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Abstract: Accurate estimation of state variables and model parameters is essential for
efficient process operation. The Bayesian formulation of the estimation problem suggests
a general solution for nonlinear systems. However, a practically feasible implementation
of the solution has not been available until recently. Most existing methods have had
to rely on simplifying assumptions to obtain an approximate solution. For example,
extended Kalman filtering estimates the system state by linearizing the nonlinear model
and assuming Gaussian distributions for all random variables. Moving horizon estimation
assumes Gaussian or other fixed-shape distributions to formulate a constrained least-
squares optimization problem. In this paper, Bayesian estimation is implemented by
sequential Monte Carlo sampling. This approach can represent non-Gaussian distributions
accurately and efficiently with minimum assumptions and computes moments by Monte
Carlo integration. The features of the Monte Carlo approach are demonstrated by
application to a state estimation case study of a CSTR process. The proposed method
exhibits 78% improvement in estimation error and takes 95% less time than moving
horizon estimation to solve the problem.
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1. INTRODUCTION

Efficient operation of chemical and manufacturing
processes relies on cleaning or rectification of mea-
sured data and estimation of unknown quantities. Data
rectification and estimation form the foundation for
process operation tasks such as process control, fault
detection and diagnosis, real-time estimation, process
monitoring, and process scale-up. Due to the impor-
tance of these tasks, many methods have been devel-
oped under the names of data rectification, data recon-
ciliation, and state and parameter estimation (Kramer
and Mah, 1994; Robertson et al., 1996).

In general, the goal of estimation may be expressed as
follows. Given measurements y1:k = {y1,y2, . . . ,yk},
process models, and the distribution of the initial con-
dition p(x0), determine the current state, xk. Process
models may be expressed as follows,

xk = fk−1(xk−1,ωk−1) (1)

yk = hk(xk,νk) (2)

where xk ∈ ℜnx is the state vector and fk : ℜnx ×
ℜnω → ℜnx is the system equation. Measurements,
yk ∈ ℜny , are related to the state vector through the
measurement equation, hk : ℜnx ×ℜnν → ℜny .
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Fig. 1. Evolution of the conditional distribution of
concentration in a CSTR.

Significant efforts have been focused on methods for
rectification and estimation in nonlinear dynamic sys-
tems, with and without constraints (Jang et al., 1986;
Tjoa and Biegler, 1991; Liebman et al., 1992; Robert-
son et al., 1996; Rao and Rawlings, 2002). However,
all the existing methods rely on simplifying assump-
tions about the nature of the model or the probability
distributions of the underlying variables to obtain a
tractable optimization problem. A popular assumption
is that the distribution of the variables to be esti-
mated is Gaussian or of a fixed, time-invariant shape.
The crudeness of this assumption is depicted in Fig-
ure 1, which shows the conditional distribution over
time for a popular continuously stirred tank reactor
(CSTR) case study (Jang et al., 1986; Liebman et
al., 1992; Robertson et al., 1996). The multi-modal,
skewed and time-varying nature of these distributions
indicates that approximating them by Gaussian or
other fixed-shape distributions can be grossly incor-
rect. The approximations may also fail in the presence
of constraints, since constraints may require the prob-
ability of some variables to be zero in regions where
the constraint is violated (Robertson et al., 1996; Rao
and Rawlings, 2000; Chen et al., 2002; Robertson and
Lee, 2002). Nevertheless, these assumptions are pop-
ular since they permit existing methods to solve a con-
venient problem instead of the actual estimation prob-
lem. These shortcomings of existing methods and the
challenges in obtaining the Bayesian solution are well-
known and have been widely recognized (Robertson
et al., 1996; Rao and Rawlings, 2000; Robertson and
Lee, 2002).

The Bayesian formulation provides a solution to the
actual estimation problem without necessitating in-
valid assumptions. However, until recently, the im-
plementation of the Bayesian solution was considered
impractical due to its heavy computational demand.
Recently, efficient algorithms based on Monte Carlo
sampling along with increasing computational ability
are making Bayesian estimation feasible for real prob-
lems (Malakoff, 1999).

This paper introduces a computationally efficient ap-
proach for data rectification of nonlinear dynamic sys-

tems based on a statistically rigorous Bayesian formu-
lation. This approach relies on sequential Monte Carlo
(SMC) sampling to maximize the use of data and
knowledge to obtain the Bayesian solution without
relying on assumptions about the nature of the errors,
model and underlying variables. The main contribu-
tions of this paper are to introduce SMC methods into
process engineering, and compare their performance
with currently popular methods. This work also indi-
cates that for many nonlinear dynamic systems, Gaus-
sian approximations are not necessarily more compu-
tationally efficient, and may be less accurate.

In the following sections, a Bayesian view of existing
methods is first discussed. After that, a brief intro-
duction on Monte Carlo sampling is provided. Then
the detail of the implementation of the proposed ap-
proach is provided and discussed. Performance of the
proposed approach is compared with that of existing
approaches in the case study section.

2. BAYESIAN VIEW OF EXISTING METHODS

2.1 Background

Bayesian estimation maximizes the use of all available
information and can handle all types of errors, mod-
els and constraints. In addition, Bayesian estimation
finds the distribution of states, which can provide un-
certainty information. For dynamic systems, recursive
Bayesian estimation may be represented as follows
(Ho and Lee, 1964),

p(xk|y1:k) =
p(yk|xk) p(xk|y1:k−1)

p(yk|y1:k−1)
, (3)

where the posterior distribution, p(xk|y1:k), combines
information from current measurement via the like-
lihood function p(yk|xk), and past information using
the prior distribution p(xk|y1:k−1). The denominator
is a normalizing constant. Each term in Equation (3)
may be obtained as follows. For the second term in
the numerator,

p(xk|y1:k−1) =�
p(xk|xk−1) p(xk−1|y1:k−1) dxk−1 (4)

where p(xk−1|y1:k−1) is the posterior of time step
k − 1. p(xk|xk−1) may be further manipulated as the
following equation.

p(xk|xk−1) =�
δ(xk − fk−1(xk−1,ωk−1)) p(ωk−1) dωk−1(5)

Similarly, p(yk|xk) in Equation (3) may be found as
follows,

p(yk|xk) =

�
δ(yk −hk(xk,νk)) p(νk) dνk (6)



In general, there is no closed-form solution for Equa-
tion (3) to Equation (6) except for linear Gaussian
systems. Even when the functionality of the distribu-
tions is known, the calculation of their moments needs
multi-dimensional integrations, which may be compu-
tationally expensive. Therefore, it is not surprising to
see that methods based on simplification have been
popular in the past. Many existing approaches may
be interpreted as approximate Bayesian estimation.
These methods tend to simplify the real problem so
that a convenient solution may be found. In the fol-
lowing section, an overview of existing approaches for
estimation from the view point of Bayesian estimation
is provided. These methods may be categorized by
how posterior distributions are propagated over time
and their moments are computed. In the following
sections, two main categories are discussed, Gaussian
approximation and direct integration.

2.2 Gaussian approximation

Gaussian distributions are convenient since only two
parameters, mean and variance, are required to de-
scribe a whole distribution. Although, the assumption
of Gaussian prior is suitable in linear systems, it can be
easily violated in nonlinear dynamic systems (Chen et
al., 2003). The assumption of Gaussian prior worsens
when process constraints are enforced and results in
truncated distributions (Chen et al., 2002; Robertson
and Lee, 2002). Even though Gaussian approxima-
tion may not be a valid assumption for nonlinear dy-
namic systems, approaches based on this assumption
are popular for its simplicity. Two variations of Gaus-
sian approximation namely, extended Kalman filter-
ing (EKF) and moving-horizon estimation (MHE), are
discussed here.

EKF is an extension of Kalman filtering to nonlinear
dynamic systems. Kalman filtering is the optimal esti-
mator for linear dynamic systems with Gaussian prior
and additive independent and identically distributed
(iid) Gaussian noise without constraints. The filter is
optimal with respect to minimum variance criterion. In
addition, Kalman filtering has a closed-form solution
that makes estimation extremely efficient. The natural
extension of Kalman filtering into nonlinear dynamic
systems is to linearize nonlinear process models so
that the same solution strategy for Kalman filtering
can be applied. In doing so, EKF inherits all assump-
tions made by Kalman filtering, including Gaussian
prior and noise. EKF is favored for its simplicity and
efficiency, but the filter may diverge from the true state
and does not necessarily satisfy process constraints.
Further discussion of Kalman filtering and EKF can
be found in Jazwinski (1970) and Maybeck (1979).

Efforts have been made to avoid divergence of EKF.
One suggestion is to retain higher order terms of Tay-
lor’s expansion so that more accurate local lineariza-
tion may be achieved. Divergence due to poor approx-

imation may be reduced, but new complexity arises in
determining the “right” highest term to keep, which
may not be a trivial task.

MHE also relies on the assumption of Gaussian prior
and noise so that a least-squares estimation (LSE) may
be found (Robertson et al., 1996). Unlike EKF, MHE
can enforce constraints which is equivalent to using
truncated Gaussian prior (Robertson and Lee, 2002).
MHE also needs selection of a proper window size to
compromise between the accuracy of batch-processed
least-squares estimation and the efficiency of solv-
ing a smaller problem. Furthermore, MHE relies on
constrained nonlinear programming, which is usually
computationally expensive and it becomes difficult to
asses its statistical properties. Even in cases where
Gaussian approximation may be an acceptable as-
sumption, the proposed Bayesian approach usually
has better accuracy and tends to require less compu-
tation than approaches like MHE.

2.3 Direct Numerical Integration

Methods in this category represent the distribution of
interest over a grid of points in state space. Once a
suitable grid is identified, numerical integration may
be used to compute the moments of the distribution.
This approach can provide the exact solution if the
state space is discrete and finite. In most cases, the
number of states is not finite, and selecting the grid
can be quite challenging since a fine grid is compu-
tationally expensive, while a coarse grid may be in-
accurate. Many variations have been developed based
on fixed or adaptive grids. Approaches such as cell-
to-cell mapping and Hidden Markov Models may be
considered to be special cases of this approach. While
this approach has become more feasible with advances
in computing, it is still too expensive for solving mul-
tidimensional problems.

3. MONTE CARLO SAMPLING

Monte Carlo sampling based approaches use samples
to approximate a distribution as,

p(x) ≈
N

∑
i=1

q(i) δ(x− x(i)) (7)

where x(i) is the i-th sample that represents the dis-
tribution. The coefficient, q(i), is the probability mass
associated with each sample. q(i) equals 1/N for x(i)
randomly drawn from p(x). By the law of large num-
bers, as the number of samples goes to infinity, the
approximation converges to the exact distribution.

Integration based on Monte Carlo sampling may be
expressed as,



E[φ(x)] =
�

φ(x) p(x)dx

≈
1
N

N

∑
i=1

φ(x(i)) (8)

where x(i) again is the i-th sample drawn from the
distribution p(x).

Estimation based on Equation (8) relies on samples
drawn from the known distribution, p(x). In real prob-
lems, p(x) may not be readily available for sampling,
but its value can be evaluated for a given sample of
x(i). This leads to the use of importance sampling.

3.1 Importance Sampling

Importance sampling relaxes the requirement of gen-
erating samples from the true distribution for estimat-
ing Equation (8). Instead, it relies on drawing samples
from a convenient distribution, π(x), called the impor-
tance function. Equation (8) may be reformulated as,

E[φ(x)] =
�

φ(x) p(x) dx

=

� φ(x) p(x)
π(x)

π(x) dx

≈
1
N

N

∑
i=1

q(i) (9)

where q(i) = φ(x(i)) p(x(i))
π(x(i)) is the weight function. It

should be noted here that x(i) are samples drawn
from π(x) instead of p(x). Convergence is almost
guaranteed under minimal assumptions, such as, the
support of π(x), contains the support of p(x) (Geweke,
1989).

For dynamic systems, Monte Carlo sampling tech-
niques can be implemented recursively when new
measurements arrive, and is termed sequential Monte
Carlo sampling. The following section describes a
Bayesian estimation approach based on sequential
Monte Carlo sampling.

4. SEQUENTIAL MONTE CARLO SAMPLING
FOR BAYESIAN ESTIMATION

The goal of Bayesian estimation is to obtain the pos-
terior accurately and efficiently. The algorithm for re-
cursive Bayesian estimation may be visualized as in
Figure 2. Information in previous measurements up to
time k − 1 is captured by the posterior distribution,
p(xk−1|y1:k−1). Prediction of distribution of the cur-
rent state is implemented by utilizing Equations (4)
and (5). Information in current measurement is repre-
sented as the likelihood function based on Equation
(6). The posterior can then be found by combining
previous and current information by Equation (3).

Measurement
Equation

Measurement
Equation

kP(x  |y    )1:k k+1 1:kP(x     |y     ) k+1 1:k+1P(x     |y        )

k+1 k+1P(y     |x     )

yk+1

kP(x  |y       )1:k−1

kP(y  |x  )k

yk

. . .

Time = k+1

. . .State EquationState Equation

k−1 1:k−1P(x     |y       )

Time = k

. . .

Fig. 2. Algorithm of recursive Bayesian estimation.

The application of sequential Monte Carlo sampling
may be described as finding the appropriate weight
for each sample so that posterior distribution may
be approximated by the samples as in Equation (7).
The algorithm may be represented in pseudo-code as
follows (Arulampalam et al., 2002):

• FOR times k = 1,2,3, . . .
· FOR samples i = 1,2,3, . . . ,N

- Draw sample, xk(i) from an impor-
tance function, π(xk(i)|xk−1(i),yk)

- Assign a weight to xk(i), q∗k(i)
· END FOR
· Normalize q∗k(i) to find qk(i)

• END FOR

where

q∗k(i) = qk−1(i)
p(yk|xk(i)) p(xk(i)|xk−1(i))

π(xk(i)|xk−1(i),yk)
(10)

can be found based on Equations (3) to (6).

A convenient choice of importance function is to use
samples of prior as the importance function (Gordon
et al., 1993),

π(xk(i)|xk−1(i),yk) = p(xk(i)|xk−1(i)) (11)

This choice simplifies Equation (10) to

q∗k(i) = qk−1(i) p(yk|xk(i)) (12)

More sophisticated choice of importance functions is
expected to improve the robustness of SMC (Doucet
et al., 2000; Cheng and Druzdzel, 2000). In the next
section, one practical issue in applying the proposed
approach to estimation problem, known as degener-
acy, is discussed.

4.1 Degeneracy

Degeneracy is a phenomenon where the weights of
most samples become insignificant after a few time
steps. Therefore, computation may be wasted on sam-
ples with little or no importance to the distribution.
In addition, since estimation is mainly determined by
a few samples, approximation of distributions may
result in spurious spikes.

Degeneracy may be reduced by choosing impor-
tance functions that minimize the variance of sample
weights. π(xk(i)|xk−1(i),yk), has been suggested as
one such importance function (Doucet et al., 2000).



Cheng and Druzdzel (2000) have also suggested an
adaptive algorithm for finding importance functions,
which is more robust when unlikely measurements
occur. This approach to updating importance functions
may help in reducing degeneracy since it tends to
become severe when the measurement and prediction
do not match each other. Markov chain Monte Carlo
(MCMC) sampling which may be interpreted as itera-
tive process of finding importance functions may also
reduce degeneracy (Andrieu et al., 2003).

Degeneracy can also be reduced by resampling. Re-
sampling involves drawing samples from the weighted
sample pool according to samples’ weights. Samples
with insignificant weights are less likely to be resam-
pled. Further discussion of resampling can be found in
Chen et al. (2003).

5. CASE STUDY

A typical chemical engineering problem, an adia-
batic CSTR, is studied. Governing equations for this
CSTR case study are provided as follows (Jang et
al., 1986; Liebman et al., 1992; Henson and Se-
borg, 1997; Robertson and Lee, 1995).

dC
dt

=
q
V

(C0 −C)− k C e
−EA

T (13)

dT
dt

=
q
V

(T0 −T )−
∆H
ρ Cp

k C e
−EA

T

−
U A

ρ Cp V
(T −Tc) (14)

Operating conditions and simulation parameters can
be found in Henson and Seborg (1997). Three esti-
mation approaches are compared in this case study,
including EKF, MHE and SMC. MHE is implemented
with horizon width 2, while 500 samples are used at
each time step for SMC.

Figure 3 displays the evolution of posterior distribu-
tion of concentration into skewed non-Gaussian dis-
tributions, approximated by SMC with 5000 samples.
Figure 4 shows the multi-modal posterior distribu-
tions.

Performance of these three methods is compared
based on mean-squares error (MSE) and CPU time
required for estimation (in units of CPU seconds per
time step). Results provided in Table 1 are based on
100 realizations of simulation, and in each realization,
1600 measurements are rectified. CPU time is based
on a personal computer with Pentium 400 MHz and
128MB RAM.

The proposed approach, SMC, exhibits significant im-
provement over both EKF and MHE in estimation
error. SMC shows 78% improvement over MHE, and
confirms the expectation that without making invalid
assumptions on distributions, estimation by SMC is
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Fig. 3. Skewed posterior distributions: time step 109
and 115.
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Fig. 4. Multi-modal posterior distributions.

Table 1. Average Mean-Squares Error and
CPU time for CSTR Case Study

EKF MHE SMC
MSE 0.13±0.05 0.09±0.04 0.02±0.01
CPU 0.002±0.00 0.58±0.22 0.03±0.01

Parameters width= 2 N = 500

more accurate. Although MHE has better estimation
results than EKF, it requires 19 times more computa-
tional effort than SMC. Verification of this result using
customized MHE is also under progress. This result
indicates that methods based on Gaussian approxima-
tion need not be computationally more efficient than
methods based on other distributions.

6. CONCLUSIONS

In this paper, a novel estimation approach based on a
rigorous Bayesian formulation is introduced. The pro-
posed approach uses sequential Monte Carlo sampling
to propagate state information recursively. The Monte
Carlo approach avoids direct numerical integration for
computing the moments of state probability distribu-
tions. SMC benefits from not making invalid assump-
tions, such as Gaussian or other fixed-shape prior and



noise, compared with most existing approaches. SMC
is shown to outperform EKF by a wide margin in ac-
curacy. It outperforms MHE in terms of accuracy and
computation time even when the distributions satisfy
the MHE assumption of being Gaussian. The benefits
of this proposed approach are expected to be even
more significant for constrained nonlinear dynamic
systems (Chen et al., 2002). The proposed approach
can handle all types of errors, models and constraints
with the same solution strategy.
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