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Abstract: A systematic framework for improving the quality of first engineering
principles models using experimental data is presented. The framework is based on
stochastic grey-box modelling and incorporates statistical tests and nonparametric
regression in a manner that permits systematic iterative model improvement. More
specifically, the proposed framework provides features that allow model deficiencies
to be pinpointed and their structural origin to be uncovered through estimation
of unknown functional relations. The performance of the proposed framework is
illustrated through a case study involving a model of a fed-batch bioreactor, where
it is shown how an incorrectly modelled biomass growth rate can be uncovered and
a more appropriate functional relation inferred. Copyright c© 2003 IFAC
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1. INTRODUCTION

Dynamic model development is an inherently
purpose-driven act in the sense that the required
accuracy of a model depends on its intended ap-
plication, and developing a suitable model for
a given purpose involves a fundamental trade-
off between model accuracy and model simplicity
(Raisch, 2000). For models intended for simula-
tion and optimisation purposes, which must be
valid over wide ranges of state space, the required
model accuracy and hence the necessary model
complexity is high, which means that developing
such models is potentially time-consuming.
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Ordinary differential equation (ODE) models de-
veloped from first engineering principles and phys-
ical insights are typically used for such purposes
and a common problem with the development of
such models is that only the basic structure of the
model can be determined directly from first en-
gineering principles, whereas a number of consti-
tutive equations describing e.g. reaction kinetics
often remain to be determined from experimental
data, which may be difficult. Furthermore, if the
quality of a model of this type proves to be too
low, few systematic methods are available for de-
termining how to improve the model. Altogether,
this often renders the development of first engi-
neering principles models very time-consuming.



Experimental
data

Parameter
estimation

Stochastic state
space model

Residual analysis

Model
(re)formulation

First engineering
principles

Estimation of
unknown
functional
relations

Pinpointing of
model

deficiencies

 Model falsification
or unfalsification

Fig. 1. The proposed grey-box modelling cycle. The boxes in grey illustrate tasks and the boxes in white
illustrate inputs to and outputs from the modelling cycle.

In the present paper stochastic grey-box mod-
elling is proposed as a tool for systematic im-
provement of first engineering principles models,
as this approach resolves some of the issues men-
tioned above. In particular, the proposed frame-
work facilitates pinpointing of model deficiencies
and provides means to subsequently uncover the
structural origin of these deficiencies through esti-
mation of unknown functional relations. To obtain
these estimates nonparametric modelling is ap-
plied, and the integration of nonparametric mod-
elling with conventional stochastic grey-box mod-
elling into a systematic framework for improving
the quality of first engineering principles models
is the key new contribution of the paper.

The remainder of the paper is organized as follows:
In Section 2 the proposed framework is outlined
and in Section 3 a case study demonstrating its
performance is given. Finally, in Section 4, the
conclusions of the paper are presented.

2. METHODOLOGY

A diagram of the proposed framework is shown in
Figure 1 in the form of a modelling cycle, which
shows the individual steps of the corresponding it-
erative model development procedure. These steps
are explained in more detail in the following.

2.1 Model (re)formulation

A basic assumption of the proposed framework
is that an initial ODE model, derived from first
engineering principles, is available, which needs
to be improved to serve its intended purpose. The
first step of the modelling cycle then deals with
model (re)formulation, which essentially means
translation of the ODE model into a stochastic
grey-box model (or modification of this model in
subsequent modelling cycle iterations).

Stochastic grey-box models are state space mod-
els consisting of a set of stochastic differential
equations (SDE’s) describing the dynamics of the
system in continuous time and a set of discrete
time measurement equations, i.e.:

dxt = f(xt,ut, t,θ)dt + σ(ut, t,θ)dωt (1)
yk = h(xk,uk, tk,θ) + ek (2)

where t ∈ R is time, xt ∈ R
n is a vector of state

variables, ut ∈ R
m is a vector of input variables,

yk ∈ R
l is a vector of measured output vari-

ables, θ ∈ R
p is a vector of parameters, f(·) ∈ R

n,
σ(·) ∈ R

n×n and h(·) ∈ R
l are nonlinear func-

tions, {ωt} is an n-dimensional standard Wiener
process and {ek} is an l-dimensional white noise
process with ek ∈ N (0,S(uk, tk,θ)).

A considerable advantage of models of this type
is that they are designed to accommodate random
effects due to e.g. approximation errors or unmod-
elled phenomena through the diffusion term of the
SDE’s in (1), which means that estimation of the
parameters of this term from experimental data
provides a measure of model uncertainty. This is
a key point and forms the basis of the proposed
framework for systematic model improvement.

2.2 Parameter estimation

In the second step of the modelling cycle the idea
therefore is to estimate the unknown parameters
of the model in (1)-(2) from experimental data,
including the parameters of the diffusion term.

Stochastic grey-box models allow for a decom-
position of the noise affecting the system into
a process noise term (the diffusion term) and a
measurement noise term. As a result unknown
parameters of such models can be estimated from
experimental data in a prediction error (PE) set-
ting, whereas for standard ODE models it can
only be done in an output error (OE) setting,
which tends to give biased and less reproducable
results, because random effects are absorbed into



the parameter estimates (Young, 1981). Further-
more, since the solution to (1) is a Markov process,
an estimation scheme based on probabilistic meth-
ods can be applied, e.g. maximum likelihood (ML)
or maximum a posteriori (MAP). An efficient
such scheme, based on the extended Kalman filter
(EKF), is available (Kristensen et al., 2002b).

2.3 Residual analysis

In the third step of the modelling cycle the idea
is to evaluate the quality of the model once the
unknown parameters have been estimated. The
most important aspect in this regard is to inves-
tigate the predictive capabilities of the model by
performing cross-validation residual analysis, and
various methods are available for this purpose.

2.4 Model falsification or unfalsification

The fourth step of the modelling cycle is the
important step of model falsification or unfalsifi-
cation, which deals with whether or not, based on
the information obtained in the previous step, the
model is sufficiently accurate to serve its intended
purpose. In practice, this is a subjective decision,
as it involves addressing the trade-off between
necessary model accuracy and affordable model
complexity with respect to the specific intended
purpose of the model. If, based on this decision,
the model is unfalsified, the model development
procedure can be terminated, but if the model is
falsified, the modelling cycle must be repeated by
re-formulating the model. In the latter case, the
properties of the model in (1)-(2) facilitate the
task at hand as shown in the following.

2.5 Pinpointing of model deficiencies

In the fifth step of the modelling cycle, which
is only needed if the model has been falsified,
the idea is to apply statistical tests to provide
indications of which parts of the model that are
deficient. The key statistical tests needed for this
purpose are tests for significance of the individual
parameters, particularly the parameters of the
diffusion term, and as it turns out, the properties
of the ML and MAP estimators mentioned above
allow t-tests to be applied for this purpose.

These tests provide the necessary framework for
obtaining indications of which parts of the model
that are deficient. In principle, insignificant pa-
rameters are parameters that may be eliminated,
and the presence of such parameters is therefore
an indication that the model is overparameterized.
On the other hand, because of the particular na-
ture of the model in (1)-(2), where the diffusion

term is included to account for random effects
due to e.g. approximation errors or unmodelled
phenomena, the presence of significant parame-
ters in the diffusion term is an indication that
the corresponding drift term is incorrect, which in
turn provides an uncertainty measure that allows
model deficiencies to be detected. If, instead of
the general parameterization of the diffusion term
indicated in (1), a diagonal parameterization is
used, this also allows the deficiencies to be pin-
pointed in the sense that deficiencies in specific
elements of the drift term can be detected, which
in turn provides an error indicator for the consti-
tutive equations or phenomena models influenc-
ing this term. If, by using physical insights, it is
subsequently possible to select a specific phenom-
ena model for further investigation, the proposed
framework also provides means to confirm if the
suspicion that this model is incorrect is true.

Typical suspect phenomena models include mod-
els of reaction rates, heat and mass transfer rates
and similar complex dynamic phenomena, all of
which can usually be described using functions of
the state and input variables, i.e.:

rt = ϕ(xt,ut,θ) (3)

where rt is a phenomenon of interest and ϕ(·) ∈ R

is the nonlinear function used to describe it. To
confirm if the suspicion that ϕ(·) is incorrect is
true, the parameter estimation step must be re-
peated with a re-formulated version of the model
in (1)-(2), where rt is isolated by including it as
an additional state variable, i.e.:

dx∗
t = f∗(x∗

t ,ut, t,θ)dt + σ∗(ut, t,θ)dω∗
t (4)

yk = h(x∗
k,uk, tk,θ) + ek (5)

where x∗
t = [xT

t rt]T is the extended state vec-
tor, σ∗(·) ∈ R

(n+1)×(n+1) is the extended diffusion
term and {ω∗

t } is an (n + 1)-dimensional standard
Wiener process. The extended drift term can be
derived from the original drift term as follows:

f∗(x∗
t ,ut, t,θ) =


f(xt,ut, t,θ)

∂ϕ(xt,ut,θ)
∂xt

dxt

dt
+

∂ϕ(xt,ut,θ)
∂ut

dut

dt


 (6)

The presence of significant parameters in the
corresponding diagonal element of the extended
diffusion term is then an indication that ϕ(·) is
incorrect and in turn confirms the suspicion.

2.6 Estimation of unknown functional relations

In the sixth step of the modelling cycle, which
can only be used if specific model deficiencies have
been pinpointed as described above, the idea is to
uncover the structural origin of these deficiencies.



The corresponding procedure is based on a com-
bination of the applicability of stochastic grey-
box models for state estimation and the ability
of nonparametric regression methods to provide
visualizable estimates of unknown functional re-
lations with associated confidence intervals.

Using the re-formulated model in (4)-(5) and
the corresponding parameter estimates, state es-
timates x̂∗

k|k, k = 0, . . . , N , can be obtained for a
given set of experimental data by applying the
EKF. In particular, since the incorrectly mod-
elled phenomenon rt is included as an addi-
tional state variable in this model, estimates r̂k|k,
k = 0, . . . , N , can be obtained, which in turn facil-
itates application of nonparametric regression to
provide estimates of possible functional relations
between rt and the state and input variables.

Several nonparametric regression techniques are
available (Hastie et al., 2001), but in the con-
text of the proposed framework, additive models
(Hastie and Tibshirani, 1990) are preferred, be-
cause fitting such models circumvents the curse
of dimensionality, which tends to render nonpara-
metric regression infeasible in higher dimensions,
and because results obtained with such models are
particularly easy to visualize, which is important.

Using additive models, the variation in rt can
be decomposed into the variation that can be
attributed to each of the state and input variables
in turn, and the result can be visualized by means
of partial dependence plots with associated boot-
strap confidence intervals (Hastie et al., 2001). In
this manner, it may be possible to reveal the true
structure of the function describing rt, i.e.:

rt = ϕtrue(xt,ut,θ) (7)

which in turn provides the model maker with
valuable information about how to re-formulate
the incorrect phenomena models or constitutive
equations of the model for the next modelling
cycle iteration. Needless to say, this should be
done in accordance with physical insights.

A more elaborate discussion of the proposed
methodology is given by Kristensen et al. (2002a).

3. CASE STUDY: MODELLING A
FED-BATCH BIOREACTOR

To illustrate the performance of the proposed
methodology in terms of improving the quality of
a model, a simple simulation example is consid-
ered in the following. The process considered is a
fed-batch bioreactor, where the true model used
to simulate the process is given as follows:

dX

dt
= µ(S)X − FX

V
(8)

dS

dt
= −µ(S)X

Y
+

F (SF − S)
V

(9)

dV

dt
= F (10)

where X and S are the biomass and substrate
concentrations, V is the volume, F is the feed flow
rate, Y = 0.5 is the yield coefficient of biomass
and SF = 10 is the feed concentration of sub-
strate. µ(S) is the biomass growth rate, described
by Monod kinetics and substrate inhibition, i.e.:

µ(S) = µmax
S

K2S2 + S + K1
(11)

where µmax = 1, K1 = 0.03 and K2 = 0.5. Using
(X0, S0, V0) = (1, 0.2449, 1) as initial states, simu-
lated data sets from two batch runs (101 samples
each) are generated by perturbing the feed flow
rate along a pre-determined trajectory and sub-
sequently adding Gaussian measurement noise to
the appropriate variables. For the present case it is
assumed that all state variables can be measured
and noise levels corresponding to variances of 0.01,
0.001 and 0.01 (absolute values) are used.

3.1 First modelling cycle iteration

It is assumed that an initial model corresponding
to (8)-(10) has been set up, where the true struc-
ture of µ(S) is unknown. As the first step, this
model is then translated into a stochastic grey-box
model, which has the following system equation:

d




X
S
V


 =




µX − FX

V

−µX

Y
+

F (SF − S)
V

F




dt+σdωt (12)

where σ is a diagonal matrix with elements σ11,
σ22 and σ33. Since the true structure of µ(S)
is unknown, a constant growth rate µ has been
assumed, and a diagonal parameterization of the
diffusion term has been used to allow possible
model deficiencies to be pinpointed. The model
also has the following measurement equation:




y1

y2

y3




k

=




X
S
V




k

+ ek (13)

with ek ∈ N(0,S), where S is a diagonal matrix
with elements S11, S22 and S33. As the next step,
the unknown parameters of the model are esti-
mated using the data from batch no. 1, which
gives the results shown in Table 1, and, to eval-
uate the quality of the resulting model, a pure
simulation comparison is performed as shown in
Figure 2a. The results of this show that the model
does a very poor job, and it is therefore falsified,
which means that the modelling cycle must be
repeated by re-formulating the model.
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(a) Model structure in (12)-(13).
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(b) Model structure in (15) and (13).

Fig. 2. Pure simulation comparison using cross-validation data from batch no. 2. Dashed lines: y1, dotted
lines: y2, dash-dotted lines: y3, solid lines: pure simulation values.

To obtain information about how to re-formulate
the model in an intelligent way, model deficiencies
should be pinpointed, if possible. Table 1 also
includes t-scores for performing marginal tests for
significance of the individual parameters, which
show that, on a 5% level, only one of the pa-
rameters of the diffusion term is insignificant, viz.
σ33, whereas σ11 and σ22 are both significant. This
indicates that the first two elements of the drift
term may be incorrect. These both depend on µ,
which is therefore an obvious deficiency suspect.

To avoid jumping to conclusions, the suspi-
cion should be confirmed, which is done by re-
formulating the model with µ as an additional
state variable, which yields the system equation:

d




X
S
V
µ


=




µX − FX

V

−µX

Y
+

F (SF − S)
V

F
0




dt+σ∗dωt (14)

where σ∗ is a diagonal matrix with elements σ11,
σ22, σ33 and σ44, and, since µ has been assumed
constant, the last element of the drift term is
zero. The measurement equation is the same as
in (13). Estimating the parameters of this model,

Table 1. Estimation results - (12)-(13).

Parameter Estimate Significant?

X0 9.6973E-01 Yes
S0 2.5155E-01 Yes
V0 1.0384E+00 Yes
µ 6.8548E-01 Yes

σ11 1.8411E-01 Yes
σ22 2.2206E-01 Yes
σ33 2.7979E-02 No

S11 6.7468E-03 Yes
S22 3.9131E-04 No
S33 1.0884E-02 Yes

using the same data set as before, gives the results
shown in Table 2, and inspection of the t-scores for
marginal tests for insignificance now show that, of
the parameters of the diffusion term, only σ44 is
significant on a 5% level. This in turn indicates
that there is substantial variation in µ and thus
confirms the suspicion that µ is deficient.

As the next step the re-formulated model in (14)
and (13) and the parameter estimates in Table 2
are used to obtain state estimates X̂k|k, Ŝk|k, V̂k|k,
µ̂k|k, k = 0, . . . , N , by means of the EKF, and an
additive model is then fitted to reveal the true
structure of the function describing µ by means of
estimates of possible functional relations between
µ and the state and input variables.

It is reasonable to assume that µ does not depend
on V and F , so only functional relations between
µ̂k|k and X̂k|k and Ŝk|k are estimated, giving the
results shown in Figure 3. These plots indicate
that µ̂k|k does not depend on X̂k|k, but is highly
dependent on Ŝk|k, which in turn suggests to
replace the assumption of constant µ with an
assumption of µ being a function of S. More
specifically, this function should comply with the
functional relation revealed in Figure 3b.

Table 2. Estimation results - (14)&(13).

Parameter Estimate Significant?

X0 1.0239E+00 Yes
S0 2.3282E-01 Yes
V0 1.0099E+00 Yes
µ0 7.8658E-01 Yes
σ11 2.0791E-18 No
σ22 1.1811E-30 No
σ33 3.1429E-04 No
σ44 1.2276E-01 Yes

S11 7.5085E-03 Yes
S22 1.1743E-03 Yes
S33 1.1317E-02 Yes
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Fig. 3. Partial dependence plots of µ̂k|k vs. X̂k|k and Ŝk|k. Solid lines: Estimates; dotted lines: 95%
bootstrap confidence intervals computed from 1000 replicates.

3.2 Second modelling cycle iteration

The functional relation revealed in Figure 3b
clearly indicates that the growth of biomass is
governed by Monod kinetics and inhibited by sub-
strate, which makes it possible to re-formulate the
model in (12)-(13) to yield the system equation

d




X
S
V


=




µ(S)X − FX

V

−µ(S)X
Y

+
F (SF −S)

V
F


dt+σdωt (15)

where σ is again a diagonal matrix with elements
σ11, σ22 and σ33, and where µ(S) is given by (11).
The measurement equation remains unchanged
and is thus the same as in (13). Estimation of
the unknown parameters of this model using the
same data set as before gives the results shown
in Table 3, and to evaluate the quality of the
resulting model, a pure simulation comparison is
performed as shown in Figure 2b. The results of
this show that the model does a much better job
now. It is in fact unfalsified with respect to the
available information, and the model development
procedure can therefore be terminated.

Table 3. Estimation results - (15)&(13).

Parameter Estimate Significant?

X0 1.0148E+00 Yes

S0 2.4127E-01 Yes
V0 1.0072E+00 Yes

µmax 1.0305E+00 Yes
K1 3.7929E-02 Yes
K2 5.4211E-01 Yes
σ11 2.3250E-10 No
σ22 1.4486E-07 No
σ33 3.2842E-12 No

S11 7.4828E-03 Yes
S22 1.0433E-03 Yes
S33 1.1359E-02 Yes

4. CONCLUSION

A systematic framework for improving the quality
of first engineering principles models has been
presented. The proposed framework is based on
stochastic grey-box modelling and incorporates
statistical tests and nonparametric regression,
which in turn facilitates pinpointing of model
deficiencies and subsequent uncovering of their
structural origin. A key result is that the proposed
framework can be used to obtain estimates of un-
known functional relations, which allows unknown
or incorrectly modelled phenomena to be uncov-
ered and proper parametric expressions for the
associated constitutive equations to be inferred.
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