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Abstract: In this work the problem of on-line monitoring of product quality and
production rate in a copolymer reactor is addressed, using an estimation scheme with
secondary measurements of density, refractive index, temperature, and volume. Three
different estimator structures are studied: (a) the nominal detectability structure that
underlines the extended Kalman filter and Luenberguer observers, (b) a passive
estimation structure with estimation degrees equal to one, and (c) a hybrid structure that
combines the detectability and passive structures in low and high gain, respectively. The
nominal detector maximizes the reconstruction rate, the passive estimator maximizes the
robustness, and the cascade (hybrid) design achieves a suitable compromise between
them. The approach is illustrated with a copolymer reactor case and simulations.
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1. INTRODUCTION

Copolymerization is an important industrial process
where commodity and engineering plastics are
manufactured. In a continuous reactor operation, the
knowledge of the instantaneous copolymer properties
(such as copolymer composition, conversion, mass
fraction, molecular weight, etc.) is important for on-
line monitoring, control, and fault detection purposes.
These properties have direct implications in the
safety, product quality and production rate
performance indices, but they are not available on-
line. Thus, the estimation objective is the inference of
variables related to product quality and production
rate using a model-based estimation technique with
secondary on-line measurements (Mutha et al., 1997;
Dimitratos et al., 1991; Ellis et al, 1994; Van Dooting
et al., 1992).

In polymer reactor engineering, the Extended
Kalman Filter (EKF) is the most widely used state

estimation technique, and the Luenberguer observer
(LO) has been increasingly considered in the last
decade. In both techniques, their structure is fixed
and determined by the nominal observability
property. If this property is ill-conditioned, any
appropriately constructed and tuned detector should
diverge or malfunction. To tackle this problem, the
idea of considering the estimator structure as a
degree of freedom to improve its functioning was
proposed in the geometric estimation design (Alvarez
and Lopez, 1999; Alvarez, 2000). In Hernandez and
Alvarez (2003), the corresponding definition of
nonlinear estimability (a robust form of detectability)
was put in formal perspective with the existing
indistinguishability-based definitions of nonlinear
detectability (Hermann and Krener, 1977; Sontag,
1990). In Alvarez and Lopez (2003), the effect of the
estimator structure on its functioning was studied for
a representative case study of a copolymer reactor,
showing that: (i) the structure decision problem is not
trivial in the sense that there are 56 possible estimator



structures for the case study; (ii) the best functioning
is attained neither with the nominal detectability
structure associated with the standard EKF and LO
nor with a passive estimation structure (i.e. with
estimation degrees equal to one), but with an
intermediate structure; and (iii) how the estimation
structure determines the estimator reconstruction rate
and the error propagation mechanism.

Having as a point of departure the aforementioned
results on the copolymer reactor case (Lopez and
Alvarez, 2003), in this work the problem of on-line
inferring the safety, quality and production rate is
addressed. Using the geometric estimation approach
with secondary measurements of density, refractive
index, temperature, and volume. Considering that the
nominal detector maximizes the innovated dynamics
dimension and therefore the reconstruction rate, and
that the passive estimator maximizes the robustness
to modeling errors. Here the idea is to use a hybrid
structure that superimposes a fast passive estimator
with the slow nominal detector, obtaining a cascade
estimator that yields a better compromise between
reconstruction rate and robustness. The three
estimator designs (nominal detector, passive
estimator and cascade design) are illustrated with a
copolymer reactor case and simulations.

2.  THE COPOLYMER REACTOR PROBLEM

2.1 The reactor model

Let us consider a continuous reactor where a solution
copolymerization takes place (see Fig. 1). The
reactions are strongly exothermic, and heat is
removed by means of a cooling jacket. There is
significant gel-effect (i.e., reaction autoacceleration
by diffusional limitations in the mobility of the
copolymer chains), meaning a copolymer conversion
accompanied by a considerable viscosity increase
and a decrease in the heat exchange capability. From
standard kinetics, reaction engineering, and viscous
heat exchange modeling considerations, the reactor
model is given as follows (functions and parameters
defined in Padilla and Alvarez, 1996):

m
.

1 = -r1 + (q1m1e - qem1)/V := f1(m1,m2,p1,p2,i,T,V)

m
.

2 = -r2  + (q2m2e - qem2)/V := f2(m1,m2,p1,p2,i,T,V)

p
.

1 = -r1(1-ε1) + (q1p1e - qep1)/V:= f3(m1,m2,p1,p2,i,T,V)

p
.

2 = -r2(1-ε2) + (q2p2e - qep1)/V:= f4(m1,m2,p1,p2,i,T,V)

i
.
 = -rI  + (wI - qei)/V := f5(i,T,V)

T
.
 =  rT - γ(T-Tc) + qhe - qh := f6(m1,m2,p1,p2,i,T,V)

V
.
   = qe – q := f7(m1,m2,p1,p2,i,T,V)

µ
.

0= rµ0+[(q1+q2)µ0e-qeµ0)/V:=f8(m1,m2,p1,p2,i,T,V,µ0)

µ
.

2= rµ2+[(q1+q2)µ2e-qeµ2)/V:= f9(m1,m2,p1,p2,i,T,V,µ2)

where
qe  = q1φ1 + q2φ2 + qsφs + (r1φ4 + r2φ5)V

qh  = (q1ρ1 + q2ρ2  + qsρs)T/ (ρV)

qhe = (q1ρ1Cp1T1e + q2ρ2Cp2T2e + qsρsCpsTse)/ (ρVCp)

The reactor states (x) are: the dimensionless
concentrations (referred to pure materials) of the i-th
monomer (mi), of the i-th converted monomer (pi),
and of the initiator (i); the temperature (T), the
volume (V), and the zeroth (µ0) and second (µ2)
moments of the chain length distribution (CLD). The
exogenous inputs (u) are: the feed concentration of i-
th monomer (mie), and of the i-th converted monomer
(pie); the feed temperatures of the i-th monomer (Tie),
and of the solvent (Tse); the jacket temperature (Tc),
the feed flowrate of the i-th monomer (qi), and of the
solvent (qs); the mass feedrate of initiator (wIe); and
the exit flowrate (q). The total feed flowrate (qe) is
corrected by the contraction of volume due to the
polymerization, where (φ1, φ2, φ3, φ4, φ5) is equal to
(1, 1, 1, 0, 0) if no volume contraction is considered.
While the dimensionless solvent concentration (s) is
given by

s = 1 - (m1 + m2 + p1 + p2)

The following set of scalar fields are smooth and
strictly positive: the rates of initiator decomposition
(rI), polymerization of monomers 1 (r1) and 2 (r2),
and change of the zeroth (rµ0) and second (rµ2) CLD
moments, the ratios of heat generation (rT) and
exchange (γ) to heat capacity, the input (qhe) and the
output (qh) enthalpy flows.  The measured outputs (y)
are the density (ρ), the refractive index (η), the
temperature (T), and the volume (V):

y1 = ρ,         y2 = η,         y3 = T,         y4 = V

where ρ is calculated by volume additivity and η
according the Lorimer theory (1972):

Fig. 1. The copolymerization reactor.



ρ = m1ρ1
o

 + m2ρ2
o

 + p1ρ1
p
 + p2ρ2

p
 + sρs

o := h1(m1,m2,p1,p2)

η= ηo+ Csν + a2Cs
2 := h2(m1,m2,p1,p2)

The outputs (z) to be inferred are: the instantaneous
composition (zc) of monomer 1, the conversion (zp)
of copolymer, the weight-average molecular weight
(zM) of the CLD, and the production rate (zR) of
copolymer:

zc  = r1M1
o / (r1M1

o + r2M2
o) := g1(m1, m2, p1, p2, i, T)

zp = (p1P1
o + p2P2

o) / (m1M1
o + m2M2

o + p1P1
o + p2P2

o)
    := g2(m1, m2, p1, p2)

zM = µ2 / (p1P1
o + p2P2

o) := g3(p1, p2, µ2)

zR  = (r1ρ1
o + r2ρ2

o)V:= g4(m1, m2, p1, p2, i, T)

which are key variables to monitor the product
quality and the production rate.

In compact notation, the reactor model can be as
follows:

x
.
 = f(x, u, p),          y = h(x, p),         z = η(x, p) (1)

where p is the vector of model parameters, and

x = [m1, m2, p1, p2, i, T, V, µ0, µ2]
T

y = [yρ, yη, yT, yT]T

u = [m1e,m2e,p1e,p2e,T1e,T2e,Tse,Tc,q1,q2,qs,wIe,q]T

z = [zc, zp, zM, zR]T

2.2 Reactor dynamics

As a case study, the copolymerization of  methyl
methacrylate (MMA) and vinyl acetate (VAC) is
considered, with ethyl acetate (AE) as solvent and
azo-bis-isobutyronitrile (AIBN) as initiator. In
steady-state operation, the copolymer reactor may
exhibit multiplicity of critical points (Hamer et al.,
1981). The nominal input

u = [1.0, 1.0, 0.0, 0.0, 315 K, 315 K, 315 K, 328 K,
       1.11x10-3 m3/min,6.23x10-3 m3/min,1.99x10-3

       m3/min,6.66x10-5 Kmol/min, 8.53x10-3 m3/min]T

was chosen such that the reactor had three steady-
states: two of them (ignition and extinction-type) are
stable, and one is unstable. To test the functioning  of
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Fig. 2. Time-varying exogenous inputs.

the proposed estimation designs, the following
reaction motion was considered. Initially, the reactor
is  at  its unstable steady-state, and the four
exogenous inputs u(t) = [m1e(t), T1e(t), T2e(t), Tse(t)]

T

are varied as shown in Fig. 2. As a result, the reactor
is driven to its ignition-type steady-state after
undergoing a transient with ample and abrupt
changes in its state, as it can be seen in the
continuous thick curves of Fig. 4. This drastic motion
must be regarded as the extreme case of a practical
situation, in order to subject the proposed estimation
scheme to a severe test.

2.3 The on-line monitoring problem

Our main objective is the on-line inference of the
variables (z) related to product quality (instantaneous
composition, conversion and molecular weight) and
production rate, using a robust estimation design with
on-line secondary measurements (y) of density,
refractive index, temperature, and volume.

As mentioned before, this reactor admits 56 estimator
structures (Lopez, 2000; Alvarez and Lopez, 2003),
including the nominal detectability structure
associated to the standard EKF and LO designs.
However the best functioning is attained nor with the
nominal detectability structure either with a passive
structure, but with an intermediate one. Here, a
constructive-like framework (Sepulchre et al., 1997)
is recalled to design a cascade estimator to improve
its behavior: a low gain detectability structure is
cascaded to a high gain passive structure in order to
obtain a better compromise between reconstruction
rate and robustness to modeling errors.

3. NONLINEAR ESTIMATION

In this section, the notions of nominal and robust
nonlinear detectability are defined according Alvarez
and Lopez (1999) and Hernandez and Alvarez
(2003). The construction of the geometric high-gain
observer follows from a straightforward consequence
of the detectability property. The estimator
construction, the convergence criterion, and the
tuning technique can be found in Alvarez and Lopez
(1999) and Alvarez (2000). Then, the nominal and
passive structures of the copolymer reactor case are
recalled (Lopez, 2000; Lopez and Alvarez, 2003).
Then, the cascade structure is introduced and
justified. Finally, three estimator designs are
presented and compared: the nominal detector, the
passive estimator and the cascade design.

3.1 Detectable and passive structures

From Lopez (2000) and Lopez and Alvarez (2003),
we know that the copolymer reactor  [Eq. (1)] motion
is nominally detectable (i.e. the  observability  matrix



has maximum rank) with the structure:

SD = ( k , xo, xµ) (2)

where k  is the observability index vector, and xo (or

xµ) is the observable (or unobservable) state:

k  = (k1, k 2, k 3, k 4) = (2, 2, 2, 1),   k =  k i = 7 (3a)
xo = [x1, …, x7]

T = [m1, m2, p1, p2, i, T, V]T (3b)

xµ = [x8, x9]
T = [µ0, µ2]

T (3c)

This detectability property with partial observability
follows from the fulfillment of two conditions: (i) the
observability matrix O has rank 7 over time, and (ii)
the unobservable motion xµ (t) is stable. This is,

Rank Ο(x, u, p, k ) = 7   ∀ t (4a)

Ο(x, u, p, k ) = φ/ xo,       dim O = k = 7 (4b)

φ(x, u, p, k ) = [h1, ( h1/ x) f, h2, ( h2/ x) f, x6, f6, x7]
T

and the unobservable dynamics

x
. *

µ = [f8, f9]
T[φ-1(u, p, k ), x

*
µ, u, p]:= fµ(xo, x

*
µ, u, p) (5a)

have a (unique) stable solution

x*
µ(t)  = θµ(t, t0, x

*
µ0, u, p, k ) (5b)

The nominal detectability structure SD [Eq. (2)] is the
one that, over the set of 56 admissible structures,
maximizes the dimension of the innovated (i.e., with
measurement injection) dynamics, or equivalently,
the reconstruction rate, regardless of robustness
considerations. If the observability matrix [Eq. (4b)]
is ill-conditioned, any nominal detectability-based
observer should malfunction or diverge.

In the spirit of the passivation backstepping
procedure (Sepulchre et al., 1997; Kristic et al.,
1995), let us recall the passive structure (Lopez and
Alvarez, 2003)

SP = ( κ , xI, xII) (6)
that maximizes the robustness at the cost of the
reconstruction rate. κ is the estimation degree vector,
and xI (or xII) is the innovated (or non-innovated)
state:
κ = (κ1, κ2, κ3, κ4) = (1, 1, 1, 1),     κ = κi = 4 (7a)
xI = [x1, x2, x6, x7]

T = [m1, m2, T, V]T (7b)

xII = [x3, x4, x5, x8, x9]
T = [p1, p2, i, µ0, µ2]

T (7c)

This estimability property (with minimum
innovation) follows from the fulfillment of two
conditions: (i) the innovation matrix O has rank 4
over time, and (ii) the non-innovated motion xII(t) is
stable. This is,

Rank Ο(x, u, p, κ ) = 4   ∀ t (8a)

Ο(x, u, p, κ ) = φ/ xI,       dim O = κ = 4 (8b)

φ(x, u, p, κ ) = [h1, h2, x6, x7]
T

and the non-innovated dynamics

x
. *

II = [f3, f4, f5, f8, f9]
T[φ-1(u, p, κ ), x

*
II, u, p]

   := fII(xI, x
*
II, u, p) (9a)

have a (unique) stable solution

x*
II (t)  = θII(t, t0, x

*
II0, u, p, κ ) (9b)

Figure 3 shows the condition number of the
observability (or innovation) matrix [Eqs. (4b) or
(8b)] associated to the nominal detectability (or
passive) structure SD (or SP), showing that the
observability matrix is significantly more ill-
conditioned (by 5 order of magnitude) than the
passive innovation matrix.

3.3 Cascade structure

In the adjustable structure estimation study presented
in Lopez and Alvarez (2003), it was established that
the best estimator behavior was attained with an
intermediate degree (k = 5) structure, and not with
the detectability (k = 7) or passive (κ = 4) structure.
In the understanding that the detectability structure is
the one that underlies the well known nonlinear EKF
and LO. Motivated by the structure-oriented
nonlinear constructive control approach (Sepulchre et
al., 1997; Kristic et al., 1995), in the present work a
different way to obtain a better estimator behavior is
considered: the cascade combination of a low gain
detectability structure with a high gain passive
structure. According to the following rationale: (i)
first, a high-gain passive estimator (i.e, with fast
dynamics) is designed in order to quickly and
robustly match the input-output reactor behavior,
regarding this estimator as a redesigned model, and
then (ii) a low-gain nominal detector is designed for
this new model, in order to reconstruct the maximum
number of states. This idea has been applied
successfully in a catalytic reactor with experimental
data (Lopez et al., 2002). However in this catalytic
reactor the structure estimation choice was not a
complex task because there are only two candidate
structures. While in our copolymer reactor case there
are 56 admissible estimation structures.

To define the cascade structure, let us consider the
following state partition:
x = [xI, xP, xµ]T (10a)

xI = [x1, x2, x6, x7]
T = [m1, m2, T, V]T (10b)

xP = [x3, x4, x5]
T = [p1, p2, i]

T (10c)

xµ = [x8, x9]
T = [µ0, µ2]

T (10d)
where xP is made by the observable states [Eq. (3b)]
transferred from the observable state (xo) to the non-
innovated one (xII).

0 500 1000 1500

10
4

106

108

time  (min)

C(O)  

Fig. 3. Condition number C(O) of the observability
( ) or innovation ( • • • • •) matrices [Eqs. (4b)
or (8b)] associated to the detectability (SD) and
passive (SP) structures.



3.4 Estimators

Nominal detector. The PI (proportional - integral)
estimator construction follows from a straightforward
application of Theorem 2 given in Alvarez and Lopez
(1999), obtaining the following nominal detector:

ox̂  = fo( x, u, p̂ˆ ) + G( x, u, p, k,sˆˆ ) [y - h(x, p̂ˆ )]

        + H( x, u, p, kˆˆ ) ⌡⌠KI( k, s )[y - h(x, p̂ˆ )]dt (11a)

x̂µ  = fµ( x, u, p̂ˆ ) (11b)

ŷ  = h(x, p̂ˆ ),     ẑ = g(x, p̂ˆ ),    x̂ = [ ox xˆ ˆ, µ ]T (11c)

Here the nonlinear gains are given by

[G, H] ( x, u, p, k,sˆˆ ) = O-1( x, u, p, kˆˆ ) [Kp( k, s ), Π(k)]

O-1 is the inverse of the observability matrix, and {Π,
KP, KI} are given by (bd := block diagonal)

Π(k) = bd[π1, π2, π3, π4],            dim Π  = k x 4

KP(k, s) = bd[kp1, kp2, kp3, kp4],  dim KP = k x 4

KI(k, s) = diag[(sω1)
k1+1, (sω2)

k
2+1, (sω3)

k3+1, (sω4)
k4+1]

πi =  [1],        kpi = [sωi]    if ki = 1

πi =  [0, 1]T,  kpi = [(2ζ+1)sωi, (2ζ+1)(sωi)
2]T  if ki = 2

where (ωi, ζ, s) are the output reference frequencies
(one for each measurement), the reference damping
factor, and the celerity estimator parameter, which
are considered as tuning parameters.

Passive estimator. In this case the design is
equivalent to previous estimator [Eqs. (11)] but
replacing the observability index vector k  [Eq. (3a)]
by κ [Eq. (7a)], the observability matrix O [Eq. (4b)]
by the innovation one [Eq. (8b)], the state partition
[Eqs. (3b) and (3c)] by [Eqs. (7b) and (7c)], and the
unobservable dynamics [Eq. (5a)] by the non-
innovated dynamics [Eq. (9a)].

Cascade design. The application of the construction
guidelines given in the previous subsection yields the
cascade estimator:

Ix̂  =  fI(x,u,p̂ˆ ) + [G(x,u,p, ,sˆˆ κ f ) +

         G(x,u,p,k,sˆˆ s )] [y-h(x,p̂ˆ )] + [H(x,u,p,ˆˆ κ )KI( ,sκ f )

         + H(x,u,p,kˆˆ )KI(k,ss )] ⌡⌠[y - h(x,p̂ˆ )]dt (12a)

px̂  = fP(x,u,p̂ˆ ) + G(x,u,p,k,sˆˆ s) [y - h(x,p̂ˆ )]

        + H(x,u,p,kˆˆ ) KI(k,ss )⌡⌠[y - h(x,p̂ˆ )]dt (12b)

x̂µ  = fµ(x,u,p̂ˆ ) (12c)

ŷ  = h(x, p̂ˆ ),     ẑ = g(x, p̂ˆ ),    x̂ = [ I px x xˆ ˆ ˆ, , µ]T (12d)

where ss (or sf) is the slow (or fast) celerity parameter
that sets the convergence rate of the associated
passive estimator (or detector). In this way, the
convergence rate of xI (or xP) is affected by (ss, sf) (or
ss), and the convergence rate of the non-innovated
state xµ is independent of (ss, sf).

The convergence conditions for the detector and
passive estimators [Eqs. (11)] are given in Alvarez
and Lopez (1999). The technical derivation of the

convergence criterion of the proposed cascade design
[Eqs. (12)] goes beyond the scope of the present
work. Here, it suffices to say that the application of
the singular perturbation arguments employed in
standard cascade control design yields that the
proposed cascade estimator is convergent if: (i) first,
with the slow parameter defined (ss = 0), the
parameter sf is tuned sufficiently fast (typically 3 to
15 times the reactor natural dynamics) so that the
passive estimator robustly converges, and (ii) then,
the parameter ss is chosen sufficiently slow (ss > 0) so
that the cascade estimator functions with an adequate
trade off between reconstruction rate and robustness.

4. ESTIMATOR IMPLEMENTATIONS

4.1 Tuning

The nominal detector and the passive estimator were
tuned following the pole-placement geometric
estimation tuning scheme presented in Alvarez and
Lopez (1999). The output reference frequencies were
set as (ω1,ω2, ω3, ω4) = (1/2, 1/2, 2, 2)ωr, where ωr =
1/τr min-1 is the characteristic time of the average
reactor residence time τr = 200 min. The damping
factor was set as ζ = 0.71, and the celerity parameter
was set at s = 10 for both designs, meaning that their
dynamics are set ten times faster than the natural
output dynamics.

Following the tuning guidelines presented in the last
subsection, the cascade estimator was tuned as
follows: (i) the value sf = 10 of the passive estimator
was adopted, (ii) the damping factor ζ = 0.71 was
fixed, and (iii) the parameter ss was gradually
increased until a satisfactory functioning was attained
at ss = 4.

4.2 Functioning

To evaluate the estimator functioning, the estimator
model was run with the following errors: -4% error in
the activation energies of propagation, -20% error in
the heat transfer coefficient, and no volume
contraction (i.e., φ1 = φ2 = φ3= 1 and φ4 = φ5 = 0).

The detector and passive estimator estimates are
shown in Fig. 4. The detector estimates (thin
continuous plots) exhibit a fast oscillation response
with some offset. The passive estimator
(discontinuous plots) has a behavior in the other way
around: slow non-oscillatory convergence with larger
offset. These results (Lopez and Alvarez, 2003) are
in agreement with the conditioning assessment of the
observability and passive innovation matrices
presented in Fig. 3.

The cascade estimator functioning presented in Fig.
4, showing the estimates, has  effectively  achieved  a



better compromise between performance and
robustness: the behavior retains features of both
nominal and passive structures, so the motions are
slightly oscillating (mainly for the composition),
there are minor offsets, and fast convergence rates
are attained.

7.CONCLUSIONS

The problem of the product quality and production
rate inference has been addressed of a copolymer
reactor, using on-line secondary measurements.
Three different nonlinear estimation structures were
considered: (a) the nominal detectability structure,
that maximizes the reconstruction rate, (b) the
passive estimation structure that maximizes the
robustness, and (c) the proposed cascade estimation
structure which superimposes a fast passive detector
with a slow nominal detector, achieving a better
compromise between performance (fast
reconstruction rate) and robustness (tolerance to
modeling error and error propagation). Invoking
singular perturbation arguments, the cascade
estimator convergence was established in terms of a
cascade control like criterion: a fast passive gain with
a sufficiently slow detectability gain.
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