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1. INTRODUCTION 
 

Batch processes become increasingly preferred 
choices in chemical industry, to produce higher-
value-added products to meet today’s rapidly 
changing market. It is, however, difficult to develop 
a first-principle or knowledge-based model for 
process monitoring due to the process high 
dimensionality, complexity, and batch-to-batch 
variation, and also due to limited product-to-market 
time. Multivariate statistical modelling methods, 
which require only historical process data for 
analysis and monitoring, and have had many 
successful applications for continuous processes, are 
attracting much interest in analysing and monitoring 
batch processes.  

Several statistical modelling methods have been 
reported recently for batch processes (Wold, et al., 
1987; Nomikos and MacGregor, 1994; Dong and 
McAvoy, 1996; Martin and Morris, 1996; Chen and 
Liu, 2002), all of which are based on multiway PCA 

(MPCA), a very popular method for modelling a 
batch process. These MPCA-based methods, 
however, are not well-suited for multistage processes 
because MPCA takes the entire batch data as an 
object and has difficulty to reveal the changes of 
process correlation from stage to stage. The on-line 
application of these MPCA-based methods requires 
to fill the future unavailable process data in the batch, 
which can affect the promptness and accuracy of on-
line monitoring. Louwerse and Smilde (2000) argued 
for a strategy to partition reference data into several 
time periods for improvement of on-line monitoring. 
But, their method, also based on MPCA, requires 
also the future measurements unavailable for each 
remaining time period to be estimated for on-line 
monitoring. Their method has the same weakness as 
the MPCA method. Adaptive batch monitoring 
strategy based on recursive multiblock PCA 
proposed by Rännar, et al. (1996) can avoid the need 
of filling the future data. Its computational demand, 
however, can be overwhelming.  



     

Considering that multiplicity of operation stage is an 
inherent nature of most batch processes, and to 
alleviate the difficulties of on-line monitoring based 
on multiway PCA, a stage-based sub-PCA method 
has been developed by the authors to extend 
multivariate statistical modelling methods to those 
multistage batch processes (Lu, et al., 2002). The key 
to the stage-based sub-PCA monitoring strategy is to 
divide a batch process into several “operation” stages, 
according to the changes in process correlation. 
Within each of these “operation” stages, the process 
correlation is similar; a representative stage model 
can be built, using the conventional two-way PCA 
model. This method allows two-way PCA to be 
“directly” applied for a batch process.  

This paper is to show an industrial application of the 
proposed stage-based sub-PCA method to a typical 
multistage batch process, an injection molding 
process. We will demonstrate that the use of the 
proposed method can not only improve the ability of 
process monitoring and fault diagnosis, but also 
improve the understanding of the process. It is 
worthwhile to note that the stages defined by the sub-
PCA method may be not equal to the real operation 
stages, as the covariance structure can change during 
a physical stage. The remainder of the paper is 
organized as follows: a brief description to the 
injection molding process is given in Section 2, 
followed by the introduction of sub-PCA modelling 
procedures and post data analysis in Section 3. The 
application of the method for process monitoring and 
fault diagnosis for injection molding process is 
described in Section 4. Finally, conclusions are 
drawn in Section 5. 

2. PROCESS DESCRIPTION 

Injection molding (Yang and Gao, 1999; Chen, 
2002), an important polymer processing technique, 
transforms polymer materials into various shapes and 
types of products. Figure 1 shows a simplified 
diagram of a typical reciprocating-screw injection 
molding machine with instrumentations. 

 As a typical multistage process, injection molding 
operates in stages, among which, injection (or filling), 
packing-holding, and cooling are the most important 
phases. During filling, the screw moves forward and 
pushes melt into the mold cavity. Once the mold is 

completely filled, the process then switches to the 
packing-holding stage, during which additional 
polymer is “packed” at a high pressure to compensate 
for the material shrinkage associated with the 
material cooling and solidification. The packing-
holding continues until the gate freezes off, which 
isolates the material in the mold from that in the 
injection unit. The process enters the cooling stage; 
the part in the mold continues to solidify until it is 
rigid enough to be ejected from the mold without 
damage. Concurrently with the early cooling phase, 
plastication takes place in the barrel where polymer 
is melted and conveyed to the front of barrel by 
screw rotation, preparing for next cycle. 

As shown in Figure 1, an injection molding machine 
like the one in our lab is well instrumented. All key 
process conditions such as the temperatures, 
pressures, displacement and velocity can be online 
measured by their corresponding transducers, 
providing abundant process information. However, 
many of these process variables are correlated and 
time varying. In addition, different stages of 
operation can lead to different process behaviours, as 
discussed in detail in the next section. It is an ideal 
candidate for application of the proposed stage-based 
multivariate statistical modelling. 

For injection molding, high degree of automation is 
possible. After the process conditions are properly set, 
the process repeats itself to produce molded part at a 
high rate. The process is, however, susceptible to the 
production of off-spec products due to various 
process malfunctions, drifting of process conditions, 
changes in materials, and unknown disturbances. 
Abrupt, gross faults in the key process variables can 
be easily and reliably detected by the conventional 
SPC chart. Slow drift or faults involving multiple 
process variables, however, can be hard to detect. 
These process faults, even if they are small and not 
common, can lead to production of large quantity of 
bad parts, if they are not detected earlier. 

The material used in this work is high-density 
polyethylene (HDPE). The process variables selected 
for modelling are shown in Table 1. The operating 
conditions are set as follows: injection velocity is 
24mm/sec; mold temperature equals 25ºC; seven-
band barrel temperatures are set to be (200, 200, 200, 
200, 200, 180, 160, 120) ºC; packing-holding time is 

 

Fig. 1. Simplified illustration of injection molding machine and
measuring points 

Table 1 Description of the process variables 

No. Variable’s description Unit 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Nozzle Pressure 
Stroke 
Injection Velocity 
Injection Pressure 
Plastication Pressure 
Injection Cylinder Pressure 
Cavity Pressure 
Screw Rotation Speed 
SV1 opening 
SV2 opening 
Cavity Temperature 
Nozzle Temperature 
Barrel Temperature 1 
Barrel Temperature 2 
Barrel Temperature 3 
Barrel Temperature 4 

Bar 
mm 

mm/sec 
Bar. 
Bar 
Bar 
Bar 

RPM 
% 
% 
°C 
°C 
°C 
°C 
°C 
°C 



     

fixed to be 3 seconds with total cycle time around 20 
seconds. Totally, 60 normal batch runs are conducted 
under this operating condition. Another three batch 
runs are conducted under abnormal conditions for the 
sub-PCA based process monitoring and diagnosis 
scheme, as detailed in Section 4. 

3. MULTISTAGE SUB-PCA MODELING 

3.1. Data pretreatment 

Consider a batch process with J  process variables 
measured over sampling points k  ( Kk ,,2,1 L= ); a 
data matrix of dimensions KJ ×  is generated from 
each batch run. A set of I  number of normal batch 
runs hence result in a three-way process data matrix, 

)( KJIX ×× , which is the most popular data form for 
batch process.  

For the injection molding process as illustrated in 
this paper, about 1000 measurements for each 
variable, after removing the meaningless data at the 
end of each batch run, result in the reference data 
matrix )( KJIX ×× of dimension 10001660 ×× . The 
reference data should be properly scaled before 
process modelling. Several kinds of scaling methods 
are argued for the three-way reference data sets by 
Westerhuis, et al. (2000). For a multistage batch 
process, different process variables dominate 
different stages; it is desirable to scale process 
variables within batch run to retain the inherent 
weights in different stages. In this work, process 
variables are normalized by mapping the original 
measurements into [0,1].  

The reference data for batch process is a three-way 
matrix with three directions standing for batch runs, 
process variables and sampling points, respectively. 
To analyse the correlation structure in different batch 
runs at each sampling time, the reference three-way 
matrix is unfolded along the time direction, resulting 
in K number of time-slice matrices, k

JIX ×
~ . The 

conventional two-way PCA method is directly 
applied to these time-slice matrices to extract the 
correlation information.   

3.2. Multistage sub-PCA modelling 

The key to multistage sub-PCA is based on the 
recognition of the following: (1). a batch process 
may be divided into several stages, based on its 
process characteristics; (2). process correlations in 
two time-slice matrices is similar if the data are 
sampled within the same stage, despite of the fact 
that the process may be time varying. The changes of 
operation stages result in changes of the correlation 
structures in the time-slice matrix series; also, 
changes of the correlation may also indicate changes 
in the process stages.  

For each kX~ , conventional PCA can be applied 
directly because each batch run can be considered to 
be independent, and the process variables at time k 
for each batch run can also be viewed as 
independent. kX~ can then be decomposed by,  

Tkkk PTX )~(~~
= ( Kk ,,2,1 L= ).             (1) 

The p-loading matrix, kP~ , in fact contains the 
correlation information, which can be used to guide 
the division of the batch process and to build sub-
PCA models. A special designed clustering algorithm 
is introduced to cluster these K numbers of p-loading 
matrices, kP~ ( Kk ,,2,1 L= ), into C groups, 
representing C numbers of “operation” stages for a 
batch process. Define *

cP  ( Cc ,,2,1 L= ) as the 
representative p-loading matrix for the cth stage as, 
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where cstagen _  stands for the amount of the process 
data belonging to the stage c.  

Similar to that in PCA, *
cP  is divided into two parts, 

*
cP and *~

cP , for principal component subspace and 
residual space, respectively. In each stage 
c ( Cc ,,2,1 L= ), the representative p-loading 
matrix, *

cP , is then used to construct a sub-PCA 
model for stage c  as, 
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The stages may be associated with process time 
spans if the process is controlled by a time sequence. 
However, this may lead to occasional mis-grouping 
of new process data into a wrong stage, due to batch 
variation. Some characteristic process variables may 
also be used to better reflect the stage changes, for 
example, conversion rate for a batch reactor. 
Alternatively, the control limits at the edges of each 
stage can be relaxed to reflect the process transient 
nature from one stage to another. 

3.3 Post data analysis 

As shown in Figure 2, the p-loading clustering 
algorithm can divide the process into four main 
stages and two transient stages according to the 
change of process correlation. The cooling stage, a 
long operation stage, actually consists of plastication 
phase and cooling phase, which can be clearly 

Fig. 2. Stage division of injection molding process by 
sub-PCA method 
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divided by sub-PCA method. A few samples in the 
transient response from packing-holding phase to 
plastication phase and from plastication phase to 
cooling phase form two new stages, called transient 
stage. Four sub-PCA models are then derived for the 
four main stages. This PCA analysis results in 
similar stage division to the actual stages used in 
polymer processing industry, which suggests that the 
stage division based on the proposed p-loading 
clustering method can indeed promote the process 
understanding. 

The p-loadings of the stage PCA models are listed in 
Table 2. The p-loading plots, which are obtained by 
plotting the second loading vector against the first, 
indicate the correlation structure of process variables. 
Variables, located in the same clustering, have high 
correlation; variables in different clustering have 
weak relation (Kaspar and Ray, 1992; Yang et al., 
2002). As illustrated in Figure 3, process variables 
(except barrel temperatures) form different clustering 
in different stage, indicating that these variables have 
different correlation structures at different stages. 
The variables located in the circle have small values 
in the p-loading vectors, indicating that they are 

“unimportant” variables for that stage. Variables 
enclosed by the diamonds and rectangles are 
dominant variables, have significant contributions to 
the stage PCA model. All barrel temperatures lie in 
the rectangle (Variable No. 13, 14, 15 and 16), 
forming an independent clustering indicating that 
they have weak relation with other process variables, 
which will be discussed in detail in Section 4. It is 
important to point out that variables in the diamonds 
change from stage to stage, indicating the varying 
process characteristics and the necessity for a stage 
based analysis.  

4. PROCESS MONITORING AND FAULT 
DIAGNOSIS BASED ON SUB-PCA MODEL 

Statistical process monitoring is conducted based on 
hypothesis tests on two indices, the Hotelling- 2T  and 
the Q  statistics indices (or SPE value), in the 
principal component subspace and residual subspace, 
respectively. The confidence region of Hotelling- 2T  
statistic can be estimated by F -distribution; while Q  
statistics can be well approximated by a weighted 2χ  
distribution (Jackson, 1979, 1991; Westerhuis, et al., 
2000). The control limits can be computed following 
the procedures proposed by Lu et al. (2002). The 
control limits estimated from I number of normal 
batch runs describe the normal and systematic 
variations of the process, provided that the reference 
process data can cover all normal cases.  

On-line process monitoring and fault diagnosis are 
conducted by judging whether the scores and SPE 
value of the coming measurements in a running batch 
are below the control limits. The Hotelling- 2T  
statistic reveals the abnormality, which can be 
described by the sub-PCA model; while the Q  
statistic shows the unexplained information after the 
process variables being projected onto the principal 
hyperplane. The process is monitored using the 
Hotelling- 2T and SPE charts. The batch operation is 
monitored at every sampling point k with both 
Hotelling- 2T  and SPE monitoring charts. The 
monitoring procedure first judges which stage the 
new coming data belongs to, and then call the 
corresponding sub-PCA model to calculate the values 
of two indices, Hotelling- 2T and SPE. The values of 
the two statistics for normal batch runs will be well 
below the control limits, while abnormal batches may 
have large values of the Hotelling- 2T  and/or SPE 
statistics. Once an abnormal condition is detected by 
the monitoring charts, the contribution plot, a 
commonly-used and effective diagnosis tool, is used 
to diagnose the fault cause for that stage. 

In this work, three typical faults are intentionally 
introduced. Fault #1 is material disturbance by 
adding a few grams of polypropylene (PP) into the 
HDPE. Fault #2 is a barrel temperature sensor failure; 
while fault #3 is caused by check-ring failure, which 
is a common problem in injection molding. All faults 
can change the correlation structure, generating 
unexplained information by the stage PCA model. 
They can be promptly detected by the monitoring 

Table 2 Sub-PCA models in four operation stages 
 

 Injection 
stage 

Packing 
stage 

Plastication 
stage 

Cooling 
stage 

* 

.26   -.11 

.20   -.08 

.38   -.17 

.34   -.15 
0         0 
.37   -.13 
.02   -.01 
0         0 
.38   -.18 
0         0 
.29   -.14 
.30   -.11 
.18    .48 
.20    .49 
.18    .47 
.23    .39 

.36   -.15 

.38   -.16 

.01   -.01 

.35   -.15 
0         0 

.06         0 
.37   -.16 
0         0 
.27   -.11 
0         0 
.34   -.16 
.34   -.12 
.18    .48 
.19    .50 
.18    .47 
.23    .40 

.05   -.03 

.23   -.12 

.10   -.06 

.06   -.03 

.44   -.23 
0         0 
.02   -.01 
.41   -.22 
.22   -.13 
.45   -.25 
.23   -.15 
.08   -.02 
.22    .46 
.22    .47 
.22    .45 
.29    .37 

.02    .03 
0          0 
0          0 
.04    .04 
0         0 
.14    .15 
0         0 
0         0 
.55    .68 
0         0 
.20    .28 
.10    .09 
.35   -.38 
.38   -.38 
.36   -.33 
.47   -.14 

** 90.02 90.51 88.53 84.82 
*   denotes p-loading vectors. 
** denotes the percentage of explained variance by the retained 

principal components. 
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Fig. 3. Correlation structures shown in the p-loading plots.
Variables in circle are “unimportant variables”; variables
in rectangle are barrel temperatures; variables in diamond
are characteristic variables for that stage.  
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Fig. 6. T2 and SPE monitoring charts for fault #2. 
(Solid line, 99% control limit; dash line, 95% control limit)
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Fig. 4. T2 and SPE monitoring charts for fault #1. 
(Solid line, 99% control limit; dash line, 95% control limit)
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Fig. 5. Contribution plots of the four stages for fault #1 
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charts in the corresponding stage, as illustrated in 
Figures 4-8. 

• Fault #1 

Material disturbance is the first fault introduced to 
test the proposed method. A small amount of PP is 
added to the processing of HDPE. The T2 and SPE 
monitoring charts, as shown in Figure 4, indicate that 
this fault can be identified soon after the starting of 
filling phase. In terms of the four contribution plots 
as shown in Figure 5, contamination of a small 
amount of PP into the HDPE, results in a lower 
cavity temperature (No. 11) throughout the cycle, as 
PP cools and solidifies faster than HDPE. At the 
same time, the viscosity of PP is higher than that of 
HDPE, which generates larger shear heating for PP, 
resulting in a higher nozzle melt temperature (No.12). 
The contribution plot of the packing phase is 
different from the others. The cavity pressure (No.7) 
has lower values due to the faster solidification of PP. 
This characteristic difference among different stages 
can only be revealed by such a stage-based approach. 

• Fault #2 

When one thermocouple that measures the barrel 
temperature fails, the reading of this temperature 
drops, resulting in full heating of this zone. This 
creates excessive heats to be conducted to the 
neighbouring zones, even the heating of those zones 
are fully shutdown.  This change can be quickly 
picked up by the Hotelling- 2T and SPE monitoring 

charts as shown in Figure 6. The contribution plots of 
the four operation stages, shown in Figure 7, clearly 
indicate the drop of the failed zone temperature (No. 
14) and the increased temperatures of the 
neighbouring zones. The contribution plots in all four 
stages are similar, because this fault has similar 
impact on the four stages. As shown in Figure 3, the 
barrel temperatures (No.13, 14, 15 and 16) form an 
independent and stable clustering throughout the 
batch. 

• Fault #3 

The check-ring valve, a device that allows the 
polymer melt flow from the screw channel to the 
nozzle during plastication, closes during injection 
and packing stages to prevent polymer backflow 
from the nozzle to screw channel. Check-ring failure 
upsets the process correlations of different stages in 
different ways. As shown in Figures 8, fault #3 can 
be readily detected by the SPE monitoring charts. 
The contribution plots in the first three stages, 
however, are different, indicating that the fault #3 has 
different fault characteristics in different stages. The 
application of stage-based sub-PCA method is 
advantageous for diagnosing such a fault.  

During the filling stage, smaller amount of material 
will be injected into the cavity, at the same injection 
velocity, due to the back flow associated with the 
failure of the checking ring valve. The nozzle 
pressure (No.1), injection pressure (No.4) and cavity 
pressure (No.7) are lower, as clearly indicated by the 
contribution plot of the stage. During the packing-
holding phase, more material will have to be packed 
into the cavity to make up the shortfall in the filling, 
resulting in a higher stroke (No.2), higher screw 
speed (No.3), higher pressures (No.4, 5), as expected 
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from the analysis of the process. This can also be 
clearly seen in the contribution plot. During 
plastication, as longer stroke has travelled in filling 
and packing, a longer plastication stroke (No.2) has 
to recovered, which is clearly seen in the 
contribution plot of this stage. 

The above analysis is accorded well with the process 
knowledge of injection molding. For the faults that 
show different fault characteristics in different stages, 
it is desirable to analyse the contribution plots of 
different stages to give a reasonable cause to the fault. 
This suggests that the application of the sub-PCA 
modelling method can indeed enhance the process 
understanding, and improve the ability of fault 
detection and diagnosis. 

5. CONCLUSIONS 

A multistage multivariate model has been developed 
based on the historical data of normal batch runs for 
injection molding process. This modelling method 
divides the process into several stages, similar to 
what is practiced by an injection molding expert. 
With this multi-stage model structure, the correlation 
in each operation stage can be analysed in detail to 
enhance the understanding of the process. The 
experimental applications indicate that the stage-
based sub-PCA modelling is effective for monitoring 
and detecting process faults. The most possible cause 
of the abnormality can also be obtained by 
combining the fault characteristics of different 
stages. The procedures presented in this paper can 
provide process operators with a tool for stage-
division purely by data analysis. The stage-based 
monitoring and diagnosis can not only allow on-line 
monitoring without the need of predicting future data, 

but also can isolate and identify a fault to a specific 
stage of the process operation. 
 
 

REFERENCES 
 

Chen J. and Liu, K. C. (2002). On-line batch process 
monitoring using dynamic PCA and dynamics 
PLS models. Chem. Eng. Sci., 57, 63.  

Chen X. (2002). A study on profiling setting of 
injection molding. Ph.D. Thesis, The Hong Kong 
Univ. of Sci. & Tech., Hong Kong. 

Dong D. and McAvoy T. J. (1996). Batch tracking 
via nonlinear principal component analysis. J. 
AIChE, 42, 2199. 

Jackson J. E. (1991). A User’s Guide to Principal 
Components. Wiley, New York. 

Jackson J. E. and G. S. Mudholkar (1979). Control 
procedures for residuals associated with principal 
component analysis. TECHNOMETRICS, 21, 
341. 

Kaspar M. H. and W. H. Ray (1992). Chemometric 
methods for process monitoring and high-
performance controller design, J. AIChE,  38, 
1593. 

Louwerse D. J. and Smilde A. J. (2000). Multivariate 
statistical process control of batch processes 
based on three-way models. Chem. Eng. Sci., 55, 
1225. 

Lu N., F. Gao and F. Wang (2002) A sub-PCA 
modeling and on-line monitoring strategy for 
batch processes. Submitted to J. AIChE. 

Martin E. B. and A. J. Morris (1996). An overview of 
multivariate statistical process control in 
continuous and batch process performance 
monitoring. Trans. of Int. Meas. & Cont., 18, 51. 

Nomikos P. and MacGregor J. F. (1995). 
Multivariate SPC charts for monitoring batch 
process. TECHNOMETRICS, 37, 41. 

Nomikos P. and MacGregor J. F. (1994). Monitoring 
batch processes using multiway principal 
component analysis. J. AIChE, 40, 1361. 

Rännar S., MacGregor, J. F. and Wold, S.(1998). 
Adaptive batch monitoring using hierarchical 
PCA. Chemometrics and Intelligent Laboratory 
Systems, 41, 73. 

Westerhuis J. A., Gurden S. P. and Smilde A. K. 
(2000). Standardized Q-statistic for improved 
sensitivity in the monitoring of residuals in 
MSPC. J. Chemometrics, 14, 335. 

Wold, S., P. Geladi, K. Esbensen, and J. Ohman. 
(1987). Multi-way principal components and PLS 
analysis. J. Chemometrics, 1, 41. 

Yang Y. and Gao F. (1999). Cycle-to-cycle and 
within-cycle adaptive control of nozzle pressures 
during packing-holding for thermoplastic 
injection molding. Poly. Eng. Sci. 39, 2042 

Yang Y., Lu N., Wang F. and Ma L. (2002). A new 
fault detection and diagnosis method based on 
principal component analysis in multivariate 
continuous processes. The 4th Proceeding Of the 
World Congress on Intelligent Control and 
Automation, Shanghai, P. R. China, 3153.  


