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Abstract: In this paper, a new local measure of linear controller performance is introduced

for linear controllers operating on a nonlinear plant. The measure, called the performance

sensitivity measure, quantifies the departures from optimality of a locally linear quadratic

regulators. The measure applies to nonlinear systems that admit a controllable and

observable linearization. It is shown that the measure can be related to standard minimum

variance benchmarking techniques and can therefore be assessed using closed-loop

process data in an operating region of interest.
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1. INTRODUCTION

The control of linear systems has been extensively studied

and the literature provides a very complete and well–

characterized collection of tools for their analysis, mon-

itoring, optimization, and control. As a result, process

control engineers focus on linear system representations

to solve a wide range of control problems. Unfortunately,

the reality is that few processes are linear, and therefore

the effectiveness of using linear control strategies can be

questioned. Nonlinear control strategies have advanced

greatly, and are becoming more widely accepted; how-

ever, their implementation is impeded by a considerable

degree of mathematical sophistication or computational
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requirement. As a result local linear approximations of

the nonlinear system are often used to develop a control

law. In order to test the effectiveness of this approach,

it would desirable to develop an index that measures the

effect of process nonlinearity on linear controller per-

formance. From a design point of view, such a measure

would indicate whether sufficient benefit is available to

warrant investment in a nonlinear controller.

Many authors (e.g., (Desoer and Wang 1981), (Allgöwer

1995a), (Allgöwer 1995b), (Stack and Doyle III 1997),

(Haber 1985), (Ogunnaike et al. 1993), (Guay et al.

1995)) have considered the assessment of process non-

linearity as means of justifying the need for nonlinear

control techniques. However such measures provide ad-

mittedly open–loop assessment of nonlinearity that are

difficult to relate to controller performance. The objec-



tive of this paper is to introduce a new local measure of

linear controller performance for linear controllers oper-

ating on a nonlinear plant. The measure, called the per-

formance sensitivity measure, quantifies the departures

from optimality of a locally linear quadratic regulators.

The measure applies to nonlinear systems that admit a

controllable and observable linearization. It is shown that

the measure can be related to standard minimum variance

benchmarking techniques and can therefore be assessed

using closed-loop process data in an operating region of

interest. The paper is structured as follows. The proposed

performance sensitivity measure is presented in Section

2. In Section 3, we draw a parallel between the proposed

measure and standard minimum variance benchmarking

techniques. This is followed by brief conclusions in Sec-

tion 6.

2. PERFORMANCE SENSITIVITY MEASURE

In this section, an alternative control–relevant nonlinear-

ity measure, the “performance sensitivity measure”, is

introduced. The performance sensitivity measure (PSM)

attempts to characterize the extent of performance degra-

dation expected when a nonlinear system is regulated by

a linear quadratic regulator (LQR).

Consider the nonlinear time-invariant system,

ẋ = f(x, u(t)) (1)

y = h(x(t))

u(t) ∈ R
p is the available control input, y(t) ∈ R

m is

the observed process output, and x(t) ∈ R
n represents

the internal states of the system. The linearization of the

system eq.(1) about the origin is given by the linear time-

invariant system

ẋ = Ax(t) + Bu(t)

y(t) = Cx(t)
(2)

where A, B, and C are system matrices of appropriate

dimension. It is assumed that the triple (A,B,C) is both

observable and controllable. By letting C be the identity

matrix, full state information is available for use in the

control strategy.

For the linear system eq.(2), the linear quadratic regulator

given by

u(t) =−R−1BT Px(t) (3)

minimizes, for every initial condition x(0) = x0, the

quadratic objective function,

η =

∫

∞

0

(

xT (t)Qx(t) + uT (t)Ru(t)
)

dt (4)

where Q ∈ R
nxn and R ∈ R

pxp are problem–specific,

non–negative definite state– and input–penalty matrices,

and where P is the positive–definite, symmetric solution

matrix of the algebraic Riccati equation

AT P + PA − PBR−1BT P + CT QC = 0 (5)

The cost to regulate about the origin when the system

starts at any point at any time t can be approximated by

the value function,

J∗ = xT (t)Px(t) (6)

The level sets of this value function describe ellipses

in the state space (ellipsoids in systems with more than

two states) from which the system can be moved to the

origin for a given cost. For linear systems, the Riccati

equation solution matrix is constant throughout the entire

state space, and therefore the size and orientation of these

level sets is constant. If one implements the LQR to

control the nominal nonlinear plant eq.(1), the degree

to which the intended linear controller performance is

realized depends on the extent of nonlinearity of the

process. One way to assess this change in performance

due to nonlinearity is to add a perturbation term, denoted

ν(t), to the control law,

u∗(t) =−R−1BT Px(t) + ν(t) (7)

in the closed-loop system:

dx

dt
= f (x(t), u∗(x(t), ν(t))) (8)

The perturbation may be considered as a means of in-

corporating knowledge of the process nonlinearities in

the control law to account for setpoint or load changes.

To ascertain the effect of ν(t) on the performance of the

closed–loop system, (6) is differentiated with respect to

ν(t). When the optimal linear controller with perturba-

tion, (7) is applied to the linear system, (2), the resultant

closed–loop model is
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ẋ =
(

A − BR−1BT P
)

x(t) + Bν(t)

y(t) = Cx(t)
(9)

The system (9) is a linear system where ν(t) is an input

which is known to enter the solution x(t) linearly:

x(t) = x(t0)e
(A−BR−1BT P )(t−t0)

+

∫ t

t0

(

e(A−BR−1BT P )(t−τ)Bν(τ)
)

dτ (10)

If we consider only constant perturbation, ν(t) = ν,

and we assume that the system starts from the origin,

x(t0) = 0, J∗ can be evaluated as

J∗ = νT P̃ ν

where P̃ is formed from the coefficient matrix of ν(t)

in the integrand of (10) and the Riccati equation solution

matrix P . J∗ may be represented about ν = 0 as a Taylor

series polynomial,

J∗(ν)|0 = J∗(0) +
∂J∗(ν)

∂ν

∣

∣

∣

∣

ν=0

ν +
1

2!

∂2J∗(ν)

∂ν2

∣

∣

∣

∣

ν=0

ν2

+
1

3!

∂3J∗(ν)

∂ν3

∣

∣

∣

∣

ν=0

ν3 + O(4) (11)

where O(4) is a fourth–order truncation error term. Since

J∗ is a quadratic function of ν for linear systems, the

third–order term, and the truncation error, is exactly zero.

Thus, it is possible to assess the effect of nonlinearity on

local controller performance by assessing the magnitude

of the third-order term in eq.(11). Considering only the

magnitude of the third derivative of the value function

with respect to the input perturbation is wrought with

scaling and dimensionality issues, as
3J∗

ν3 has units from

η and the inputs. In order to assess the magnitude of the

third order term, we propose the following dimension-

less quantity, called the performance sensitivity measure

(PSM):

PSM =
∂3J∗

∂ν3

‖∂2J∗

∂ν2 ‖
3

2

√

J∗

min (12)

where J∗

min the minimal (quadratic) cost attainable in the

particular region of interest. The PSM considers how the

cost J∗ changes as the process moves along the closed

loop locus normalized by the largest cost contour com-

pletely contained within the operating region chosen. A

small value of the PSM indicates that the nominal linear

controller performance is not sensitive to the effect of

the process nonlinearity. In that case, the linear controller

provides uniform performance over the region of interest.

If the PSM is large then the nonlinearity has a drastic

impact of the performance of the linear controller. In

general, a PSM value of 1.5 is deemed important as it

leads to an average departure of 30% from the nominal

linear controller performance.

2.1 PSM of a Nonlinear System

For a nonlinear system, ν(t) does not enter the solution

x(t) linearly, even for control–affine systems, and there-

fore J∗ is not a quadratic value function. Consequently,

the Taylor series expansion of J∗ given in (11) has a

nontrivial third–order coefficient.

For the case where ν(t) is a constant, the higher order

derivatives of J∗(ν) are computed as follows. The states

are assumed to be scaled to nominal operating regions to

permit the identity matrix to be employed for Q in the

objective function, and R chosen according to the desired

control attenuation level. As described above, the optimal

linear controller may be found, and the perturbed input,

(7), employed. The approximation of the value function

is then

J∗ =
(

x1 · · · xn

)









P1,1 · · · P1,n

...
. . .

...

Pn,1 · · · Pn,n

















x1

...

xn









=

n
∑

j=1

n
∑

i=1

xiPi,jxj (13)

where xi, 1 ≤ i ≤ n, represents the solution of the

perturbed closed-loop system under constant input ν.

Differentiating J∗ with respect to ν, we obtain

∂J∗

∂νl

=

n
∑

i,j=1

(

∂xi

∂νl

Pi,jxj + xiPi,j

∂xj

∂νl

)

= 2
n

∑

i,j=1

Pi,j

∂xi

∂νl

xj ,

∂2J∗

∂νl∂νm

= 2
n

∑

i,j=1

(

∂2xi

∂νl∂νm

Pi,jxj +
∂xi

∂νl

Pi,j

∂xj

∂νm

)

,

and
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∂3J∗

∂νl∂νm∂νk

= 2

n
∑

i,j=1

Pij

(

∂2xi

∂νl∂νk

∂xj

∂νm

+
∂xi

∂νl

∂2xj

∂νm∂νk

+
∂3xj

∂νk∂νl∂νm

xi +
∂2xj

∂νl∂νm

∂xi

∂νk

)

All the derivatives of J∗ are evaluated at x = 0 and

ν = 0 to obtain a local measure of sensitivity that applies

to the closed-loop system operating at its setpoint. The

computation of the derivatives of J∗ requires the calcula-

tion of the 1st, 2nd and 3rd order sensitivity coefficients

of x(t) with respect to ν. The sensitivity coefficients are

computed by the integration of the sensitivity equations.

Due to space restrictions, we omit to list the full set of

sensitivities. As an illustration, we consider the derivation

of the first order sensitivity equations. Differentiating (1)

with respect to ν and inverting the order of differentiation,

we obtain

d

dt

∂x

∂ν
=

∂f

∂x

∂x

∂ν
+

∂f

∂ν
(14)

Eq.(14) can be integrated along with the perturbed closed-

loop system to obtain the first order sensitivity coeffi-

cients. In the current development, we consider the trivial

solution for x = 0 at ν = 0. The same applies to the

higher order sensitivity coefficients. Note that the solution

of the sensitivity equations yields a time-varying PSM

value that we could use to assess the variations in per-

formance as a function of time. Since we focus on the

infinite-horizon optimal control problem, it is sufficient

to evaluate the steady-state value of the derivatives of

J∗ with respect to ν at ν = 0 . The resulting steady-

state PSM provides an estimate of the sensitivity of the

infinite horizon cost to small perturbations in the control

law. By the local stability of the nominal system under

LQR control, the steady-state values of the sensitivity

coefficients can be shown to exist and to be finite.

An important consideration is the effect of state scaling

on the values of the PSM. Process states with signifi-

cantly different nominal values affects the PSM through

the optimal linear controller gain matrix. It is therefore

necessary to scale the states of the system appropriately.

Knowledge of the typical range of operation can enable

standardization, so that each of the states has zero nomi-

nal value and varies within the range [−1, 1]:

zi(t) =
xi(t) − x̄i(t)

xmax
i − xmin

i

(15)

In general, such scaling is used to ensure consistency of

the analysis over a region of particular interest.

In addition, it is important to note that the current devel-

opment is not restricted to the LQR. The analysis applies

equally to the analysis of sensitivity of an LQG controller

or any other linear controller design with quadratic cost

performance.

2.2 Example: Chemostat Bioreactor

Consider the model of a chemostat bioreactor (Guay et

al. 1995):

dx1

dt
=

µmaxx1x2

1 + x2 + Kix2
2

− kdx1 − u1x1

(16)
dx2

dt
=−

µmaxx1x2

1 + x2 + Kix2
2

+ (S0 − x2) u1

where x1 and x2 are the biomass and substrate concentra-

tions, respectively, in g/L, and u1 is the dilution rate, in

min−1. The model parameters µmax = 0.5 min−1, S0 =

0.3 g/L, kd = 0.05 min−1, and Ki = 10 L/g repre-

sent the specific growth rate, inlet substrate concentration,

death rate and substrate inhibition constant, respectively.

The nonlinearity measure proposed in (Guay et al. 1995)

suggests the process would be the most difficult to control

with a linear controller near (x1, x2) = (0.02, 0.2).

Consider five points of steady state operation, labelled in

Figure 1, chosen by uniformly selecting constant input

values in the interval [0.002, 0.018], as shown in Table

2.2.

Point Label unom x1 x2

a 0.002 0.00622 0.13826

b 0.006 0.01528 0.15736

c 0.010 0.01982 0.18107

d 0.014 0.01881 0.21403

e 0.018 0.00327 0.28765

Table 2.1. Selected operating points for

chemostat bioreactor.

Choosing point “c”, the states are scaled about the

nominal steady state operating point (xnom
1 , xnom

2 ) =

(0.01982, 0.18107), with the ranges chosen as x̃1 ∈

[xnom
1 ± 0.0025], and x̃2 ∈ [xnom

2 ± 0.025]. We express
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0.24

0.26
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x1

Fig. 1. The steady state locus of the chemostat bioreac-

tor. Points represent the steady states of the system

when the input is chosen uniformly in the interval

[0.002, 0.018].

the system equations in scaled coordinates and we choose

the quadratic performance metric

η =

∫

∞

t=0

(

x̃T x̃ + (50u1)
2
)

dt

Linearizing the system about the origin, corresponding

to (2), and solving the corresponding algebraic Riccati

equation we obtain the linear quadratic regulator

u1(t) = 0.010 + 0.0069160x̃1(t) − 0.024268x̃2(t) + ν(t)(17)

For this system, the first and second partial derivatives are

found to be

∂x̃1

∂ν
= 29.300

∂x̃2

∂ν
= 38.001

∂2x̃1

∂ν2
= −6855.5

∂2x̃2

∂ν2
= −1304.5

If we pick the operating region to be
{

x̃2
1 + x̃2

2 ≤ 1
}

then the value of J∗

min is simply equal to the minimum

eigenvalue of the Riccati equation solution matrix, P . The

PSM at point “c” is PSM = −0.94005.

To provide an indication of whether the PSM value for

point “c” is significant, consider the evaluation of the

PSM for the other four points previously identified: The

relative PSM values are consistent with results that should

be expected from the geometry of the steady state locus

Point Label unom x1 x2 PSA

a 0.002 0.00622 0.13826 -0.037179

b 0.006 0.01528 0.15736 -0.13989

c 0.010 0.01982 0.18107 -0.94005

d 0.014 0.01881 0.21403 -0.92211

e 0.018 0.00327 0.28765 0.016861

Table 2.2. Computed PSM values for the five

selected points of the chemostat bioreactor.

(see Figure 1). From the actual PSM values computed

for the chemostat bioreactor, it is expected that a linear

controller could be used without significant deviation in

performance about any of the five operating points.

3. EMPIRICAL MEASURES OF CONTROLLER

PERFORMANCE

Much of the work in the assessment of process control

schemes within the last decade can be traced back to

(Harris 1989). Minimum variance benchmarking, as pro-

posed in (Harris 1989), is a widely accepted for the as-

sessment of performance in control systems. In this study,

we focus on Harris’s controller performance measure for

single–input, single–output processes. The reader is re-

ferred to (Harris 1989) for more details on the evaluation

of the performance measure.

Since the PSM indicates the sensitivity of quadratic sys-

tem performance of a linear controller, it is reasonable to

assume that a large PSM value would also indicate sig-

nificant variations in a minimum variance benchmarking

measure over a particular region of interest. Thus if we

design a linear control based on a local linear approx-

imation of the process, the large PSM would indicate

that the implementation of the linear controller at other

setpoints in the region of interest would result in signif-

icant deviations in controller performance measures. In

order to evaluate this premise, we consider the chemostat

bioreactor model operating at point ”c” in closed-loop

with the LQR control eq.(17) (with ν(t) = 0). In order to

proceed with the assessment of controller performance,

we consider the biomass concentration as the measured

output. Furthermore, we corrupt the measurements with

uncorrelated white noise, a(t) passed through the discrete

transfer function
1

1 + 0.4z−1
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The noise power is set to 0.001, chosen to ensure that the

closed–loop deviation from steady state is less than one

in magnitude, meaning the process remains in the region

suggested by the scaling of Section 2.2. The process

was simulated for 400 minutes, with a fixed step–size of

0.1 minutes. For this process, Harris’ minimum variance

benchmark η(0) was 0.15 for the regulation of the system

at point ”c”. This value indicates that only 15% of current

output variance could be eliminated through use of a

minimum variance controller. Thus the linear control

operates well in this region.

The strategy is to implement the linear controller devel-

oped under the conditions at point ”c” at different set-

points. To move the process about the operating region

along the closed–loop locus, a constant perturbation, ν(t)

is input to the system which is then allowed to reach the

new steady state. An equivalent way to handle this prob-

lem would be to assign setpoints along the steady-state

locus. By evaluating the controller performance measure

about each setpoint we obtain an estimate of the sen-

sitivity linear controller performance to the location of

the setpoint. It is clear that if the plant is linear then the

performance measure remains essentially unchanged over

the region of interest. Therefore, this relatively simple

exercise provides a potential substitute to the PSM for

operating control systems. It remains to show that the

interpretation of the PSM provides a good indication of

the sensitivity of linear control performance.

Table 3 shows the perturbed steady state values, and the

minimum variance performance measure found at each of

the points. Although the closed loop gains vary through-

Point Label ν(t) x̃1 x̃2 η(0)

c+++ 0.008 0.072274 0.27352 0.1629

c++ 0.004 0.070454 0.14320 0.1630

c+ 0.002 0.045610 0.073582 0.1631

c 0 0 0 0.1631

c- -0.002 -0.074435 -0.078981 0.1631

c– -0.004 -0.18670 -0.16527 0.1632

c— -0.008 -0.63025 -0.38039 0.1618

Table 3.3. Perturbed operating points for

chemostat bioreactor about point “c”.

out the region considered, there is very little change in

performance. In fact, the variability is insignificant given

the computations required to compute η(0). The oper-

ating region about point “c” is unsusceptible to perfor-

mance degradation from closed loop nonlinearity and

therefore a linear, finite gain controller performs well

throughout.

4. CONCLUSIONS

The performance sensitivity array has been introduced

as a closed–loop measure that attempts to quantify the

effect of nonlinearity on the performance of a nonlinear

system subject to a linear quadratic regulator. The results

demonstrate that the PSM can be used to predict the

linear controller performance on nonlinear systems. Its

impact can be verified by considering a simple minimum

variance benchmarking approach.
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