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Abstract 
 
Principal component analysis (PCA) has been used successfully for fault detection and identification in processes with highly 
correlated variables. The fault detection decision used depends solely on the current sample though the results of previous samples 
are available and is based on a clear definition of normal operation region, which is difficult to define in reality. In the present 
work, a novel statistical testing algorithm is integrated with PCA for further improvement of fault detection and identification 
performance. We use the idea to decompose the scores space and residual space generated by PCA into several subsets so chosen 
that in each subset the detection problem can be solved with an efficient recursive change detection algorithm based on χ2-
generalized likelihood ratio (GLR) test. Copyright  2003 IFAC 
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1. INTRODUCTION  

 
Today’s chemical processes are becoming heavily 
instrumented to measure a large number of process 
variables and data are being recorded more 
frequently. These process measurements are highly 
correlated. Identifying and troubleshooting abnormal 
operating conditions are difficult task with these large 
amounts of data. The most commonly used technique 
is principal component analysis (PCA). Process 
monitoring using PCA is widely based on ‘snap shot’ 
Shewhart type control charts, such as T2- and SPE-
statistic control charts.  The decision depends solely 
on the current sample though the results of previous 
sample are available. The implementation of this test 
is quite simple, but, as one might expect, one pays for 
this simplicity with rather severe limitations on 
performance. First, subtle failures are much difficult 
to detect with this simple scheme. Second, it is 
difficult to get a tradeoff between false alarm and 
quick fault detection. 
 
Several extended methods have been proposed for 
fault detection and identification based on PCA 
algorithm. Ku et al. (1995) proposed dynamic PCA 
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for process monitoring. Bakshi (1998) combined PCA 
and wavelet analysis (multiscale PCA) for fault 
detection. Kano et al. (2001) proposed moving PCA 
for process monitoring.  Kano et al. (2002) described 
process monitoring based on dissimilarity of process 
data.  
 
Several problems are not yet solved in these 
algorithms. First, a clear definition of normal 
operating condition is needed. This is not the case in 
reality. In general, there are large gray areas where 
incipient or small faults occur, while normal process 
can go to this region by chance. Second, multivariate 
CUSUM charts, which can detect small changes, are 
only available for scores. The monitoring of residuals 
is also very important. Third, though algorithms, 
which can detect small changes that affect the 
correlation structure such as Kano’s dissimilarity 
based process monitoring scheme, have been 
proposed, such schemes cannot detect the variables 
that are responsible for the fault when the fault 
occurs.   
 
In this paper, we describe an approach, which 
integrate PCA with efficient statistical testing 
algorithm which can solve the problems mentioned 
above. The outline of the paper is as follows. First, we 
give a brief introduction of PCA for process 
monitoring and fault detection.  Then, we review 



 

     

several statistical testing algorithms. The integration 
of PCA with an efficient statistical testing algorithm 
is then presented. Case studies to demonstrate the 
proposed approach are provided. The paper is 
concluded with summary. 

 
2. PCA FOR PROCESS MONIOTRING AND 

FAULT DETECTION 
 
PCA technique is used to develop a model describing 
the expected variation under normal operating 
conditions (NOC).  An appropriate reference m-
dimensional data set X with n samples and m variables 
is chosen which defines the NOC for a particular 
process. After the data has been properly scaled, PCA 
can be used to divide the measurement space into two 
subspaces, one principal component subspace and one 
residual subspace as, 
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where X is the normal operating condition data and E 
represents residual error matrix.  
 
The variance of each principal component is 
determined by the eigenvalues associated with the 
principal component. T2 statistic is a Shewhart type 
chart defined based on principal component subspace 
as, T
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diagonal matrix containing the eigenvalues associated 
with the A principal components retained in the 
model. Statistical confidence limits for T2 can be 
calculated by means of the F-distribution as follows. 
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SPE-statistic is another Shewhart type chart defined 
on the residual subspace. A general assumption is that 
the variance is same in all directions, so SPE-statistic 
is defined as, 
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The statistical confidence limits of SPE-statistic can 
be calculated from its approximate distribution. We 
can also approximate it as, 
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When a vector of new data is available, T2-and SPE-
statistic can be calculated based on the model 
generated and are compared with the corresponding 
confidence limits.  If either of the confidence limits is 
violated, a fault situation is detected. 
 
Contribution plots (Nomikos, 1996) are a PCA 
approach to fault identification that takes into account 
the special correlation, thereby improving the 
univariate statistical techniques. PCA separates the 
observation space into two subspaces – the reduced 
space defined by the principal components of the 
model and the residual subspace. If T2-statistic or 
SPE-statistic is out of limit, the contribution plots can 
be used to indicate the variables which are responsible 
the deviation. 

 
3. STATISTICAL TESTING STRATEGIES 

 
We assume that the measurement of the process 
follows an independent Gaussian multivariate 
distribution. For the measurement sequence, {Xi}, a 
vector of parameters θ, which is typically the process 
mean, describes the stochastic behavior of the 
process. Under the desirable conditions, this vector 
belongs to the set Θ0. A control procedure is applied 
to this process for fault detection and monitoring. If a 
control procedure triggers a signal under desirable 
conditions, it is classified as false alarm. At some 
point in time, the parameters abruptly change to some 
value that belongs to a rejectable set, Θ1. The control 
scheme is then supposed to detect this change as soon 
as possible.   
 
The criteria of performance of a control scheme are 
usually related to the behavior of some characteristics 
of its distribution, most typically the average run 
length (ARL), which is the average number of 
observations required for the algorithm to signal that 
θ has changed. Ideally, the ARL should be large when 
the process is in control and small when the process is 
out of control.  

 
An important tool used for fault detection is based on 
the logarithm of likelihood ratio. It is defined as 
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provided a good discussion on log-likelihood ratio 
strategy for fault detection. Under some general 
conditions, log-likelihood ratio schemes possess 
optimality properties in the sense that they provide the 
best sensitivity for a given rate of false alarms. 
 
3.1 Page’s CUSUM algorithm 
 
To improve the sensitivity of the Shewhart charts, 
Page (1954) modified Wald’s theory of sequential 
hypothesis testing to develop the CUSUM charts that 
have certain optimality.  In this algorithm, post 
change parameter θ1 is assumed known and the 
unknown change point is estimated by maximum 
likelihood in CUSUM scheme. The CUSUM criterion 
can be expressed recursively as 
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where a+ =a.I (a≥0), pθ(.) is the distribution density 
function depending on parameter θ. 
 
Moustakides (1986) has shown that Page’s CUSUM 
scheme is optimal in the minmax sense: let h be so 
chosen that E0(N) = γ and let Fγ be the class of all 
monitoring schemes subject to the constraint E0(N) 
≥γ, where E0(N) is the expected ARL when the 
process is in control. Then the above CUSUM 
minimize the worst-case expected delay over all rules 
that belong to Fγ. 
 



 

     

3.2 GLR algorithm 
 
The parameter θ1 after change is generally unknown. 
An obvious way to modify the CUSUM rule for the 
case with unknown post change parameter θ is to 
estimate it by maximum likelihood, leading to the 
Generalized Likelihood Ratio (GLR) rule. 
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Siegmund and Venkatraman (1995) give asymptotic 
approximations to the ARL of the GLR under θ0 and 
under θ≠θ0, which shows that the GLR rule is 
asymptotically optimal in the minmax sense.  For 
normal distribution with mean θ and variance 1, they 
have shown that hNE ~)(log 0

 as ∞→)(0 NE  for 
the GLR rule. This formula provides an estimation of 
h given )(0 NE . 
 
Unlike CUSUM rule, the GLR rule doesn’t have 
convenient recursive forms and the memory 
requirements and number of computations at time n 
grow to infinity with n.  
 
3.3 χ2-GLR algorithm 
 
If we know the post change parameter magnitude but 
not the direction, we can design an optimal recursive 
algorithm for the change detection.  Here, the process 
is an independent Gaussian multivariate (r>1) 
sequence and its mean vector θ changes at an 
unknown time ν. 
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We know the post change magnitude 
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01 )()( bT =−Σ− − θθθθ . It has been shown that χ2-
GLR can be calculated in recursive form, which 
greatly reduce the computational burden. The 
stopping time of GLR algorithm for this situation can 
be formulated in recursive form as  (Nikiforov 2001), 
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In this algorithm, the magnitude after change is 
assumed known, which is not true in practice. To deal 
with this problem, the GLR algorithm can be used. 
However, this algorithm is computationally 
expensive. Nikiforov (2001) proposed a suboptimal 
scheme to solve the computational burden problem. 
The idea is to decompose a given parameter space 
into several subsets so chosen that in each subset the 
detection problem can be solved with loss of a small 
part, ε, of optimality by a recursive change detection 
algorithm. 
 
3.4 ε-optimality algorithm 
 
This algorithm is designed for detection of changes 
over a domain  
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collection of L-parallel recursive tests. Each subset is 
so chosen that the detection problem can be solved by 
a recursive χ2-GLR algorithm.  
 
The ε-optimality algorithm is summarized below. 
1) Given the tuning parameters hbb ,,, 10ε , calculate 

the number of parallel tests L, which is the 

smallest integer 1
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2) For l = 1,…, L compute 
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initialize the L parallel tests. 
3) Take the next observations. For l = 1,.., L, 

compute )( ln aS . 

4) Check if haSaS Lnn ≥)}(,),(max{ 1 K  then declare 
alarm. Otherwise, go to step 3. 

 
4. PCA WITH EFFICIENT STATISTICAL 
TESTING ALGORITHM FOR PROCESS 

MONIOTIRNG 
 
In all the above algorithms, an inverse of covariance 
matrix Σ is needed for the fault detection procedure. 
However, when lots of process variables are measured 
and they are correlated, Σ can be singular or near 
singular.  In such case, PCA can be used to divide the 
measurement space into two subspaces—a score 
subspace and a residual subspace. 

 
Based on the PCA model, T2-statistic is designed to 
detect abnormality in the scores subspace while SPE-
statistic is for the residual subspace. In the 
conventional PCA procedure using T2 and SPE for 
fault detection, the overall type I error is controlled by 
the level of α. The type II error will be dependent on 
the post change parameter. Therefore, it is difficult for 
the procedure to detect small changes whose T2 and 
SPE statistics is inside the confidence limits. It is also 
difficult to get a good tradeoff between false alarm 
and quick detection based on this procedure. It has 
been shown that ε-optimality GLR algorithm can be 
used to detect small faults without increasing the false 
alarm rate. Here we proposed an algorithm to 
integrate PCA and ε-optimality GLR statistical testing 
algorithm for fault detection. 
 
First, capability to detect changes of extremely high 
magnitude can frequently be improved by introducing 
an additional signal criterion, which calls for a signal 
at the moment k if testing statistic of a single 
observation xk exceeds c, which is a predefined value. 
Here we choose 99.99% confidence limit for T2 and 
SPE-statistics as the c value for T2 and SPE statistics, 
respectively. We define the area between 68% and 
99.99% confidence of T2- and SPE-statistic as gray 
area in the scores and residuals subspace, 
respectively.  Several parallel recursive tests based on 
ε-optimality algorithm can be designed for the gray 
area. The following is a summary of the proposed 
algorithm. 



 

     

 
Offline stage 
1) Collect normal operating condition (NOC) data X 

and build PCA model based on NOC data 
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, where A is the number of 

principal components used in the model. 
2) Based on the PCA model, calculate the 68% and 

99.99% confidence limits for T2-statistic as 

68T and 
99.99T , and for SPE-statistic as 

68SPE  and 

99.99SPE .  

3) Given ε, calculate the number of parallel test for 

scores as ))
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the number of parallel test for residuals as 
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ceil(x) rounds the elements of X to the nearest 
integers towards infinity. 

4) Calculate the L optimal subdivisions for the test 
of scores and residuals. For l  = 1,…, L,  compute 
optimal subdivisions for T2-statistic as 
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5) Given E0(N), which is the expected ARL when 
the process is in control, calculate the threshold 
for the parallel tests. For parallel tests of scores, 

))}({log( 0 NEAhT = . For parallel test of residuals, 
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eigenvalue of covariance or correlation matrix of 
X. 
 

Online stage 
1) When new measurements ix  are available, 

calculate scores it and residuals ei as 

PtxePxt iiiii −== , . 
2) Calculate the T2 and SPE-statistic for the new 

data based on scores and residuals as 
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3) Otherwise, calculate the testing statistic for each 
parallel test for scores and residuals.  
For each l = 1,…, L, compute )( li TS  as 
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For each l  = 1,…, L, compute )( li SPES  similarly 
as, 
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If 
TLii hTSTS ≥)}(,),(max{ 1 K  and/or  

SPELii hSPESSPES ≥)}(,),(max{ 1 K , then an alarm 
is triggered. 

 
If an alarm is triggered, variable contribution can be 
used to determine the process variable(s) that are 
responsible for the alarm. PCA divides the variable 
space into the score subspace and the residual 
subspace. Therefore, the variable contribution to T2 
should just use the information in the subspace 
captured by PCs. According to our knowledge, all of 
the definition of variable contribution to T2 uses the 
information in the whole variable space. Here we 
provide a new definition of variable contribution to T2 
which using only the information in the subspace 
spanned by PCs. Given that xPt = , TtPx =ˆ where x̂  
is the prediction based on PCA model, 
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so we can define the variable contribution to T2 as  
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If the alarm is triggered by T2-statistic out of 99.99% 
confidence limits, the new definition of variable 
contribution to T2 can be used to determine the 
variables that are most affected by the fault.  If the 
alarm is triggered by one of the parallel tests in scores 
space. The following variable contribution definition 
to cumulative scores can be used.  
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If the alarm is triggered by SPE-statistic out of 
99.99% confidence limits, variable contribution to 
SPE statistic can be used for fault identification. If the 
alarm is triggered by one of the parallel tests for 
residuals, we can define variable contributions based 
on the cumulative residuals as follows and use them 
for fault identification.  

22
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If 
TLii hTSTS ≥)}(,),(max{ 1 K , and 2

,2 kT
V  is large 

compare to others, then the kth variable is heavily 
affected by the fault. Similarly, if 

SPELii hSPESSPES ≥)}(,),(max{ 1 K  and 2
,kSPEV  is large 

than the others, then the kth variable is heavily 
affected by the fault. 
 
When the proposed scheme detects a fault, it also 
provides a rough estimation of the fault magnitude 
based on the information which test is above the 
confidence limit. 
 
Note that the proposed scheme is different from L-
parallel tests of T2- and SPE-statistic. In this scheme 
the multivariate nature of the process is considered 
during the design of the algorithm. 
 

 



 

     

5. CASE STUDIES 
 

5.1 AR process 
 
In this section, we will demonstrate the use of the 
proposed algorithm for process monitoring of a 
simple multivariate process. The simple process is 
used to obtain statistically meaningful results. The 
data for this example are generated from a model 
suggested by Ku et al. (1995). 
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The input w is a random noise with zero mean and 
variance 1. The output y is equal to x plus the random 
noise v(k), with zero mean and variance 0.1. Both 
input u and output y are measured but v and w are not. 
Normal operating condition data consists of 200 
measurements. 2 principal components are used to 
build the monitoring model. For the proposed 
algorithm, ε = 0.05, E0(N) = 10,000. 4 parallel tests 
are used for scores space and residuals space, 
respectively. 
 
Case 1: This case is to monitor the normal process. 
1000 normal operating condition data are simulated 
and used for monitoring based on the conventional 
PCA model and the proposed algorithm. T2- and SPE- 
statistic for the conventional PCA model is shown in 
Figure 1. Though the process is normal, 36 samples 
are above the warning limit (95%) of T2-statistic and 4 
are above action limit (99%). For the SPE-statistic, 43 
samples are above warning limit and 6 are above 
action limit. The proposed algorithm is used for the 
normal data. The results are shown in Figure 2. No 
alarms are generated for those samples. 
 
Case 2: This case is to simulate the mean of w1 shift 
from 0.0 to 0.5 introduced at sample 100. T2- and 
SPE-statistic for conventional PCA model are shown 
in Figure 3. The conventional PCA cannot detect the 
fault effectively. The results of the 4 parallel tests for 
the scores and residuals subspace are shown in Figure 
4. The fault is detected at sample 135 by tests in  
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Figure 1. T2 and SPE-statistic for conventional PCA. 
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Figure 2. 4 parallel tests for scores and residuals 

subspace. 
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Figure 3. T2 and SPE-statistic for conventional PCA. 
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Figure 4. 4 parallel tests for scores and residuals 

subspace. 
 
scores subspace and  at sample 132 by tests in 
residuals subspace. This scheme can also provide an 
estimation of the magnitude of the fault. 
 
5.2 Tennessee Eastman Process  
 
The Tennessee Eastman challenge problem is a 
simulation of a real chemical plant provided by the 
Eastman Company (Downs and Vogel, 1993). The 
process has five major units: the reactor, the product 
condenser, a vapor-liquid separator, a recycle 
compressor and a product stripper. The control system 
used for dynamic simulations is the decentralized PID 
control system designed by McAvoy and Ye (1994). 
A total of 16 variables, selected by Chen and McAvoy 
(1998) for monitoring purposes, are used for 
monitoring in this study.  PCA model is built based on 
48 hours of steady state simulation data. The sampling 
interval of the process variable is 3 min. 11 principal 
components are used to build the model.  For the 
proposed algorithm, ε = 0.05, E0(N) = 10,000. 2 and 3 
parallel tests are used for scores subspace and 
residuals subspace, respectively. 
 



 

     

Case 1: This is the 3rd process disturbance designed in 
the original paper. It is to simulate a step change in 
the D feed temperature. The total simulation time is 
48 hours and the disturbance is introduced into the 
system after 36 hours of steady state simulation. 

0 200 400 600 800 1000
0

20

40

Samples

T2
99% C.L.
95% C.L.

0 200 400 600 800 1000
0

5

10

Samples

S
P

E

99% C.L.
95% C.L.

 
Figure 5. T2 and SPE-statistic for conventional PCA. 

0 200 400 600 800 1000
-100

0

100

200

Samples

S
i(T

l)

0 200 400 600 800 1000
-50

0

50

100

Samples

S
i(S

P
E

l)

 
Figure 6. 2 parallel tests for scores subspace and 3 for 

residuals subspace. 
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Figure 7. Variable contributions to the cumulative 

residuals. 
 

T2 and SPE-statistic for conventional PCA are shown 
in Figure 7. For the 36 hours of steady state 
simulation, 20 samples are above the warning limit 
(95%) of T2-statistic and 2 are above action limit 
(99%). For the SPE-statistic, 54 samples are above 
warning limit and 10 are above action limit. 
Conventional PCA cannot detect the fault effectively. 
Results using the proposed algorithm are shown in 
Figure 8. There is no false alarm during the 36 hours 
of steady state simulation. The fault is identified at 
sample 781 by parallel tests of residuals subspace. 
Variable contribution to SPE based on cumulative 
residuals is shown in Figure 9. Based on this plots, we 
can find that variables 21 (Reactor cooling water 
outlet temperature), 18 (Stripper temperature) and 9 
(Reactor temperature) contribute most to the out of 
control situation.  
 

6. SUMMARY 
 

An approach to integrate PCA with efficient statistical 
testing algorithm for process monitoring and fault 
detection has been presented. The fault detection 
decision depends not only on the current sample but 
the results of previous sample. A clear definition of 
normal operating condition is not needed. PCA can 
separate the observation space into a score subspace 
and a residual subspace. The two subspaces are 
divided into several subsets so chosen that in each 
subset the detection problem can be solved with an 
efficient recursive change detection algorithm based 
on χ2-GLR test. Simulations show that the proposed 
algorithm can effectively suppress the false alarm and 
detect small changes in the process. 
 

REFERENCE 
 
Bakshi, B.R. (1998). Multiscale PCA with 

Application to Multivariate Statistical Process 
Monitoring. AIChE J., 44 1596-1610 

Basseville, M. and I. Nikiforov (1993). Detection of 
Abrupt Changes, Prentice-Hall, Englewood 
Cliffs, NJ 

Chen, G. and T.J. McAvoy (1998). Predictive on-line 
monitoring of continuous processes. J. of Process 
Control, 8, 409-420. 

Downs, J.J. and E.F., Vogel (1993). A plant-wide 
Industrial Process Control Problem. Comput. 
Chem. Engng, 17, 245-255 

Kano, M., S. Hasebe, I. Hashimoto, and H. Ohno 
(2002).  Statistical Process Monitoring Based on 
Dissimilarity of Process Data.  AIChE J., Vol.48, 
pp.1231-1240. 

Kano. M., S. Hasebe, I. Hashimoto and H. Ohno 
(2001). A new multivariate statistical process 
monitoring method using principal component 
analysis. Comput. Chem. Engng., 25 1103-1113 

Ku, W., R.H. Storer and C. Georgakis (1995). 
Disturbance detection and isolation by dynamic 
principal component analysis. Chemom. Intell. 
Lab. Syst., 30, 179-196 

McAvoy, T.J. and N. Ye (1994). Base Control for the 
Tennessee Eastman Problem. Comput. Chem. 
Engng, 18 383-413 

Moustakides, G.V. (1986). Optimal stopping for 
detecting change in distribution. Ann. Statist., 14, 
1379-1387 

Nikiforov, I. (2001). A simple change detection 
scheme. Signal Processing, 81 149-172 

Nomikos, P. (1996).  Detection and diagnosis of 
abnormal batch operations based on multi-way 
principal component analysis.  ISA Trans., 
Vol.35, pp.259-266. 

Page, E.S. (1954). Continuous inspection schemes. 
Biometrika, 41,100-114 

Siegmund, D. and E.S. Venkatraman (1995). Using 
the generalized likelihood ratio statistics for 
sequential detection of a change-point. Ann. 
Statist., 23 255-271 


