
 
 
 
 
 

Fault Diagnosis and Fault Identification for Fault-Tolerant Control 
of Chemical Processes 

 
 

Kap-Kyun Noh* and En Sup Yoon 

School of Chemical Engineering, Seoul National University, Seoul 151-742 Korea 
(*Email: kknoh@pslab.snu.ac.kr)  

 
 

Abstract:  Fault-tolerant control (FTC) of nonlinear systems is presented within an 

adaptive control framework. FTC can be accomplished by three subtasks; fault-
diagnosis, fault identification and adaptive nonlinear control. In order to diagnose a fault 
at a time, a set of residual generators for fault diagnosis is designed by means of un-
known input observers. When disturbances exist, disturbance-decoupled model could be 
derived for reliable diagnosis. Fault identification following fault diagnosis is an ana-
logue to control task; the diagnosed fault is regarded as a control input and found out 
such that the residual from residual generator incorporating identification task is driven 

to reference zero. And, feedback linearizing control is liked with fault diagnosis and 
fault identification to compensate for a fault to the process. A three-tank system is taken 
as an example for demonstration of the presented FTC. 
Keywords: fault diagnosis, fault identification, fault-tolerant control, nonlinear systems . 

 
 

1. INTRODUCTION 

Automated chemical process has yield to high quality 
and high efficiency of normal operation, but has be-

come more complicated and more vulnerable to faults  
because processes have been integrated into wider 
operation platform and operation algorithms may be 
another fault sources. Furthermore, a simple fault 
could be amplified by the control system and devel-
oped into malfunction of the loop, even into a failure 

at the plant level. This  requires advanced fault diag-
nosis and supervision to improve reliability and 
safety. A cost-effective way to achieve the goal is by 
means of a fault-tolerant control (FTC) (Blank et al., 
2001). 
The FTC could be achieved by merging the fault in-
formation obtained from fault diagnosis and fault 

identification into the control system for fault ac-
commodation. Fault diagnosis scheme has to effi-
ciently detect and identify a fault even when the 
process is under closed-loop control and varies over 
wide range, and following fault diagnosis, fault iden-
tification estimates time-varying behaviors of the 
diagnosed fault which then is reflected into the con-

trol law to accommodate the fault. 
Nonlinear observer-based fault diagnosis where the 
research that has been made around a linear system 
has been lately extended to nonlinear system (Frank 
and Ding, 1997) is presented. The model used for 
observer design could be decoupled from distur-
bances and/or a dedicated fault by means of state 

transformation, and so resulting observer is unaf-
fected by disturbances and possess structured sensi-
tivities to the faults. The state transformation is based 
on the concept of fault (disturbance) detectability 
index and so it contains outputs and their derivatives. 
A bank of residual generators providing generalized 
residuals set and decisions function such as fixed 

threshold are needed to diagnose a fault. The design 
method and conditions of such nonlinear observers 
will be presented. 
When a fault is detected and localized, its magnitude 
and time -evolving behavior should be identified to 
take a countermeasure keeping process performances. 

The same model and the concept of fault relative or-
der as those of fault diagnosis are utilized to obtain 
design model which allows to reconstruct the fault 
and on which the residual generator is designed. Fault 



identification is formulated into control task problem 
such that the residual from the residual generator 

driven by identified fault is forced to zero. The 
method is based on the conditions of input ob-
servability (Hou and Patton, 1998; Kabore and Wang, 
1999); the residual responds to only a specific fault 
and reconstructs the actual fault. 
Fault-tolerant control is achieved by combining in-

put-output feedback linearizing control law based on 
the fault-parameterized model with fault informations 
obtained from fault diagnosis fault identification, 
which is reduced to the adaptive linearizing control 
(Sastry and Isidori, 1989). 

2. ON-LINE FAULT DIAGNOSIS 

Consider nonlinear systems affine in control, distur-
bance and fault mode; 
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where nRx ⊂Γ∈ , m
u Ru ⊂Ω∈ , pRy∈  are the state 

vector, the control input vector, and the output vector. 
dn

dd R∈Ω ⊂  is the disturbance vector including model 

errors, and fn
f Rf ⊂Ω∈  is the fault mode vector for 

component faults and actuator faults, and both vec-
tors consist of unknown time -varying functions. 

( ) , 0,1,..,sg x s m= ; ( ), 1,..,s dD x s n=  and ( ), 1,..,s fe x s n=  

are smooth vector fields, and ( ), 1,..,sh x s q=  are 

smooth scalar fields, respectively, on Γ and they are 

known. Here, Γ  is a physically feasible and bounded 

set, and Ω  with subscripts are bounded sets for cor-
responding inputs. 

FDI Strategy:  When the process is subject to distur-
bances, model-based FDI strategy may give mislead-
ing analytical redundancies. Thus, to improve the 
FDI performance, a means of creating analytical re-

dundancy not affected by disturbances should be de-
vised as in the following steps; 

S1: Obtain a reduced model decoupled from distur-
bances, but still affected by faults. 

S2: For the detection of faults remained at step S1, 
produce a residual generator based on distur-
bance-decoupled model obtained at step S1. 

S3: For fault isolation among the faults at step S1,  

partition faults into isolable fault subsets and 
generate a bank of residual generators in which 

each one is dedicated to each fault subset. It is 
based on a fault-added disturbance-decoupled 
model and provides generalized residuals set 
giving different sensitivities to different fault 
subsets. This feature enables to uniquely isolate 
a fault subset by checking the values of all 

residuals. 

Fault Detectability:  A fault is said to be detectable if 
a fault affects at least one of observable outputs. 
From this point of view, the detectability of a fault 
can be characterized by using the concept of relative 
order known as a fault detectability index in fault 
diagnosis field (Liu and Si, 1997), which is defined 

as the smallest integer, 
jfr , such that 
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where ( )je x  is a fault vector field of a fault, 
jf  and 

)( xhi
 is a scalar function of the output, 

iy . If fault 

relative order, 
jfr , is less than or equal to n , the fault 

is detectable. Otherwise, the fault is not detectable. 
Disturbance relative order, 

jdr , for the disturbance, 

jd , can be defined in the same way. 

Disturbance-Decoupled Model: Residual generators 
will be obtained through the design of observers 
based on disturbance-decoupled or a fault-added dis-
turbance-decoupled models. The conditions that 
guarantee a state transformation inducing distur-
bance-decoupled nonlinear model are based on the 

concept of well-defined disturbance relative order 
and are analogies to those of feedback linearization in 
nonlinear control theory (Isidori, 1989). 

Consider the system with only disturbances; 

0
1

( ) ( ) ( )
dn

s s
s

x g x D x d t
=

= +∑&     (3a) 

( )y h x=     (3b) 

For above system, if conditions below are met, 

C1. The relative order, 
idr , of the output, liyi ,..,1, =  

(l p< ), with respect to disturbance vector, d , is well 

defined. 



C2. The characteristic matrix, ( )DC x , formed at the 

idr th times derivative of each output, 
iy , before the 

disturbance vector, d , has full row rank. 
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C3. The distribution, 
1( ) { ( ),.., ( )}

dnx span D x D x∆ = , iden-

tified and spanned by disturbance vector fields has 
constant rank, ( )q q≤  and it is involutive, i.e., Lie 

brackets of any pair of vector fields belonging to )(x∆  

belong to )(x∆  again. 

then, there exists a state transformation 

0

( 1) 1( ) ( ) ( ) [1,.., ]
i di

ii
i

r r
i g i

hy

z x x x i p
y L h

ξ
η

η η

− −

  
      =Φ = = = ∀ ∈        
    

MM     (5)
 

where , .. ,
Ti lξ ξ ξ = 

, ( 1)
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TT ri i i
r y yξ ξ ξ −  = =   

, 

and dn rRη −∈  with 
1

..
dnd d dr r r= + +  consists of scalar 

fields, 
iη , such that ( ) 0D iL xη =  and makes the state 

transformation locally invertible (Isidori, 1989); 
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The system in the transformed state is  
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( , , , )u fη η ξ η=&     (7c) 

where iA  is the )1()1( −×− ii rr  matrix and 
iB  is the 

1)1( ×−ir  vector and ),( ii BA  is in a canonical form. 

The transformed system is divided into two subsys-

tems according to explicit dependence on the distur-
bances. Disturbance-decoupled model consists of 

lower subsystems (7b)(7c) and it will be utilized for 
the design of nonlinear observers that are robust to 
disturbances but sensitive to faults. 

Remark: The model is driven by the faults and as 

well 
di

i
rξ  as new inputs , not directly available. Its 

estimation is to use a differentiator filter. But, since 
each filter is driven by a measured output, the effects 

of the faults are reflected into estimated output and its 
successive derivatives, and the disturbance decoupled 
model actually useful for FDI is limited to the (7c). 
But, their estimates from filters will be used for pro-
vision of unavailable states with (7c). This means that 
the faults whose relative orders are more than two 

cannot be separable through the resulting decoupled 
model unless all states are available. 

Fault Detection: The design of a nonlinear observer 
for FD (Fault Detection) is performed on the model 
(7c) and various design methods of an observer in the 
literatures can be considered. If state estimates from 
differentiator filters are sufficiently accurate, the ba-

sis model becomes; 

( ), , ,u fη η η ξ=&    (8a) 

exY Cη=       
(8b) 

Under some assumptions below,  
A1 Extra outputs, 

exY , not involved in disturbance 

decoupling are available and linear in the state. 
A2 The basis model is observable from extra outputs. 

A3 The basis model can be put into a time -varying 
linear system with a Lipschitz nonlinear perturbation; 
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(10) 

where 
oη  is a constant. 

A4 Constant matrix, K , can be chosen such that  

( )( ) ( )( ), , ,
T

Q u KC Q u KC uλ ξ ξ α ξ − + − <− ∀     
(11) 

where [ ];tλ ⋅  denotes the eigenvalues of time-varying 

matrix at time t  and 0>α  is a constant. 

A candidate observer can be taken as 



( ) ( ) ( ), , ,Q u N u KCη ξ η η ξ η η= + + −
) ) ) )&   (12) 

and then the error dynamics with a residual is  
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where e η η= −
)

. 

Assump tion A3 can be easily met since the basis 
model is reduced and a nonlinear perturbation term is 
allowed, and when the model is defined over 
bounded domain. Assumption A4 makes the error 
dynamics stable if the design matrix, K , can be cho-
sen such that for 

02α η>  it is satisfied (Slotine and Li, 

1984).  
In the absence of any fault  ( 0=f ), the error dynam-

ics are made stable around the equilibrium, 0=e  and 

so the residual is decaying to zero, indicating no fault. 
But, in the presence of any fault ( 0f ≠ ), the error no 

longer stays at zero due to nonlinear nonvanishing 
effects by a fault and so result ing nonzero residual 

indicates the occurrence of a fault. 

Fault Is olation:  Due to the allowance for disturbance 
decoupling, the generalized observer scheme (GOS) 
(Chen and Patton, 2000) providing a generalized re-
siduals set for fault isolation is adopted. To imple-
ment the GOS, the model decoupled from distur-
bances and as  well a fault subset is needed, and it can 

be obtained in the same way as before for augmented 
disturbances. Robust fault isolation between two 
faults in sense of the GOS can be checked by; 

( ) ( )( ), ( ) ( ), ( ) 2i j i jrank e x e x rank e x e x
x
η ∂  = =  ∂     

(14) 

where ( )ie x  and ( )je x  are vector fields of considered 

faults. This condition makes sure that two faults are 
not only reflected into disturbance-decoupled model 
but also not decoupled at a time. The observability of 

a fault-added disturbance-decoupled model is as-
sumed. 
The design of residual generators for fault isolation is 
based on a designated fault and disturbance decoup-
led model and their designs proceed as before. When 
one fault occurs at a time, the right fault isolation can 

be done by checking values of all residuals. 

3. FAULT IDENTIFICATION 

When the focus is made on the design of fault toler-
ant control, in addition to fault detection and is olation, 
fault identification identifying the size of the fault 

and its time varying behavior has to be solved. Faults 
to be identified are limited to the faults isolated by 
fault diagnosis. 
Fault identification problem can be reformulated into 
control task problem. In this approach, fault signal is 
regarded as a control input to the system and a feed-

back control is found such that the residual tracks a 
zero reference. Since the residual is usually given as 
the difference between measured output and esti-
mated output, the fault forces the estimated outputs 
from residual generator to track measured outputs. 
When there is no fault, the feedback control will de-
cay to zero, indicating no fault, while in the presence 

of a fault, the feedback control will provide a control 
input which is actually an estimate of the fault. 
Consider the system with single fault vector;  
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where 
sf  is one element of fault vector, 

if , and de-

scriptions of variables, , ,x y u , and functions, 

, ,s s jg e h , are the same as those of the system (1). 

A1 the fault detectability index, 
jk , for the fault vec-

tor, 
if , such that 
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is well defined. 
A2. the matrix, 
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is a full column rank for all x ∈Γ . 

Then, the following state coordinate can be taken 
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and the system is transformed into following form, 
which is the same as (7); 
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, and ( , )i i
j jA C  is in a observ-

able canonical form and ( , )i i
j jA B  is in a controllable 

canonical form. 
Based on the structure of the above systems, a candi-
date residual generator incorporating fault identifica-
tion is taken as (Kabore and Wang, 1999): 
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where v  is a proper new input and taken as 
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and observer gain, i
jK , is chosen such that each ob-

servable form may be stable and makes the error ex-

ponentially converge to zero. 

4. FAULT-TOLERANT CONTROL 

To accommodate identified faults, the linearizing 
control law can be linked with fault identification, 
which is reduced to adaptive linearzing control (Sas-
try and Isidori, 1989; Teel et. al., 1991; Hu, 1999). 

When the resulting control law is applied to the faulty 
process, quasi-linear system results in. 

 ( , , )c ae A e W e uη= + Θ&      (23) 

where cA  is a ( 1) ( 1)r r+ × +  Hurwitz matrix, 
au  is 

approximately linearizing control law and e  is error 

coordinate. Θ  is the fault error and the matrix, )(⋅W  

is nonlinear functions before the fault error. As fault 
error is decaying to zero, the quasi-linear system be-

comes asymptotically linearized. The stability of the 
perturbed system is  ensured if the perturbing term is 
bounded over the domain and the poles of the Hur-
witz linear system are placed sufficiently deep into 
the left half of s-plane (Zak, 1990). 

5. APPLICATION 

Figure1 shows a schematic of a three-tank system. 
Using the mass balance and mass flows by Torricell’s 
law, the system can be described as; 

1 10 1 1 3 1 3 1 3( sgn( ) 2 )/x u a s x x g x x A= − − −&  

2 20 3 32 2 3 2 3 2 20 2( sgn( ) 2 2 )/x u a s x x g x x a s gx A= − − − −&  

3 1 1 3 1 3 1 3 3 32 3 2 3 2( sgn( ) 2 sgn( ) 2 ) /x a s x x g x x a s x x g x x A= − − − − −&
 

where the state, x , is the level of each tank and 
10u , 

20u  are mass inflows. A  is the cross-section of tank 

and 
13s , 

32s , 
20s  are the cross sections of intercon-

nected and outlet pipe, respectively. 
ia  is  scaling 

constants and g  is the gravity constant. 
if  denotes 

faults caused by various reasons such as leaks, clog-
ging and pump failures. Levels are available. Fault 
distribution matrix, ( )E x , to the fault, f , is given as; 
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Unknown disturbance is not considered. And, all 
modeled faults have the fault relative order of one. 

Outputs carry with measurement noises. 
Residual generator for fault detection will be de-
signed based on the whole model (Figure2) and iso-
lable fault subsets for fault isolation are as follows; 

{ }1 1 4,S f f= , { }2 2 5 8, ,S f f f= , { }3 3S f= , { }4 6S f= , { }5 7S f=   (6.7) 

Generalized residuals set, { }1 2 3 4 5, , , ,r r r r r , is generated 

from residual generators via observers based on the 

models in new states , 
jη  such that 0

ie jL η =  where ie  

is all fault vector fields belonging to a fault subset, 

iS  (Figure 3). 

As for fault identification, only one fault at a time is 
estimated and its fault relative order is one. The state 

of ς)  is available from extra outputs  and the first 

derivative of the output, 
iy , is obtained by a differ-

entiator filter. The results are shown in Figure4. 
Performance of linearizing control linked with fault 
identification is compared with simple linearizing 

control as shown in Figure5. 
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Figure1. Schematic of a three-tank system 
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Figure3. Generalized residuals set ( , 1,..,5ir i = ) for fault isolation 
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Figure4. Fault identification of fault modes 
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 Figure5.  Performance by FTC and simple nonlinear control 


