-
long to the range ofÃk. This is accomplished
by designingÃMk�L

k to be orthogonal toÃL
k �

G�
s �

L
k , which is guaranteed by setting̃AMk�L

k �

G�
s �

Mk�L
k , since�Mk�L

k is orthogonal to�L
k .

Finally,

Ãk � G�
s �

Mk
k (19)

2.2 Implementation of Constrained Control through
State-Space Model Predictive Control

In the present work state space MPC as detailed in
(Ricker, 1992) is used. Here we will present only the
important features which are unique to our problem
setting. The control algorithm is based on the reduced
order system given by Eq. 16:

yMk�k� � g�q�1�uMk�k� � RT
k tL�k�

� yMk
u �k� � yMk

d �k� (20)

State-space transformation of yMk
d �k�: Assuming

that the disturbance subspaceL has been selected,
yMk

d �k� is converted to state-space (Rigopoulos, 1999)

xd�k�1� � Ad�k�xd�k���d�k�1�e�k�1� (21)

yMk
d �k� � RT

k C̃d�k�xd�k� (22)

where Ad�k�, and the size of�d�k� depend on the
AutoRegressive (AR) modeling oftL�k�; andC̃d�k� �
��L

k�
TCd�k�. The order of the AR model selected

remains constant throughout the simulation. Thus, al-
though the size ofyMk

d �k� is determined by the size of

Rk which depends onMk, the sizes of the vectors and
matrices of state equation (21) remain unaffected. As
a consequence, varyingMk presents no problem to the
state-space modeling ofyMk

d �k�.

State-space transformation of yMk
u �k�: Because

yMk
u �k� � g�q�1�uMk�k� is a decoupledsystem, its

state-space equivalent description will be in terms of
block-diagonalmatrices:

x�nMk�1�
u �k�1� � A�n̄Mk�

u x�nMk�
u �k��BMk

u uMk�k�(23)

yMk
u �k� � CMk

u x�nMk�
u �k� (24)

where, for exampleA�n̄Mk�
u � diag�An̄ 	 	 	An̄�; each

An̄ � ℜ n�n, with rank[An̄� � n̄ contains the nec-
essary states for the modeling of eachyMk

u�i �k� �

g�q�1�uMk
i �k�.

Now, suppose that at iterationk� 1 the feasibility
of constraints imposesMk�1 � Mk � 1 leading to a

unit increase of inputsuMk�1 �

�
uMk

unew

�
at time k�

1. However, because of the block diagonal nature
of all the state-space matrices involved, the states
appropriated to the modeling of the firstMk elements
of vectoruMk�1�k� 1� will not be influenced by the
new states that must be introduced for the additional
input. This observation is important because it shows
that when the state order increases fromnMk to nMk�
n due to the introduction of additional inputunew, only
the new statesnMk�1 tonMk need to be initialized (to
zero), before the state equation can be used to compute

x�nMk�2�
u �k�2�. The firstnMk states evolve normally.

2.3 Computational Issues and Efficiency

Consider a paper machine withN � 100 CD actuators
where the full order constrained controller is to be
applied withp (prediction horizon)� mh (move hori-
zon)� 4 and all three types of constraints are present.
Then, an optimization problem with 400 variables and
2,400 constraints would have to be solvedat every
sampling time. Even when a reduced order controller
were to be implemented withMk � 30, the task would
not be trivial. Therefore, special attention needs to be
put on the selection of the most suitable optimization
algorithm.

In selecting the most appropriate solver one must,
consider the problem that arises from a potential infea-
sibility due to the dimensionality reduction. The solver
should be able to identify this problem as quickly as
possible and compensate for it by gradually increasing
the actuator subspace orderMk in order to obtain a
feasible region. In this “internal” loop one only needs
to update matrixÃ and increase the size of∆U�k�
before re-checking for feasibility. Updating all other
quantities including the objective function should be
done only once,after feasibility has been ensured.



Of course, should the user decide to reduceMk in an
attempt to speed up the computations, the same type of
feasibility test must be made prior to accepting a lower
Mk value. Evidently, only a primal active set method
works along those lines, because of its inherent need
for thea-priori calculation of a feasible point. Accord-
ing to this strategy, a phase I simplex is performed
repetitively increasingMk by one until an initial fea-
sible point (thus a feasible region) is obtained. Then,
after all appropriate matrices are updated, a search for
the optimum is initiated. This procedure may become
even more efficient by using an interior point (IP)
method to obtain the solution to the phase I simplex
problem, instead of using a standard Dantzig-type LP
solver.

Another point that can have significant impact on the
overall performance of the QP solver is “hot” starts.
In the presence of relatively tight input constraints,
the optimal solution vector does not vary significantly
from one sampling time to the next. Thus, in addition
to ensuring that an initial feasible point is available,
one can further benefit from providing an initial point
that is relatively close to the optimum.

3. EXAMPLES

A paper machine withN � 200 CD actuators and
measurements positions is considered, withg�q�1� �

q�1

1�0�2q�1 , and

Gs � Toeplitz�2�0 0�8 �1�0 �0�8 �0�6

�0�4 0 	 	 	 0�

The full disturbanced�k� consists of 200 CD and 300
MD positions. The last 100 full MD s are illustrated
in Fig. 3. For the modeling equations used to create
this the reader is referred to (Rigopouloset al., 1997).
Using the first 200 full data, KLE indicated that only
L � 3 modes were necessary to capture the signifi-
cant disturbance patterns. Also, an AR(2) model was
sufficient for the modeling of temporal vectorstL�k�.
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Fig. 3. Last section of the disturbance .

Table 1. Description of the sets of con-
straints considered in the example.

Constraints Set umax��umin mmax��mmin ∆umax

set 1 — tight 0.15 0.1 0.005
set 2 — moderate 0.15 0.1 ∞

set 3 — light 0.25 ∞ ∞

The parameters of the AR model and basis functions
�

L
k were also updated at every sampling time. Table

1 gives the values of the various types of constraints
used.

For constraints sets 2 and 3Mk remained constant
throughout the simulation, as no feasibility issues
were encountered. Feasibility problems were encoun-
tered, however, when rate constraints were imposed
(set 1), andMk had to be increased in order to be able
to compute a solution vectoruMk�k�. Also, for each
simulation the time allocated to solving the QP was
recorded, as well as the closed loop .

Fig. 4(a) illustrates the standard deviation of the CD
profile as a function of the actuator subspace order
Mk � 10, 30 and 150 for constraint set 3. The open
loop standard deviation is also included for compar-
ison. Clearly, the controller was able to reduce the
CD variability significantly even when only 10 trans-
formed manipulated variablesuMk�k� were used. What
is more important, however, is the very little improve-
ment achieved by the five-fold increase to the sub-
space order (from 30 to 150) that shows the efficiency
of the reduced order controller design.

Fig. 5(a) and (b) show the number of active constraints
at the optimum when the simulation was started with
initial subspace orderM1 � 10 andM1 � 30, respec-
tively. An increase in the number of active constraints
indicates an increase inMk because an infeasible con-
straint region was encountered. Notice that in almost
all sampling times the number of active constraints is
equal to the number of degrees of freedom, illustrating
how tight the constraints are.

Finally the trade-off between closed loop performance
and computation time is illustrated in Fig. 6 by com-
paring the drop in the sum-of-square (SSE) errorsvs.
the increase in computation time. For example, in the
case of tight constraints, increasingMk from 50 to
100 would result to a less than 1% performance im-
provement, while requiring 340% more computation
time! This clearly shows the significant computational
advantages associated with the implementation of the
reduced order controller design.

4. CONCLUSIONS

We have presented a method to handle input con-
straints when an MPC algorithm is derived based on a
reduced order approximation of the process but imple-
mented on the real process. A paper machine example
is used to demonstrate the method for CD control.



200 220 240 260 280 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

MD Position

(a)

open loop
M

k
=10

M
k
=30

M
k
=150

200 220 240 260 280 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

MD Position

(b)

open loop
M

k
=10

M
k
=30

M
k
=150

Fig. 4. Standard deviation as a function of initial
subspace order for (a) constraints set 3 and (b)
constraints set 1.

REFERENCES

Arkun, Yaman and Ferhan Kayihan (1998). A novel
approach to full CD profile control of sheet-
forming processes using adaptive PCA and
reduced-order IMC design.Computers Chem.
Engng22(7–8), 945–962.

Ricker, N. Lawrence (1992). Model-predictive con-
trol: State of the art. In:Proceedings of the CPC-
IV Conference. Padre Island, Texas. pp. 271–296.

Rigopoulos, A. (1999). Application of principal com-
ponent analysis in the identification and control
of sheet-forming processes.PhD Thesis, Georgia
Institute of Technology, Atlanta, GA.

Rigopoulos, Apostolos, Yaman Arkun and Ferhan
Kayihan (1997). Identification of full profile dis-
turbance models for sheet forming processes.
AIChE J.43(3), 727–739.

10

20

30
(a)

200 220 240 260 280 300
28

30

32

34

36

MD Position

(b)

Fig. 5. Number of active constraints for simulations
with initial actuator subspace order (a)M1 � 10
and (b)M1 � 30, using constraints set 1.

0 50 100 150
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Initial Subspace Order

(a)

Tight constr.
Moderate constr.
Light constr.

0 50 100 150
10

0

10
1

10
2

Initial Subspace Order

(b)

Tight constr.
Moderate constr.
Light constr.

Fig. 6. Trade-off between performance as expressed
by the sum-of-square improvement with increas-
ing initial Mk shown in (a), and computation time
increase as a function of initialMk shown in (b).


