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Abstract: The development of modelbased process software sensors for monitoring
of biomass concentration and product concentration in fed-batch and continuous
yeast fermentations is presented, followed by a validation of the sensors using data
from industrial fermentations. Alternatively, using multiway projection to latent
structures (MPLS) algorithm, a model for prediction of one-step ahead and end
point product concentrations is developed and demonstrated on industrial process
data. The one-step ahead MPLS-predictor is compared to the modelbased product
concentration software sensor. The comprison indicates a better performance by
the MPLS-predictor. Copyright c©2003 IFAC
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1. INTRODUCTION

To improve monitoring and control of industrial
fermentation processes it is desirable to include
interpreted information of dynamic responses of
relevant biological and chemical species to changes
in process conditions whenever possible. Fulfilling
this desire is however not trivial, since measure-
ments of relevant species often are difficult to
conduct and often impossible to obtain at the
desired rate. An alternative approach to the di-
rect measurement of species is the development
of process software sensors based on mathemat-
ical models correlating measurable variables to
the desired variables. This work will develop two
different types of software sensors, one based upon
first principles engineering modelling and another
based upon chemometrics.

1 Partially supported by the Academy of Technical Sci-
ences, Denmark

2. PROCESS SOFTWARE SENSORS

First principles engineering models (FPEM) can
form the underlying foundation for software sen-
sors. The models infer information of unmeasured
entities by using available information from other
measured entities. Different frameworks can be
used for the model development. First software
sensors using FPEMs will be developed and inves-
tigated for the prediction of biomass and peptide
product concentration in a fermentation broth.
Subsequently a chemometric model is used for de-
veloping a software sensor for product estimation.
Finally the two types of product concentration
sensors are compared.

2.1 FPEM based Sensor for Biomass Concentration

Lei (2001) and others demonstrated that it was
possible to use a component mass balance on the
proton production or consumption rate in a high



performance laboratory setup to obtain a simple
on-line estimation of the biomass concentration
in batch, fed-batch and continuous fermentation
of Saccharomyces cerevisiae.

A simplified illustration of the contributions to
the proton balance in a bioreactor is shown in
figure 1. A component mass balance for the proton
concentration [H+] in the extracellular medium
yields:

V
d[H+]

dt
= Fs[H+]s,in − Fe[H+]e,out

+FH+,gen − FNH3 (1)

where the dual role of NH3 is i) to maintain
a constant pH-level in the medium and ii) to
act as the primary nitrogen source for biomass
production.

The following assumptions are used for simplifica-
tion of the mass balance expression:

• Constant pH-level in the bioreactor
• Negligible contribution to proton balance

from pH-diff. between feed and medium pH

In the original work the pH of the feed was ad-
justed to the pH of the medium. In this work
estimation of the amount of proton equivalents
needed to compensate for this pH-difference indi-
cated that less than 1% of the molar flow of NH3 is
needed to balance the pH-difference between feed
and medium pH.

The simplified mass balance yields:

0 = FH+,gen − FNH3 (2)

The volumetric proton production rate can now
be calculated as:

rH+ =
FH+,gen

V
=

FNH3

V
(3)

The following assumptions have been made con-
cerning possible sources contributing to the pro-
ton production rate from cellular activities during
aerobic growth on a complex medium:
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Fig. 1. Simplified schematic illustration of flows
and factors that influences the extracellular
proton concentration balance in the fermen-
tation medium.

• Uptake of NH+
4 as primary nitrogen source

• Negligible production or consumption of or-
ganic acids

• Negligible consumption of amino acids from
complex medium

• No acidification of the medium due to pro-
duction of CO2

During aerobic growth on glucose only negligi-
ble amounts of organic acids are produced; CO2

and biomass being the primary carbon-products
formed. Contribution to the proton balance by
the solution and dissociation of H2CO3 to car-
bonate can be disregarded when the pH-level is
significantly below pH 7. By further assuming only
negligible consumption of organic N-sources from
the complex medium, the uptake of NH +

4 is the
only contributor to the proton production rate
and the only significant nitrogen source. A 1:1 ra-
tio between proton production rate and the NH+

4

uptake rate (using has been observed indicating
that the biomass production rate is proportional
to the proton production rate, under the assump-
tion that the nitrogen content of the biomass to
be constant during balanced growth.

Based on the above comments and assumptions
the volumetric biomass production rate, rH+

x , can
be calculated from volumetric NH3 addition rate:

rH+

x =
MDW · rH+

YxH
=

MDW · FNH3

YxH · V (4)

with MDW as the molar weight of dry weight
biomass and YxH is the yield coefficient of mole
protons produced per mole biomass i.e. the molar
content of nitrogen in biomass based on the overall
growth stoichiometry:

CHxOyNz + aCO2 + YxHH+

− bCH2O − cNH+
4 − dO2 = 0 (5)

From the stoichiometric equation it can be seen
that YxH is constant, since NH+

4 is the only
proton source and z = c (= YxH) since NH+

4

is the only nitrogen source. Combination of the
above expressions with a dynamic mass balance
for biomass (x ):

dx

dt
= rx − Dx (6)

yields a simple biomass predictor:

xk+1 = xk · exp

((rH+

xk

xk
− Dk

)
(tk+1 − tk)

)
(7)

where Dk is the dilution rate at time point tk.

The above model has been developed assuming
ideal conditions in fermentor. Both for small and
large scale fermentations with high cell densities
this assumption is unlikely to be valid. To account
for these variations the model has been modified
as follows:
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(b) Product concentration

Fig. 2. Comparison of signals from software sensors (−) and analytical measurements (�) for fermenta-
tions in two different fermentors.

xk+1 = xk · exp

((α · FNH3,k

Vk · xk
− Dk

)
(tk+1 − tk)

)

(8)
where α = f(t, MDW , YxH , vessel properties) is
determined for the individual fermentor.

Two examples of the application in simulation
of the biomass concentration software sensor are
illustrated in figure 2(a).

2.2 FPEM based Sensor for Product Concentration

To develop a process software sensor for prediction
to the peptide product concentration, physiolog-
ical knowledge of the recombinant yeast strain is
used. It is known that the control of the promotor
for transcription of the product gene is linked to
the activity of the glycolysis of the recombinant
strain. To simplify the model formulation the fol-
lowing assumptions are made:

• Production rate of product (rp) proportional
to production rate of biomass (rx)

• High stability of recombinant gene
• No influence from transport and folding in

organelles on production rate
• Effective excretion of product

A high stability of the recombinant gene en-
sures that no decay in specific productivity of
the peptide product is experienced over time.
Furthermore by assuming that the transport of
the peptide product through the organelles of the
cell does not seem to have any influence on the
production rate, combined with effective folding
and excretion of the peptide product to the abi-
otic phase, the rate limiting step of the cellular
production proces becomes transcription of the
recombinant gene.

Based on the above assumptions the following
model for the production rate of the product (p)

is proposed:

rp ∝ rx =
MDW · FNH3

YxH · V (9)

Introducing a parameter (β) accounting for the
issues relating to non-ideal process conditions and
variations in growth stoichiometry (YxH) and cell
composition (MDW ) a dynamic mass balance on
the product becomes:

dp

dt
= rp − Dp = β

FNH3

V
− Dp (10)

leading to to the product predictor:

pk+1 = pk · exp

((β · FNH3,k

Vk · pk
− Dk

)
(tk+1 − tk)

)

(11)
where β = g(t, MDW , YxH , vessel properties) is
determined for the individual fermentor.

Two examples of the application in simulation
of the product concentration software sensor are
illustrated in figure 2(b) along with signals from
biomass concentration software sensors from the
same fermentations. The software sensors are ac-
tivated after the batch fase and used for the fed-
batch and continuous phases of the fermentation
with constant β values.

2.3 Multiway Projection to Latent Structures (MPLS)

Process monitoring and prediction of end quality
using MPLS have been illustrated by a number
of research groups e.g. Nomikos and MacGregor
(1995). The general idea behind MPLS is that an
empirical model is build on measurements from
reference batches operated under normal oper-
ating conditions producing a good quality prod-
uct in terms of high concentration. This work
has focused on the prediction possibilities of the
MPLS. The available on-line measurements are
used to estimate or predict product quality, which
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Fig. 3. Product concentrations at end of batch
estimated using MPLS and kernel estimators.
(◦) M-, (�) V- and (�) A-batches.

is desirable, since a limited number of analytical
measurements of the quality variables is available
in an off-line fashion. The on-line measurements
are arranged in an array X and the quality mea-
surements are arranged in another array Y.

Using the MPLS-algorithm a regression equation
can be formulated:

Ŷ = XB, with B = W
(
PT W

)−1
QT (12)

This regression model B can then be used for on-
line prediction of the end quality of the batch
provided that a suitable method for the estima-
tion of future on-line measurements is available
(Nomikos and MacGregor, 1995). This work has
been applying the method using the J measure-
ments obtained at the last sampling number k to
fill in the empty spaces.

The number of PLS-components (C) necessary to
obtain a desired level of regression can be evalu-
ated using different methods of (cross-)validation
techniques. In this work the root mean square
error of prediction (RMSEP ) is used:

RMSEP =

√√√√ 1
K

K∑
k=1

(
ŷk − yk

)2 (13)

For increasing numbers of PLS-components C
used for model identification the RMSEP is
evaluated on validation data, where the lowest
value of RMSEP indicates the number of PLS-
components C to be used.

2.4 MPLS for On-line Prediction and Estimation

In the case where quality measurements are taken
frequently during the batch run, the MPLS-
framework can be used for estimation and pre-
diction of the intra-batch quality. For all the
batches considered in this work, both on-line mea-
surements and off-line quality measurements in
each batch have been subsampled to the same
frequency by applying a kernel estimator for
smoothening using a tricubic kernel with a lo-
cal linear fit of 3 nearest neighbors (Hastie et

Table 1. Exp. var. of X and Y. Mean
RMSEP from the validation.

No of PLS Comp
Expl. var 1 2 3 4 5

X 16.3 27.4 43.9 56.3 65.2
Y 56.9 73.1 80.7 86.5 94.4

RMSEP 0.039 0.056 0.061 0.060 0.083

al., 2001). With the smoothened data a Y array
is obtained. At sample number k in a new batch
the full batch profiles of the quality variables Ŷk

can be obtained by filling in the empty spaces in
Xk as described above and applying the regression
matrice B:

Ŷk = XkB (14)

2.5 MPLS Applied on Industrial Data

In this work the only quality variable to be re-
gressed was the product concentration. 11 on-line
measured variables were sampled 180 times during
a fermentation, operating in fed-batch phase fol-
lowed by a continuous phase. 9 batches conducted
under normal operating conditions were used for
the model identification (M-batches), while 2 val-
idation batches (V-batches) were used to deter-
mine the number of PLS-components to be in-
cluded in the model evaluated by the RMSEP
as describe above. The explained variance and
RMSEP for the 5 first PLS-components are
shown in table 1. It is interesting to note that
the RMSEP evaluation indicates that only 1
PLS-component should be included in the model,
explaining 55 % of the variation in Y.

The model performance was then investigated
using the 2 V-batches along with 4 additional
batches (A-batches), the latters having normal
end-point concentrations of the product, but un-
dergoing small process upsets during operation.
A comparison between the MPLS estimated and
kernel estimated product concentration at the end
of the batch is shown in figure 3. The latter of
the two estimators is comparable to the analytical
measurements. From the figure it is seen how the
MPLS estimations at worst are within 10 % of
the kernel estimated values for model, validation
and A-batches. It is interesting to notice how the
MPLS estimations of 4 A-batches all are larger
than the kernel estimations.

Figure 4(a) shows the prediction results for a V-
batch. A good description of the variations in
the kernel estimation and the analytical measure-
ments can be seen by the one- step ahead MPLS-
prediction. From time 1.4 and to the end of the
batch some variations in both the one-step ahead
and end point prediction (starting at coordinates
(0,1)) can be noticed. The variations are explained
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Fig. 4. MPLS product concentration predictions in a validation batch (a) and in batch with a process
operation upset (b). (−) kernel estimation, (�) analytical measurements, (−−) one-step ahead
prediction and (··) batch end prediction.

by a temporary outfall (time 1.4-1.6) of the mass
spectroscopy instrument measuring the contents
in the off-gas from the fermentor. The effects of
the disturbance are seen to have settled at the
end of the batch.

The predictions of the MPLS-model in one of
the A-batches where a small upset in the process
operation occurs are illustrated in figure 4(b). The
first upset occurs at time 0.4, where the fermen-
tation is stopped because a fault has occured in
the ammonia supply system. A number of actions
occur as a consequence of this fault, resulting in
large variations in the one-step ahead prediction
and the end concentration prediction. A general
decrease in the end point concentration is seen
until the system is fully returned to normal oper-
ating conditions at time 0.7.

At time 0.9 a new disturbance appears, this time
the substrate flow is stopped for a while. Both
predictions decrease with this change, but are
restored to normal after the substrate flow is
reinitiated at time 1.0.
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Fig. 5. Prediction error of end point product
concentration in 2 V-batches (top) and 4 A-
batches. (−) MPLS-prediction and (··) ± 10
% errors of the kernel est. end value.

The one-step ahead predictor is very close for
all but one of the analytical measurements. Also
the kernel estimated product concentration lies
in general close to the one-step ahead predictor.
however at the end of the batch both of the predic-
tors are seen to sharply increase their predictions
around time 1.6, the reason being a decrease in
the dilution rate.

Figure 5 shows prediction error between the ker-
nel estimated concentration and the analytical
measurements and the one-step ahead prediction
respectively. The prediction errors are illustrated
for the 2 V-batches (top left and right) and the 4
A-batches, where the dotted lines represents the
± 10 % value of the kernel estimation. For 5 of
6 batches (not middle right) it is seen how the
MPLS-predicted end concentrations are within ±
10 % of the final product concentration thus indi-
cating that even with possible process upsets the
predicted end point concentration was good.

3. PERFORMANCE COMPARISON OF
FPEM- VERSUS MPLS-PREDICTOR

In the above two methods for one-step ahead pre-
diction of the product concentration have been de-
veloped and tested. Figure 6 shows the prediction
error between the kernel estimated concentration
and the analytical measurements, the one-step
ahead MPLS-predictor and the FPEM-predictor
(product concentration software sensor) respec-
tively. It can be seen that the MPLS-predictor to
some degree is able to capture the values of the an-
alytical measurements and the kernel estimations
between the data points. However after approxi-
mately 20% of the batch time, the predictions are
within 10% of the analytical measurements during
normal operation. The MPLS- predictor performs
better than the FPEM-predictor, which in general
can be seen to have big positive errors in the first
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Fig. 6. Prediction errors between kernel est. values
and one-step ahead product concentration
predictors. MPLS-predictor (−) and FPEM-
predictor (−, bold) in 2 V-batches (top) and 4
A-batches. (�) analytical measurements and
(··) ± 10% on the kernel est. values.

quater of the batch, approximately corresponding
to the fed-batch phase. This is not desirable, since
it is in the non-stationary phases that accurate
and precise estimation and prediction is most im-
portant from an optimization perspective.

To support the comparison, RMSEP values have
been calculated in different phases of the fermen-
tation process and shown in table 2. The FPEM-
predictor can be seen to have relatively large er-
rors in the first part of the batch corresponding
to the fed-batch phase. While the RMSEP of
the MPLS-predictor also is the largest in the fed-
batch phase, the predictor still performs well. In
the stationary phase (phase 3) the results of the
two predictors are approximately the same.

4. DISCUSSION AND CONCLUSION

In this paper two different methods for obtain-
ing quantitative information from a fermentation
process has been presented and preliminarily com-
pared. The methods have been applied using on-
line process data from an industrial fermentation
process to illustrate the type and quality of infor-
mation obtainable with the methods.

A software sensor was developed for monitoring
of the biomass concentration and was based on
FPEMs using the feed rate of ammonia, volume of
broth and the dilution rate as inputs. Application
of the software sensor using on-line process data
gave a good description of the variations seen
in the analytical measurements, leading to the

Table 2. Mean RMSEP of phases.

Phase 1 2 3 Total

Time 0.0 - 0.5 0.5 - 1.0 1.0 - 1.8 0.0 - 1.8
FPEM 0.039 0.027 0.022 0.030
MPLS 0.025 0.021 0.021 0.023

conclusion that the implementation of this device
will enable on-line monitoring of the biomass
concentration.

A similar software sensor was then developed for
monitoring of the product concentration using
the same framework as the biomass concentration
software sensor. Although complex cellular pro-
cesses are involved in the processes for generating
the peptide a very simple model was developed
by only slightly modifying the FPEM used for
modelling the biomass concentration. Applied on
the industrial data this simple software sensor was
also able to give a good description of the general
product concentration trajectory making on-line
monitoring of the product concentration possible
if implemented.

An alternative approach for monitoring com-
ponent concentrations in a process is through
process chemometrics. A model for predicting
the product concentration based on the MPLS-
algorithm was developed producing a linear model
describing changes around an average trajectory.
The model was tested on the industrial data and
indicated that both one-step ahead and end point
predictions of the product concentrations came
within 5-10 % of the kernel estimated values based
on analytical measurements.

The MPLS-predictor for the one-step ahead pre-
diction was compared with the simple product
concentration software sensor (FPEM-predictor),
where the first gave a more accurate description
of the variations in the product concentration.

In conclusion this work has provided insight into
tools for monitoring a given fermentation pro-
cess with respect to biomass concentration and
product concentration. Areas to address in future
work is the trade off between bias and variance in
on-line estimators, the use of available analytical
measurements for parameter adaption, develop-
ment of a better description of the dynamics of
product formation and extending the application
of the MPLS-algorithm.
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