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Abstract: Multivariate statistical process control (MSPC) based on principal
component analysis (PCA) has been widely used in chemical processes. Recently, the
use of independent component analysis (ICA) was proposed to improve monitoring
performance. In the present work, a new method, referred to as combined MSPC
(CMSPC), is proposed by integrating PCA-based SPC and ICA-based SPC. CMSPC
includes both MSPC methods as its special cases and thus provides a unified
framework for MSPC. The effectiveness of CMSPC was demonstrated with its
applications to a multivariable system and a CSTR process. Copyright c©2003 IFAC
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1. INTRODUCTION

The successful process operation often depends on
the effectiveness of fault detection. On-line process
monitoring plays an important role in detecting
process upsets, equipment malfunctions, or other
special events as early as possible. In chemical
processes, statistical process control (SPC), which
is a data-based approach for process monitoring,
has been used widely and successfully. Well-known
SPC techniques include Shewhart control charts,
cumulative sum (CUSUM) control charts, and
exponentially weighted moving average (EWMA)
control charts. Such SPC charts are well
established for monitoring univariate processes,
but univariate SPC (USPC) does not function well
for multivariable processes. In order to extract
useful information from multivariate process data
and utilize it for process monitoring, multivariate
statistical process control (MSPC) based on
principal component analysis (PCA) has been
developed (Jackson and Mudholkar, 1979). In the
last decade or so, many successful applications
have been reported and various extensions of

MSPC have been proposed (Kresta et al., 1991;
Kano et al., 2002a).

PCA-based SPC (PCA-SPC) and its extensions
have been widely accepted in process industries.
However, their achievable performance is limited
due to the assumption that monitored variables
are normally distributed. Recently, to further
improve the monitoring performance, a new
MSPC method based on independent component
analysis (ICA), referred to as ICA-SPC, was
proposed by Kano et al. (2002b, 2003). They
demonstrated the superiority of ICA-SPC over
conventional methods.

ICA-SPC, however, does not always outperform
PCA-SPC. ICA-SPC should be selected
when process variables do not follow normal
distribution. On the other hand, ICA-SPC likely
will not improve the performance in comparison
with PCA-SPC if process variables are normally
distributed. In a practical case, where some
variables follow normal distribution and others
do not, which monitoring method should be
selected? In the present work, to answer this



question and propose a new framework for
MSPC, combined MSPC (CMSPC) is developed
by integrating PCA-SPC and ICA-SPC. The
performance of CMSPC is evaluated with its
applications to monitoring problems of a linear
multivariable system and a CSTR process.

2. PCA-BASED MSPC

PCA, which is a tool for data compression and
information extraction, finds linear combinations
of variables that describe major trends in a data
set. For monitoring a process by using PCA-SPC,
control limits are set for two kinds of statistics, T 2

and Q, after a PCA model is developed. T 2 and
Q are defined as

T 2 =
R∑

r=1

t2r
σ2

tr

(1)

Q =
P∑

p=1

(xp − x̂p)2 (2)

where tr is the r-th principal component score and
σ2

tr
is its variance. xp and x̂p are a measurement of

the p-th variable and its predicted (reconstructed)
value, respectively. R and P denote the number of
principal components retained in the PCA model
and the number of process variables, respectively.
The T 2 statistic is a measure of the variation
within the PCA model, and the Q statistic is a
measure of the amount of variation not captured
by the PCA model.

3. ICA-BASED MSPC

ICA (Jutten and Herault, 1991) is a signal
processing technique for transforming measured
multivariate data into statistically independent
components, which are expressed as linear
combinations of measured variables. In this
section, an ICA algorithm and ICA-SPC are
briefly described.

3.1 Problem Definition

It is assumed that m measured variables
x1, x2, . . . , xm are given as linear combinations
of n (≤ m) unknown independent components
s1, s2, . . . , sn. The independent components and
the measured variables are mean-centered. The
relationship between them is given by

x = sA (3)

x =
[
x1 x2 . . . xm

]
(4)

s =
[
s1 s2 . . . sn

]
(5)

where A is a full-rank matrix, called the mixing
matrix. When k samples are available, the above
relationship can be rewritten as X = SA.

The basic problem of ICA is to estimate the
original components S or to estimate the mixing
matrix A from the measured data matrix X
without any knowledge of S or A. Therefore,
the practical objective of ICA is to calculate a
separating matrix W so that components of the
reconstructed data matrix Y , given as

Y = XW , (6)

become as independent of each other as
possible. The limitations of ICA are: 1) only
non-Gaussian independent components can be
estimated (just one of them can be Gaussian), and
2) neither signs, powers, nor orders of independent
components can be estimated.

3.2 Sphering with PCA

Statistical independence is more restrictive than
uncorrelation. Therefore, for performing ICA,
measured variables {xi} are first transformed into
uncorrelated variables {zj} with unit variance.
This pretreatment can be accomplished by PCA
and it is called sphering or prewhitening.

By defining the sphering matrix as M , the
relationship between z and s is given as

z = xM = sAM = sBT (7)

where BT = AM . Since si are mutually
independent and zj are mutually uncorrelated,

E
[
zT z

]
= BE

[
sT s

]
BT = BBT = I (8)

is satisfied. Here E[·] denotes expectation. It is
assumed here that the covariance matrix of si,
E

[
sT s

]
, is an identity matrix, because signs

and powers of si remain arbitrary. Equation (8)
means that B is an orthogonal matrix. Therefore,
the problem of estimating a full-rank matrix
A is reduced to the problem of estimating an
orthogonal matrix B through the sphering.

3.3 Fixed-Point Algorithm for ICA

The fourth-order cumulant of zero-mean random
variable y is defined as

κ4(y) = E[y4] − 3E[y2]2 (9)

By minimizing or maximizing the fourth-order
cumulant κ4(zb) under the constraint of ‖b‖ =
1, columns of the orthogonal matrix B are



obtained as solutions for b. Finding the local
extrema of the fourth-order cumulant is equivalent
to estimating the non-Gaussian independent
components (Delfosse and Loubaton, 1995). In the
present work, a fixed-point algorithm (Hyvarinen
and Oja, 1997) is used to obtain b that minimizes
or maximizes the fourth-order cumulant.

For estimating n independent components that
are different from each other, the following
orthogonal conditions are imposed.

bT
i bj = 0 (i �= j) (10)

Thus, the current solution bi is projected on the
space orthogonal to previously calculated bj(j =
1, 2, . . . , i − 1). By defining

B =
[
b1 b2 . . . bn

]
, (11)

independent components Y can be obtained from

Y = ZB = XMB = XW . (12)

This means that the separating matrix W can be
calculated from W = MB.

The sphering matrix M uncorrelates x and
scales it so that uncorrelated variables z have
unit variances. Uncorrelated variables can be
derived by using PCA. Therefore, the sphering
matrix M can be decomposed into two parts: an
uncorrelating matrix P and a scaling matrix Λ.
The uncorrelating matrix P is the same as the
loading matrix of PCA. Therefore, Eq. (12) can
be rewritten as

Y = XMB = XPΛB. (13)

Both P and B are orthogonal matrices.

3.4 Monitoring of Independent Components

The procedure of ICA-SPC is the same as USPC.
The only difference lies in the variables to be
monitored. That is, independent components are
monitored in ICA-SPC while correlated measured
variables are monitored in USPC.

A separating matrix W in Eq. (12) and control
limits must be determined in order to apply
ICA-SPC to monitoring problems. For this
purpose, the following procedure is adopted.

(1) Acquire time-series data when a process
is operated under a normal condition.
Normalize each column (variable) of the data
matrix, i.e., adjust it to zero mean and unit
variance, if necessary.

(2) Apply ICA to the normalized data,
determine a separating matrix W , and
calculate independent components.

(3) Determine control limits of all independent
components.

For on-line monitoring, a new sample of monitored
variables is scaled with the means and the
variances obtained at step 1. Then, it is
transformed to independent components through
the separating matrix W . If one or more of
the independent components are outside the
corresponding control limits, the process is judged
to be out of control.

4. COMBINED MSPC

ICA-SPC does not necessarily outperform
PCA-SPC. ICA is based on the assumption
that each measured variable is given as a linear
combination of non-Gaussian variables that
are independent of each other. Independent
components, even if they can be calculated, are
meaningless and ICA-SPC does not function
well when this assumption is incorrect. In
the present work, a new advanced MSPC
method is proposed for further improving the
monitoring performance by combining ICA-SPC
and PCA-SPC. The proposed method is referred
to as combined MSPC (CMSPC).

4.1 CMSPC Algorithm

The basic and important fact of PCA-SPC
is that uncorrelated variables, i.e., principal
components, are monitored. On the other
hand, independent components are monitored
in ICA-SPC. Since statistical independence is
more restrictive than uncorrelation, ICA-SPC
can outperform PCA-SPC. However, if process
variables are normally distributed, the monitoring
performance would not necessarily be improved
by using ICA-SPC. Ideally, ICA-SPC should be
used for monitoring non-Gaussian independent
variables, and PCA-SPC is used for monitoring
uncorrelated Gaussian variables. This conclusion
motivates us to integrate PCA-SPC and ICA-SPC
into a new MSPC method. For realizing this
integration, non-Gaussian variables and Gaussian
variables have to be distinguished.

In the present work, the fourth-order cumulant
is used to evaluate the non-Gaussianity of
components {yl} derived by using ICA. The
fourth-order cumulant of any Gaussian random
variable is zero. In addition, the absolute
value of the fourth-order cumulant increases
as the non-Gaussianity increases. Therefore,
non-Gaussian independent variables can be
selected from {yl} based on their fourth-order
cumulants. When the fourth-order cumulant of
an independent component is larger than the



threshold determined in advance, it is judged to
be non-Gaussian and independent.

Consider a data matrix X ∈ �k×m, where k and
m are the number of samples and that of variables,
respectively. All variables are mean-centered.
When r of m components {y1, y2, ..., yr} are
judged to be non-Gaussian, these r independent
components should be monitored independently.
In other words, ICA-SPC should be applied to
these r independent components. However, since
the other m − r components {yr+1, yr+2, ..., ym}
are Gaussian, these m − r variables should be
monitored by using PCA-SPC. In practice, the
ICA algorithm might not converge if more than
one component is Gaussian. Therefore, a part
of X, which is explained by {yr+1, yr+2, ..., ym},
needs to be derived without calculating these m−r
components.

From Eq. (13), the first r non-Gaussian
independent components are given as

Y r =
[
y1 y2 · · · yr

]
= XPΛBr. (14)

A part of X, which is explained by the first r
non-Gaussian independent components, can be
reconstructed from Y r or X.

Xr = Y rB
T
r Λ−1P T

= XPΛBrB
T
r Λ−1P T (15)

As a result, Xm−r, which cannot be explained by
Y r, is calculated as follows:

Xm−r = X − Xr

= X(I − PΛBrB
T
r Λ−1P T ). (16)

Since Xm−r does not include significant
non-Gaussian components, it can be monitored
successfully by using PCA-SPC.

4.2 CMSPC Procedure

The procedure of CMSPC is summarized as
follows:

(1) Acquire time-series data when a process
is operated under a normal condition.
Normalize each column (variable) of the data
matrix, i.e., adjust it to zero mean and unit
variance, if necessary.

(2) Apply ICA to the normalized data X, and
calculate independent components {yl}.

(3) Calculate the fourth-order cumulant of
independent components.

(4) Adopt independent components
{y1, y2, · · · , yr} with the fourth-order
cumulant larger than the threshold (e.g. 0.1)
as non-Gaussian independent components.

(5) The other components are regarded as
Gaussian, and those variables are projected
onto the original space through Eq. (16).

(6) Apply PCA to the reconstructed data
Xm−r, and calculate principal components
{z′1, z′2, · · · , z′m−r}.

(7) Calculate T 2 and Q statistics.
(8) Determine control limits of independent

components {y1, y2, · · · , yr} and those of T 2

and Q.
(9) Monitor {y1, y2, · · · , yr}, T 2, and Q on-line.

CMSPC includes both PCA-SPC and ICA-SPC
as its special cases. In fact, CMSPC is the same
as PCA-SPC when no independent components
are adopted in step (4), because PCA is applied
to Xm−r = X in such a case. On the other
hand, CMSPC is the same as ICA-SPC when r =
rank(X). Therefore, CMSPC provides a unified
framework for MSPC.

5. APPLICATION 1

In this section, USPC, PCA-SPC, ICA-SPC,
and the proposed CMSPC are applied to fault
detection problems of an eight-variable system:

x = sA + v (17)

A =




0.95 0.82 0.94 0.14
0.23 0.45 0.92 0.20
0.61 0.62 0.41 0.20
0.49 0.79 0.89 0.60
0.89 0.92 0.06 0.27
0.76 0.74 0.35 0.20
0.46 0.18 0.81 0.02
0.02 0.41 0.01 0.75




T

(18)

s =
[
s1 s2 s3 s4

]
(19)

where {si} are uncorrelated random signals
following uniform or normal distribution with
unit variance (σs = 1). The output x is
corrupted by measurement noise v following
normal distribution (σv = 0.1). For evaluating the
monitoring performance, mean shifts of {si} or
{xj} are investigated.

One data set, including 100,000 samples, obtained
from a normal operating condition was used to
build a PCA model, to determine a separating
matrix, and also to determine control limits. To
evaluate the monitoring performance, average run
length (ARL) is used. ARL is the average number
of points that must be plotted before a point
indicates an out-of-control condition. To calculate
ARL, 10,000 data sets were generated by changing
seeds of the random signals s and v in each case
shown in Table 1.

The control limit of each index or variable is
determined so that the number of samples outside



Table 1. ARL Comparison.

Case 1

si : uniform distribution
fault : �1

Shift USPC PCA-SPC ICA-SPC CMSPC
size x5 T 2

4 y3 y3

0 98.1 99.0 101 101
0.2 82.5 84.0 59.6 59.6
0.5 42.2 43.2 18.0 18.0
1.0 16.5 12.3 5.5 5.5

Case 2a

si : normal distribution
fault : �1

Shift USPC PCA-SPC ICA-SPC CMSPC
size x5 T 2

4 y3 T 2
4

0 96.0 101 97.3 101
0.2 91.9 96.0 91.7 96.0

1.0 33.5 36.6 37.6 36.6
2.0 8.9 8.1 10.8 8.1

Case 2b

si : normal distribution
fault : �2

Shift USPC PCA-SPC ICA-SPC CMSPC
size x5 T 2

4 y4 T 2
4

0 103 97.5 99.8 97.5
1.0 32.3 37.4 51.6 37.4
2.0 8.3 8.5 18.5 8.5
3.0 3.2 2.7 8.0 2.7

Case 3

s1, s2 : uniform distribution
s3, s4 : normal distribution
fault : �5

Shift USPC PCA-SPC ICA-SPC CMSPC
size x5 Q4 y8 Q2

0 96.8 96.1 98.9 102
0.1 79.9 55.4 54.1 48.3
0.2 50.3 21.1 20.2 14.8
0.5 12.6 2.5 2.5 1.6

the control limit is 1% of the entire samples while
the process is operated under a normal condition.
The monitored indexes for PCA-SPC are T 2

4 and
Q4. The subscript 4 means that four principal
components are retained in the PCA model. In
ICA-SPC, however, each independent component
is independently monitored. In CMSPC, the
number of independent components and that
of principal components retained in the PCA
model depend on the cases. Four independent
components and no principal components are
retained in case 1, no independent components
and four principal components in case 2, and
two independent components and two principal
components in case 3.

Fault detection results are summarized in Table 1.
ARL decreases as the shift size increases,
irrespective of the type of monitoring method.
In case 1, the results have clearly shown the
advantage of ICA-SPC and CMSPC over both
USPC and PCA-SPC, and the ARL of ICA-SPC
is the same as that of CMSPC because all
original variables follow uniform distribution. On
the other hand, in case 2, PCA-SPC and CMSPC
are superior to ICA-SPC, and they achieve

the same performance because all variables
follow normal distribution. The difference between
case 2a and 2b is the variable where the
mean shift occurs. In case 2a, the monitoring
performance of all four SPC methods is similar,
and the advantage of using PCA-SPC over
ICA-SPC is not clear. In case 2b, however,
PCA-SPC outperforms ICA-SPC. Therefore, it
is concluded that PCA-SPC functions better
than or as well as ICA-SPC when all measured
variables are Gaussian. Although PCA-SPC is
better than ICA-SPC in case 2, these two
methods do not outperform USPC. Even when
measured variables are mutually correlated,
USPC sometimes outperforms MSPC. In case 2b,
USPC gives better performance than the others
because a52, which is the coefficient from s2 to x5

in A, is larger than the others in the same row
and thus the mean shift can be easily detected by
monitoring x5.

In case 3, two of four original variables follow
uniform distribution and the other two variables
follow normal distribution. In this case, CMSPC
can detect the mean shift of x5 earlier than
the other methods. This result clearly shows the
advantage of CMSPC over other SPC methods.

ICA-SPC functions well for generating and
monitoring non-Gaussian independent variables,
while PCA-SPC is suitable for monitoring
Gaussian variables. Therefore, the answer to the
question “Which MSPC method should be applied
to our process?” depends on the process. However,
the proposed CMSPC combines the advantages of
both PCA-SPC and ICA-SPC, and thus it enables
us to select the best solution automatically.

6. APPLICATION 2

In this section, four SPC methods are applied
to monitoring problems of a CSTR process
(Johannesmeyer and Seborg, 1999). The objective
of this section is to show the usefulness of CMSPC
with its application to a more realistic example.

The CSTR process used for dynamic simulations
is shown in Fig. 1. The reactor is equipped with a
cooling jacket. The process has two manipulated
variables (valves) and five process measurements.
A total of nine variables used for monitoring
are listed in Table 2. Process data are generated
from a normal operating condition and eight
abnormal operating conditions listed in Table 3.
All variables are measured every five seconds.

The control limit of each index or variable is
determined in the same way as the previous
section. Five principal components are retained
in the PCA model for PCA-SPC. The number
of non-Gaussian independent components is five,



Fig. 1. CSTR with feedback control.

Table 2. Process variables.

x1 reactor temperature
x2 reactor level
x3 reactor outlet flow rate
x4 coolant flow rate
x5 reactor feed flow rate
x6 MV of level controller
x7 MV of outlet flow controller
x8 MV of temperature controller
x9 MV of coolant flow controller

Table 3. Disturbances and faults.

Case Operation Mode

N normal operation

F1 dead coolant flow measurement
F2 bias in reactor temp. measurement
F3 coolant valve stiction
F4 feed flow rate - step
F5 feed concentration - ramp
F6 coolant feed temperature - ramp
F7 upstream pressure in coolant line - step
F8 downstream pressure in outlet line - step

Table 4. ARL Comparison (CSTR).

Case USPC PCA-SPC ICA-SPC CMSPC

N 94.7 115 96.6 95.4
F1 1.0 1.4 1.1 1.1
F2 7.9 8.7 8.8 8.8
F3 7.0 2.6 1.4 1.4
F4 49.5 23.1 1.0 1.0
F5 52.4 60.1 57.6 57.6
F6 60.0 61.8 55.8 55.8
F7 79.3 86.2 2.5 2.5
F8 61.7 6.6 1.0 1.0

and the other four components are monitored
together by using T 2 in CMSPC. The results
are summarized in Table 4. In this application,
there is little or no difference of ARLs among
four monitoring methods except F4, F7, and
F8. In those three cases, ICA-SPC and CMSPC
can detect the faults considerably earlier than
USPC and PCA-SPC. In addition, ICA-SPC and
CMSPC achieve the same performance in almost
all cases because the faults tend to be detected
at non-Gaussian independent components. The
results clearly show the effectiveness of CMSPC
as well as ICA-SPC.

7. CONCLUSIONS

A new advanced MSPC method, referred to as
combined MSPC (CMSPC), was developed by
integrating conventional PCA-SPC and recently
proposed ICA-SPC. CMSPC includes both
PCA-SPC and ICA-SPC as its special cases,
and thus it provides a unified framework for
MSPC. The application results show that CMSPC
functions very well and it combines the advantages
of both PCA-SPC and ICA-SPC.
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