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Abstract: In this paper, we propose new control design strategies within the
Generic Model Control (GMC) framework for tracking the pre-determined temper-
ature profiles of a batch reactor. It is shown by simulation studies that the designed
robust GMC controller is able to track the temperature reactor profile reasonably
well, and its optimal performance is maintained in spite of large uncertainties.
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1. PROBLEM FORMULATION

In recent years, the optimization, monitoring and
control of batch processes have been an active re-
search area as the emergence of generic drugs from
the pharmaceutical industries are now pushed
to be the first on the market (Bonvin, 1997;
Y. Yabuki and MacGregor, 2002). A batch reactor
is a typical process that exhibits challenging op-
erational problems because of its highly nonlinear
dynamics and its complex reaction kinetics and
stoichiometry. As a result, the use of model-based
technology to optimally operate the batch reac-
tor should address simultaneously the nonlinear
dynamics and the modelling errors due to the
inability to model such complex reactions.

The operation of a batch reactor typically em-
ploys a process optimization and feedback con-
trol arrangement (Jutan and Uppal, 1984; M.V.
Le Lann, 1999). Models are used in both opti-
mization and control. Different approaches have
been pursued to obtain a reliable kinetic and
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stoichiometric model. A tendency modelling has
been the popular approach to capture the kinetics
and stoichiometric of the reaction (C. Filippi and
Georgakis, 1986). The minimum necessary and
essential data for the reaction model development
are: the total batch data, the reactor temperature,
the initial compositions and the final concentra-
tion of different components. The model is used
for the optimization of the batch operation to
maximize either yields or some economic factors
subject to some process constraints (e.g. rate of
change in temperature, heat generated, etc.). The
batch optimization is aimed at determining the
temperature or additional reactant rate profiles.
The profiles should be tracked optimally by the
feedback control implemented for each batch cy-
cle. Due essentially to the lack of on-line concen-
tration measurements, in practice the problem of
batch reactor control remains a problem of tem-
perature control. Thus, the control performance is
mainly dependent on the heating-cooling systems
associated with the reactor.

We consider a batch reactor studied in (C.Kravaris
and Chung, 1987). In the batch reactor, the fol-
lowing consecutive reaction is taking place:



A
k1−→ B

k2−→ C (1)

and the reaction model is given as:
dCA

dt
= −k1(T )C2

A,

dCB

dt
= k1(T )C2

A − k2(T )CB ,
(2)

with the initial concentrations of A and B are
CA(0) = 1 and CB(0) = 0, and some parameters
are defined as:

k1(T ) = A10e
(−E1/RT ); k2(T ) = A20e

(−E2/RT );

A10 = 1.1; E1 = 2.09× 104;

A20 = 172.2; E2 = 4.18× 104;

R = 8.31× 10−3; Tmin = 25oC; Tmax = 125oC

Batch cycle time is 1 hr. Within this cycle time,
the feedback controller should be able to track the
following reactor temperature profile Td(t), which
is produced by the batch optimizer:

Td(t) = 54 + 71e−2.5×10−3t oC (3)

subject to some operational constraints and un-
certainties.

The critical step in designing the batch temper-
ature control system is the choice of manipu-
lated variable. The reactor temperature T can be
controlled by regulating the steam temperature
supplied into the heating jacket Ts and the flow
rate of the coolant in the cooling coil Fc. The heat
balance equation is:

ρCpV
dT

dt
= k1(T )C2

A(−∆H1)V + k2(T )CB(−∆H2)V

+ UjAj(Ts − T )− UcAc(T − Tc) (4)
1
Uc

=
1

4550F 0.8
c

+
1

10.8

There are two manipulated variables, Ts and Fc

available for controlling the reactor temperature
T . We will use a single parametric variable u as
a combined manipulated variable for the temper-
ature control, where u is defined as (Jutan and
Uppal, 1984):

Ts = (Ts,max − Ts,min)u + Ts,min

Uc = (Uc,min − Uc,max)u + Uc,max (5)

where the maximum and the minimum value of
Ts and Uc are selected from the safety limits.
Obviously, u = 0 denotes maximum cooling of
the system while u = 1 represents the maximum
heating. By substituting (5) into (4) and after
some arrangement, we obtain:

dT

dt
= γ1k1(T )C2

A + γ2k2(T )CB (6)

+ (a1 + a2T ) + (b1 + b2T )u

where the parameters are defined as:

γ1 = (−∆H1)/ρCp, γ2 = (−∆H2)/ρCp

a1 = (UjAjTs,min + Uc,maxAcTc)/ρCpV

a2 =−(UjAj + Uc,maxAc)/ρCpV

b1 = [UjAj(Ts,max − Ts,min)− (Uc,max − Uc,min)AcTc]/ρCpV

b2 = (Uc,max − Uc,min)/ρCpV

and the constants are chosen as:

ρCp = 1000, ∆H1 = −4.18× 104; ∆H2 = −8.36× 104;

Aj/V = 30, Ac/V = 17, Uj = 1.16

The operational constraints are given by

Ts,max = 150, Ts,min = 70, Tc = 25 (7)

Fc,max = 33.1× 105, Fc,min = 4.8× 105

Uncertainties in the batch reactor could be
in terms of uncertain initial concentration of
A,CA(0), reaction constants A10 and A20, and
the activation energies E1 and E2. Hence, the
batch temperature control problem is formulated
as follows: Design a nonlinear controller that is
able to track the temperature profile given in (3)
subject to process constraints in (7) and large
uncertainties in the initial concentration of A,
reaction constants and the activation energies.

In this work, we present a new robust Generic
Model Control (GMC) design framework to opti-
mally track the pre-determined temperature pro-
file in the presence of uncertainties. The method
is developed by optimizing the GMC parameters
(τ and ξ) for the desired robust stability and
performance levels.

2. STANDARD AND ROBUST GMC DESIGN

2.1 Standard GMC Design

GMC is a class of nonlinear control design that
makes use of: a dynamic (nonlinear) model of a
process, a reference system in terms of a desirable
rate of change of the output variables, and a
generation of an optimal control law to ensure
closed-loop performance. A dynamic (nonlinear)
model of the process is described as a set of
differential equations:

dy

dt
= f(y, u, d, θ) (8)

where y, u and d are the vectors of model out-
puts, inputs and measured disturbance variables,
and θ is a vector of known process parameters.
In general, f is a vector of known (or approxi-
mation of) nonlinear functional relationships of
those variables. We never obtain an exact repre-
sentation of the plant using (8). In other words,
process/model mismatch inherently occurs when



applying the GMC design, like other model-based
design methods. The mismatch could be in the
forms of structural mismatch (i.e. f(.) is the re-
sult of model simplification) and/or parametric
mismatch (i.e. θ represent partially known process
parameters).

The basic idea of GMC design is to apply a
reference system as a desirable rate of change
of the controlled variables, (dy

dt )∗. One reasonable
choice of the reference system is:

(
dy

dt
)∗ = K1(ysp − yo) + K2

∫ τ

0

(ysp − yo)dt (9)

Lee (Lee and Sullivan, 1988) discussed how the
parameters K1 and K2 were chosen using simple
techniques to accommodate the desired closed-
loop performance. For example, to determine the
ith element of the diagonal matrices K1 and K2,
the following simple rules can be applied:

k1i =
2ξi

τi
; k2i =

1
τ2
i

(10)

The parameters ξi and τi specify the shape and
speed of the desired closed-loop trajectory of the
ith controlled variable. It is obvious that the pa-
rameters of τ and ξ captures the desired closed-
loop performance of GMC. No robustness objec-
tive is explicitly considered during the choice of
K1 and K2. In the standard GMC design proce-
dure, the robustness objective has been considered
indirectly, and often in ad-hoc manner. No sys-
tematic procedure is available to explicitly address
the robustness objective.

By combining (9) and (8), the optimal GMC in-
puts, uopt are generated by solving a minimization
problem formulated as:

uopt = arg min
u

JGMC =
∫ τ

0

εT (t)ε(t) dt (11)

subject to: u ∈ U . The objective function is
defined as:

ε(t) = [f(yo, u, d, θ)− (
dy

dt
)∗] (12)

The GMC control law is hence implemented as
solving the optimization problem numerically at
every sampling time by employing the model (8).
Alternatively, an explicit solution of (11) is also
possible only if the model (8) satisfies the nonlin-
ear invertibility conditions.

2.2 Robust GMC Design

Consider the situation where there is no pro-
cess/model mismatch and the nonlinear model (8)
is completely invertible. This situation is referred
to as the ideal case. In this ideal case, the dynam-
ics from the reference rate of the process output
change

(
dy
dt

)∗
to the process output yo (or internal

dynamics) follows a pure integrator system G = I
s .

The ideal closed-loop system is given by:

yo = (sI −K)−1K ysp (13)

where K is the diagonal transfer function matrix.
This result shows a perfect disturbance rejection
and decoupling of the outputs. Also, the stability
and performance of the closed-loop system is
dependent on (sI − K)−1K. For the standard
GMC design, the ideal closed-loop system (13)
corresponds to a linear system G = I

s under K,
which corresponds to a PI controller (9).

The closed-loop analysis of the ideal case leads to
the choice of a nominal model for designing an
optimally robust GMC reference trajectory, Kopt.
Samyudia and Lee (Samyudia and Lee, 2002) have
used the integrator system G = I

s as a nominal
model, and then applied the H∞ loop shaping
design of McFarlane and Glover (McFarlane and
Glover, 1992) for deriving Kopt, which is formu-
lated as:(

dy

dt

)∗
= WK∞(ysp−yo) = Kopt(ysp−yo) (14)

The stable transfer function matrix K∞ is derived
by minimizing the H∞ norm of the following
closed-loop transfer matrix:

H(Gs,K∞) =
[ −SGs S
−K∞SGs K∞S

]
(15)

where S = (I − GsK∞)−1 and Gs = GW . The
elements of diagonal weighting function W follows
a PI structure as:

wi =
ki(s + zi)

s
for i = 1, · · · , ny (16)

where ny is the number of outputs. Note that the
choice of ki and zi can follow the simple rules
of (10).

The GMC controller with the robust reference tra-
jectory Kopt achieves an optimal robust stability
margin b[G,Kopt] ≤‖ H(Gs,K∞) ‖−1

∞ .

In the presence of process/model mismatch, the
internal dynamics can be different from G =
I
s , say Gp. The robust closed-loop stability is
determined using the following proposition:

Proposition 1. (Samyudia and Lee, 2002) Let
G = I

s be a nominal model for designing a
robust GMC reference trajectory with a robust
stability margin b[G,Kopt]. The closed-loop system
of GMC in the presence of process/model mis-
match is guaranteed to be stable if and only if
b[G,Kopt] > δν(G,Gp), where Gp is the actual
internal dynamics.

Proposition 1 was derived as a direct application
of the robust stability conditions in terms of ν-
gap metric (Vinnicombe, 1993). There are two



interesting points to make concerning Proposi-
tion 1. Firstly, the smaller δν(G,Gp), the closer
the achieved performance of the GMC controller
would be to the ideal closed-loop performance
as in (13). Secondly, for a specified performance
objective as represented by the weighting function
W , the robust reference trajectory of the GMC
controller, Kopt can be designed for the maximum
robustness level, bopt =‖ H(Gs,K∞) ‖−1

∞ .

Given the features of the robust GMC reference
trajectory, Kopt, our new design methods are
developed for the standard GMC controller, where
the parameters τ and ξ are optimally adjusted
such that (9) approximates Kopt. This attempt is
motivated by the current practice that the GMC
parameters τ and ξ are often adjusted in an ad-
hoc manner to maintain the GMC performance
in the presence of process/model mismatch. Our
contribution of this work is therefore to establish a
systematic procedure to optimally tune the GMC
parameters τ and ξ such that the standard GMC
controller satisfies the robustness objective.

2.3 Standard GMC Design for Optimal Robustness

As presented in Section 2.2, the robust GMC
reference trajectory Kopt is different from the
standard GMC reference trajectory because of
the additional term K∞. Since (9) and (14) are
linear systems, we can measure their distance
using the ν-gap metric as: δν(Kopt,K), where the
ν-gap metric is a normalized measure that spans
between zero and one. The smaller the distance,
the closer the robustness of the standard GMC
controller would be to the robust GMC controller
with Kopt. This result leads to a systematic tuning
of the standard GMC parameters τ and ξ for
achieving an optimal robustness. The optimal
GMC tuning is formulated as follows:

Procedure 1. Find the GMC parameters τ and ξ
that minimize δν(Kopt, K), or mathematically:

min
0<τ<τH ,0<ξ<ξH

JRS = δν(Kopt,K(τ, ξ)) (17)

subject to: JRS < bopt.

This procedure can be applied for a given Kopt.
The upper bounds, τH and ξH , are set by consider-
ing the closed-loop performance limits (e.g. speed
and shape of responses). A reasonable set on the
upper bounds τH and ξH makes the optimization
problem convex. For the optimal values of τ∗ and
ξ∗, the achieved robustness of the standard GMC
controller, bGMC is guaranteed by:

δν(G, Gp) < [bopt − δv(Kopt,K(τ∗, ξ∗))] ≈ bGMC

(18)
where the ν-gap metric between the nominal
model G and the actual internal dynamics Gp

measures the process/model mismatch. Hence, by
applying the new design procedure of (17), we
are able to accommodate the robustness objective
within the standard GMC design procedure by
optimally tuning the parameters τ and ξ to satisfy
the robust stability objective.

Note that translating δν(G, Gp), for example, to
the range of parameter mismatch, however, would
be difficult and be case-dependent. Our effort to
estimate the actual process/model mismatch is to
employ a closed-loop metric, which is calculated
from a set of closed-loop data in response to
a bounded power disturbance. For the worse-
case disturbances, this metric is equivalent to
δν(G, Gp).

2.4 Standard GMC Design for Robust Performance

The most important objective of any controller
design is to maintain its ideal performance in spite
of the presence of process/model mismatch. This
is known as a robust performance objective. When
designing the GMC controller for robust per-
formance, the achieved closed-loop performance
should be quantified and compared with the ideal
performance. Hence, to achieve the robust perfor-
mance property, we require a set of actual closed-
loop data from which we compute a closed-loop
metric as a measure of robust performance. So,
the closed-loop metric is defined as:

δν(τ, ξ) :=
‖ z(τ, ξ)− z∗ ‖S

‖ r ‖S
(19)

where z =
[
y dy

dt

]T

is the measured data from
the achieved closed-loop system where the plant is
running under the standard GMC controller, z∗ =[
y∗ dy∗

dt

]T

is the simulated data generated from
the ideal closed-loop system where the robust
GMC with Kopt is running for the nominal model
G, r represents a typical disturbance, and ‖ . ‖S

denotes a bounded power (semi-norm) of a signal.

Since the closed-loop metric is evaluated for a
particular disturbance r, this metric is not equiva-
lent to δν(G,Gp). Recently, Date (Date, 2000) has
shown that δν(G,Gp) := supr∈Sr

δν(τ, ξ), where
Sr is a set of `1∞ bounded signals. The ν-gap met-
ric is therefore equivalent to the closed-loop metric
evaluated for the worst-case disturbances. If we
could identify what the worst case disturbances
would be, and apply them to both achieved and
ideal closed-loop loop systems, then the closed-
loop metric in (19) would approach δν(G,Gp).
This implies that we should have δν(τ, ξ) ≤
δν(G, Gp).

This result has an interesting implication to our
GMC design. The GMC parameters τ and ξ
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Fig. 1. GMC control design for robust perfor-
mance

can now be obtained for a robust performance
objective in response to the disturbance r.

Procedure 2. An optimal design of the standard
GMC controller for robust performance with re-
spect to a disturbance r follows a two step proce-
dure as:

(1) Design a stabilizing GMC controller using
either (17) or Lee and Sullivan’s method.

(2) Re-tune the GMC parameters τ and ξ by
solving the following optimization:

min
τ>0,ξ>0

JRP = [δν(τ, ξ) + δν(Kopt,K(τ, ξ))]

(20)
subject to: JRP < bopt.

The constraint represents the robust stability con-
dition, which means that the robust performance
objective is achieved only if the robust stability
condition is satisfied. Also, the constraint is to
guarantee that we have a stabilizing controller at
each iteration when solving the optimization (20).

By following the above two step procedure, the
achieved robust performance level is indicated by
JRP (τ∗, ξ∗), where τ∗ and ξ∗ are the optimal
solutions to the optimization problem of (20).
The smaller JRP (τ∗, ξ∗) as compared to bopt, the
closer the achieved closed-loop performance would
be to the ideal closed-loop performance. This
means that the controller can effectively handle
the process/model mismatch. Fig. 1 illustrates a
schematic diagram of the robust GMC controller.
The outer loop is a data-driven optimizer to
optimally tune the GMC parameters τ and ξ by
solving the optimization problem (20). The inner
loop is the closed-loop system where a (to be
updated) GMC controller is implemented in the
actual plant. Both loops are running at different
sampling rates, where the inner loop is running
faster than the outer loop.

The process noise or unmeasured disturbance are
assumed to be uncorrelated with the excitation
signal r. Also, the power of the excitation signal
is large enough to ensure a high signal to noise
ratio.
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Fig. 2. Robust GMC controller with Kopt.

3. APPLICATION TO THE BATCH
REACTOR

The new GMC design procedures were applied
to the batch temperature control problem. In the
simulation, we applied a±100% uncertainty in the
initial concentration of A, CA(0) and the reaction
constants, A10 and A20, and a ±50% uncertainty
in the activation energies E1 and E2. In the GMC
nonlinear model, the concentration dynamics were
not considered. Further, measurement noise was
introduced as a zero-mean random numbers with
variance 25, and a zero-mean random numbers
with variance 0.056 was added to the heat balance
equation.

Fig. 2 shows the ideal responses of the robust
GMC controller with Kopt, which was designed
for an optimal robustness bopt=0.705. The re-
sponses are reasonably good in tracking the tem-
perature profile while satisfying the operational
constraints.

The responses of the standard GMC controller
with the parameters τ = 141.4 and ξ = 1.07, are
presented in Fig. 3. The responses are stable, but
worse and more sensitive to noise as compared to
the responses of the robust GMC (or RGMC). To
improve the performance of the standard GMC
controller, we applied Procedure 1. The optimiza-
tion process is shown in Fig. 4. The optimal
GMC parameters were obtained as τ∗ = 140 and
ξ∗ = 7.00. The responses of the optimal robustly
tuned GMC controller are presented in Fig. 5. The
responses are improved significantly and achieve
almost the same responses as the RGMC con-
troller.

The effect of different initial GMC parameters
when solving the optimization of Procedure (2)
was also investigated. For example, another set of
initial GMC parameters was chosen as τ = 100
and ξ = 7.07. Then, the same optimal GMC
parameters τ∗ = 140 and ξ∗ = 7.00 were obtained.
This indicates the convexity of the optimization
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Fig. 3. Standard GMC controller.
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Fig. 5. Optimally tuned GMC controller

problem in (14). This is partially because of the
reasonable choice of τH and ξH .

The GMC design procedure for robust perfor-
mance was then followed for the batch temper-
ature control problem. The optimization process
is depicted in Fig. 6. The optimal parameters were
obtained as τ∗ = 140 and ξ∗ = 7.00, which are the
same as obtained for robust stability. This result
shows that for the batch reactor control problem,
the optimal GMC parameters for robust stabil-
ity achieve a robust performance property. As
indicated by a faster change of the optimization
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Fig. 6. Contour (bopt − JRP )

contour in Fig. 6 than in Fig. 4, the feasible range
of the GMC parameters for robust performance is
smaller than that for robust stability.

4. CONCLUSIONS

With the application to a batch reactor control
problem, new procedures to the robust nonlinear
GMC control design have been presented in this
paper. The new design procedures have been
used to robust optimally tune the standard GMC
parameters. As shown by simulation studies, the
performance of robust nonlinear GMC controllers
was reasonably well in tracking the batch reactor’s
temperature trajectory in spite of the presence of
large uncertainties in the initial conditions and
process parameters.
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