
A TOOL TO ANALYZE ROBUST STABILITY FOR

CONSTRAINED MPC

Lino O. Santos ∗ Lorenz T. Biegler ∗∗
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is based on Nonlinear Programming sensitivity concepts. It addresses the discrete time
state feedback problem with all states measured. A strategy to estimate bounds on
the plant/model mismatch is proposed, that can be used off-line as a tool to assess
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1. INTRODUCTION

A prominent aspect of the research in the
nonlinear Model Predictive Control (MPC) field
is the development of a theoretical analysis
framework to study the stability and robustness
properties of the closed loop system in the
presence of disturbances and modeling errors.
A broad review by Mayne et al. (2000) on
constrained MPC points out that while research
on stability has reached a relatively mature
stage, further research is required to develop
implementable robust MPC for nonlinear systems.

In this work we develop a framework that can
be used to evaluate off-line, the closed-loop
robustness of a system with constrained MPC
in the presence of plant/model mismatch. It is
a direct extension of a previous work on the
unconstrained case by Santos and Biegler (1999)
for the discrete state feedback problem. Both the
plant and model are simulated using nonlinear
state space models.

The paper is organized as follows. Section 2
is devoted to preliminary definitions and
assumptions on the modeling errors, and to
a brief description of the MPC problem. In
Section 3, we analyze the convergence of the
optimal control problem solution for both the
perfect and model mismatch cases, by exploiting
the properties of the exact penalty function,
and we establish a sufficient condition for
robust stability. In Section 4, using nonlinear
programming sensitivity concepts, we characterize
this sufficient condition for the MPC problem
with a general cost function. We further detail
this characterization for the case of a quadratic
cost function, and we obtain a bound on the
plant/model uncertainty. This bound can be
estimated through off-line calculations using a
procedure that constitutes a tool to analyze
robust stability for constrained MPC. These
results are illustrated in Section 5 with a simple
example. Finally, concluding remarks regarding
the analysis of conditions for robust stability of



MPC in the presence of plant/model mismatch
are given in Section 6.

2. DEFINITIONS AND NOTATION

For this study we treat only the state feedback
case and assume that at every time index k all
the states can be measured accurately. We assume
the state dynamics of the plant are described
by the following nonlinear, continuous-time set of
equations:

ẋp = fp(xp, up) , (1)

where xp ∈ Rns is the vector of states and up ∈
Rnm is the vector of inputs, with fp : Rns ×
Rnm → Rns .

The stationary discrete-time counterpart of (1) is

xp

k+1 = fp(∆t; xp

k, up

k) , (2)

where ∆t is the sampling period and fp : Rns ×
Rnm → Rns . We will drop the ∆t for convenience.
A model with the same dimension as (2) is
considered for the MPC framework:

xk+1 = f(xk, uk) , (3)

where xk ∈ Rns is the vector of nominal states,
uk is the same vector of inputs as in (2), with
f : Rns × Rnm → Rns . We consider (xp

k, up

k) =
(xk, uk) = (0, 0) the point at which both the plant
and the model operate at steady state, such that
f(0, 0) = fp(0, 0) = 0.

As in Keerthi and Gilbert (1988) we also apply
the definition of a function belonging to class
K∞, along with related assumptions. A function
W (r) : R+ −→ R+, r ∈ R+, belongs to class K∞

if: a)it is continuous; b)W (r) = 0 ⇔ r = 0; c)it is
nondecreasing; d)W (r) −→ ∞ when r −→ ∞. We
define ‖·‖ as the Euclidean norm and assume there
exists a modeling bound function Wm

(
‖x‖

)
∈ K∞

such that
∥
∥fp(xp

k, up

k) − f(xk, uk)
∥
∥ ≤ Wm

(
‖xk‖

)
,

and positive constants Km and γ such that

Wm

(
‖xk‖

)
= Km ‖xk‖

γ . (4)

The MPC problem minimizes

Ψ(xi, si) =

i+p−1
∑

k=i

h(xk, uk) + h(xi+p) , (5)

where Ψ : Rns × Rnm → R, Ψ(0, 0) = 0. Here
h(x, u) ∈ K∞ is a general cost function, xi is the
initial state vector at the time index i, i ≥ 0,
and si is the solution vector over the predictive
horizon, given by

sT
i =

[
sT

i sT
i+1 · · · sT

i+p

]
, (6)

where sT
i+k =

[
xT

i+k uT
i+k

]
, k = 0, 1, · · · , p .

This formulation allows a shorter input horizon
m, with m ≤ p and uk = ui+m−1, k = i +

m, . . . , i + p. Traditionally, the decision variables
of the MPC problem are the control profiles. In
the optimization framework used in this study
the state profiles are decision variables as well. It
uses a multiple shooting method to solve (3) over
the predictive horizon (e.g., Santos et al. (1995);
Santos (2001)). State and control constraints over
this horizon are included in the MPC formulation,
set as lower and upper bounds – subscripts L and

U –,

b(xk) =

[
xk − xU k

−xk + xL k

]

≤ 0 , (7)

with k = i + 1, . . . , i + p, and

b(uk) =

[
uk − uU k

−uk + uL k

]

≤ 0 , (8)

with k = i, . . . , i + m− 1. We define the vector of
inequality constraints of the problem at i as

b(si)
T =

[

b(xi+1)
T · · · b(xi+p−1)

T

b(ui)
T · · · b(ui+m−1)

T
]

. (9)

Finally, we impose terminal state constraints
xi+p = 0, or if we allow p → ∞ then this
constraint is automatically satisfied for a finite
value of (5).

We denote by P(xi) the MPC problem solved at
every time index i, i ≥ 0, given by

min
si

Ψ(xi, si) (10)

s.t. c(xi, si) = 0 (11)

b(si) ≤0 , (12)

where c(xi, si) =





xk+1 − f(xk, uk) ,
k = i, . . . , i + p − 1

xi+p



 ,

with optional constraints added for a shorter input
horizon, m ≤ p. We assume in this analysis that
si is a feasible solution for (10–12) and that there
exists a sufficiently long (and possibly infinite)
horizon that insures an admissible trajectory to
satisfy the terminal state constraints and (12).

3. STABILITY ANALYSIS

To extend the analysis made for the unconstrained
case (Santos and Biegler, 1999) to (10 – 12) we
use an exact penalty formulation as developed
by Oliveira and Biegler (1994). This approach
converts (10 – 12) to the problem Pρ(xi):

min
si

Υ(xi, si, ρi) (13)

s.t. c(xi, si) = 0 , (14)

with Υ(xi, si, ρi) = Ψ(xi, si) + P (si, ρi) , (15)

Υ : Rns × Rnm → R, Υ(0, 0, 0) = 0, where



P (si, ρi) = ρi ·

{
i+p−1
∑

k=i+1

max
{
0, b(xk)

}

+

i+m−1∑

k=i

max
{
0, b(uk)

}

}

, (16)

and ρi is the penalty parameter. We remark
that P (si, ρi) is bounded from below by zero
as well. An important property that motivates
the use of the exact penalty function, is that a
sufficient condition to recover the original optimal
constrained solution, s∗

i , is to have a finite penalty
parameter with ρi > ‖ω∗

i ‖∞, where ω∗

i is the
vector of the Lagrange multipliers associated
to the inequality constraints from the original
problem (Fletcher, 1987). Thus this condition on
ρi ensures that the control and state profiles do
not exceed the region delimited by (7) and (8)
over p. We will assume that the parameter ρi can
be chosen in advance to be sufficiently large, i. e.,

ρ ≥ max
{
ρi} . (17)

Note that if ρi cannot be bounded, then P(xi) has
no feasible solution. Of course, feasible solutions of
P(xi) cannot be guaranteed and for this reason,
a ’reasonable’ value can be chosen for ρ so that
solutions of Pρ(xi) can be considered even if they
cannot always satisfy the bound constraints. To
simplify the notation we set

Υ∗(xi) = Υ(xi, s
∗

i , ρ) . (18)

3.1 Perfect model case

The essence of our stability analysis follows
from familiar arguments developed by Muske and
Rawlings (see Mayne et al. (2000)). We first
consider the case where the model is perfect
and there is no source of disturbances. From the
assumptions stated in Section 2, the solution of
Pρ(xi) satisfies (xk, uk) = (0, 0) for k ≥ i + p.
Hence the locally optimal solution gives

Υ∗(xi) =

i+p−1
∑

k=i

h(x∗

k, u∗

k) + h(x∗

i+p)
︸ ︷︷ ︸

=0

+ P (s∗

i , ρ) .

(19)
Note that we assume the point (xp

k, up

k) =
(xk, uk) = (0, 0) is within the state and control
bound constraints.

Consider now the problem at the next time
index, Pρ(xi+1). Because the model is perfect and
there is no source of disturbances, the resulting
optimal sequence of Pρ(xi) is a feasible solution
for Pρ(xi+1). Moreover, the objective function at
the solution of Pρ(xi+1) can be no greater than
the solution Pρ(xi); the solution of Pρ(xi+1) can
not be worse because now the terminal constraint
is only enforced one interval ahead. Therefore

Υ∗(xi) − Υ∗(xi+1) ≥ h(xi, u
∗

i , ρ) , (20)
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ū∗
i+1

i i + 1 i + 2 i + 3 i + 4 i + 5 i + 6 i + p − 4 i + p − 2 i + p

Fig. 1. Plant/Model state trajectory mismatch.

where h(xi, u
∗

i , ρ) = h(xi, u
∗

i )+ρ ·max{0, b(xi)}+
ρ·max{0, b(u∗

i )}. Note also that h(xi, u
∗

i , ρ) ∈ K∞.
Thus the sequence {Υ∗(xi)} over N time indices
decreases, and because (5) and (16) are bounded
from below by zero it converges. Taking the sum
of (20) over N we obtain

Υ∗(x1) − Υ∗(xN+1) =
N∑

i=1

(
Υ∗(xi) − Υ∗(xi+1)

)
≥

N∑

i=1

h(xi, u
∗

i , ρ) . (21)

Also, because {Υ∗(xi)} is decreasing, then as N →
∞, h(xi, u

∗

i , ρ) → 0 and xi → 0.

3.2 Model mismatch case

Consider now the case with plant/model
mismatch. Again, suppose that the solution of
Pρ(xi) gives (19). Now to solve the problem
at time index i + 1 there are available two
initial state conditions to solve (3). One is the
prediction made at time index i for i + 1, x̄i+1

from (19), and the other one is defined by the
state measurements at i + 1, xi+1 from (2). This
leads to two MPC problems we denote here by
Pρ(x̄i+1) and Pρ(xi+1), respectively. Note that
both problems are solved with the same model,
and the difference between their solutions reflects
the degree of plant/model mismatch – Figure 1:

• Pρ(x̄i+1) – using ρ and x̄i+1, we obtain:

Υ∗(x̄i+1) =

i+p
∑

k=i+1

h(x̄∗

k, ū∗

k)

+ h(x̄∗

i+p+1)
︸ ︷︷ ︸

=0

+ P (s̄∗

i+1, ρ) . (22)

From the perfect model case we assume that
ρ is large enough in order to obtain feasible
solutions to P(x̄i+1) if they exist. Thus the
arguments for the perfect model case are also
valid for this case.

• Pρ(xi+1) – using ρ and xi+1, we obtain:

Υ∗(xi+1) =

i+p
∑

k=i+1

h(x∗

k, u∗

k) + h(x∗

i+p+1)
︸ ︷︷ ︸

=0



+ P (s∗

i+1, ρ) =

i+p+1
∑

k=i+1

h(x∗

k, u∗

k, ρ) . (23)

Since xi+1 can be different from x̄i+1, we may
not have P (s∗

i+1, ρ) = 0.

3.2.1. Sufficient condition for robust stability

To account for the existence of mismatch we
consider the addition and subtraction of Υ∗(x̄i+1)
to the difference Υ∗(xi) − Υ∗(xi+1),

Υ∗(xi) − Υ∗(xi+1) = Υ∗(xi) − Υ∗(x̄i+1)

−
(
Υ∗(xi+1) − Υ∗(x̄i+1)

)
. (24)

The term Υ∗(xi) − Υ∗(x̄i+1) represents the
difference between the optimal objective functions
as in (20). Thus it follows that

Υ∗(xi) − Υ∗(xi+1) ≥

h(xi, u
∗

i , ρ) −
(
Υ∗(xi+1) − Υ∗(x̄i+1)

)
. (25)

To ensure a closed loop stable system, we force
the right hand side to be bounded by a positive
function W

(
‖xi‖

)
of class K∞. This ensures that

the sequence {Υ∗(xi)} is decreasing, that is,

h(xi, u
∗

i , ρ)−
(
Υ∗(xi+1)−Υ∗(x̄i+1)

)
≥ W

(
‖xi‖

)
,

(26)
with W

(
‖xi‖

)
→ 0 as ‖xi‖ → 0, for all i, i ≥ 0.

The difference Υ∗(xi+1) − Υ∗(x̄i+1) is a measure
of the plant/model mismatch and henceforth we
will refer to it as the mismatch term.

4. THE MISMATCH TERM

To characterize the mismatch term we start by
invoking the mean value theorem to derive an
expression for the mismatch term as a function of
the difference between the two problem solutions.
Then we consider the optimality conditions of
both problems to derive a bound on the mismatch
term, which leads to a sufficient condition for
closed loop stability under the presence of
plant/model mismatch.

4.1 Preliminaries

First of all, we assume that a value of ρ can be
chosen that is sufficiently large. By invoking the
mean value theorem it follows that

Υ∗(xi+1) − Υ∗(x̄i+1) =
∫ 1

0

{
d

dxi+1

[

Υ∗
(
x̄i+1 + τ(xi+1 − x̄i+1)

)]T
}

· (xi+1 − x̄i+1) dτ . (27)

This is done assuming (15) is differentiable.
However, because of the exact penalty terms it
is not. To overcome this we apply a smoothing

function (Balakrishna and Biegler, 1992) to every
element of (16); e.g., for a scalar x,

max
{
0, b(x)

}
≈ b(x, ξ) =

(
b(x)2 + ξ2

)1/2

2
+

b(x)

2
(28)

with small ξ > 0. Henceforth (15) is replaced by

Υ(xi, si, ρi, ξ) = Ψ(xi, si) + P (si, ρi, ξ) , (29)

which is continuous and at least twice
differentiable with respect to (6). For the
forthcoming developments it is convenient to
keep notation (18), and to define k = 1, . . . , p:

ε∗i+k =
[
s∗i+k − s̄∗i+k

]
=

[
x∗

i+k − x̄∗

i+k

u∗

i+k − ū∗

i+k

]

. (30)

From (5), (28), (29) and (30), (27) becomes

Υ∗(xi+1) − Υ∗(x̄i+1) =
p

∑

k=1

∫ 1

0

∇si+k
h(s̄∗i+k + τ ε∗i+k, ρ, ξ)T ε∗i+k dτ .

4.2 Derivation of a bound on the mismatch term

We start by considering the optimality conditions
of problem Pρ(xi+1). The Lagrangian for
this problem is L(si+1, λ) = Υ(xi+1) +
λT c(xi+1, si+1), where λ is the Lagrange
multiplier vector. The optimality conditions are:
[
∇sΥ

∗(xi+1) + ∇sc(xi+1, s
∗

i+1)
T λ∗

c(xi+1, s
∗

i+1)

]

= 0 . (31)

We also assume that ∇sc(xi+1, s
∗

i+1) has
full row rank and we define a basis, Z,
for the null space of this matrix, i.e.,
∇sc(xi+1, s

∗

i+1) · Z = 0. By taking the projection
of ∇sΥ

∗(xi+1) + ∇sc(xi+1, s
∗

i+1)
T λ∗ on the null

space of ∇sc(xi+1, s
∗

i+1), (31) becomes
[

ZT · ∇sΥ
∗(xi+1)

c(xi+1, s
∗

i+1)

]

= 0 . (32)

Thus proceeding as in the unconstrained case
study (Santos and Biegler, 1999) we derive a
bound for stability on the mismatch term,

∣
∣Υ∗(xi+1) − Υ∗(x̄i+1)

∣
∣ ≤

p
∑

k=1

∥
∥
∥
∥

∫ 1

0

∇si+k
h(s̄∗i+1 + τ ε∗i+k, ρ, ξ)T dτ

∥
∥
∥
∥

· Γ · Wm

(
‖xi‖

)
, (33)

that provides a sufficient stability condition for a
general cost function h(x, u), where Γ is derived
from sensitivity information from (32) (see Santos
and Biegler (1999)).

4.3 Constrained MPC with quadratic function and

finite horizon

Typically, in MPC formulations (5) is defined with

h(si+k) = sT
i+k Qi+k si+k , (34)



where Qi+k = diag{Qx i+k, Qu i+k}, and Qx i+k ∈
Rns×ns and Qu i+k ∈ Rnm×nm are diagonal
matrices corresponding to the state and input
weighting matrices at predictive horizon time
index i+k, respectively. From (34), the analytical
form of the integral term in (33) is

∫ 1

0

∇si+k
h(s̄∗i+k + τ ε∗i+k, ρ, ξ)T dτ =

(
2 s̄∗i+k + ε∗i+k

)T
Qi+k + ρ · r

(
s̄∗i+k, ε∗i+k, ξ

)
, (35)

where r
(
s̄∗i+k, ε∗i+k, ξ

)
denotes a vector whose

elements are nonlinear functions of s̄∗i+k, ε∗i+k and
ξ. Following the same developments as in Santos
and Biegler (1999) we obtain

∣
∣Υ∗(xi+1) − Υ∗(x̄i+1)

∣
∣ ≤

p
∑

k=1

{(∥
∥2 s̄∗i+k

∥
∥ +

∥
∥ε∗i+k

∥
∥

)∥
∥Qi+k

∥
∥

+ ρ ·
∥
∥
∥r

(
s̄∗i+k, ε∗i+k, ξ

)
∥
∥
∥

}

· Γ · Wm

(
‖xi‖

)
. (36)

We assume there are positive constants Q, α1 and
α2, such that for all i ≥ 0 and k ≤ p

∥
∥
∥r

(
s̄∗i+k, ε∗i+k, ξ

)
∥
∥
∥ ≤ α1

∥
∥2 s̄∗i+k

∥
∥ + α2

∥
∥ε∗i+k

∥
∥

(37)
and

∥
∥Qi+k

∥
∥ ≤ Q. Moreover, since s̄∗i+k, k =

1, . . . , p, depends on xi, we set
∥
∥2 s̄∗i+k

∥
∥ ≤ K̂ ‖xi‖ , (38)

where K̂ is a positive constant. From (4), with
γ = 1 (see Santos and Biegler (1999)),

∥
∥ε∗i+k

∥
∥ ≤ Γ · Wm

(
‖xi‖

)
≤ Γ Km‖xi‖ , (39)

for every k, k ≤ p. Finally, substituting (37), (38)
and (39) in (36) leads to

∣
∣Υ∗(xi+1) − Υ∗(x̄i+1)

∣
∣ ≤ KB ‖xi‖

2 , (40)

where KB = p
{(

K̂ + Γ Km

)
Q

+ρ · (α1 K̂ + α2 Γ Km)
}

Γ Km . (41)

Note that the first term of the sum on the right
hand side of (41) is the expression of KB obtained
for the unconstrained case. Therefore, when there
are no active constraints ρ = 0 and (40) is equal to
the unconstrained case sufficient stability bound.
Also, from (26) and (40) it follows that

h(xi, u
∗

i , ρ) −
∣
∣Υ∗(xi+1) − Υ∗(x̄i+1)

∣
∣

≥ h(xi, u
∗

i ) − KB ‖xi‖
2 = W

(
‖xi‖

)
. (42)

Suppose that Qx i = αxI and Qu i = αuI, with
constants αx > 0 and αu ≥ 0. Because u∗

i is
an implicit function of xi we can write ‖u∗

i ‖
2 =

β ‖xi‖
2, β > 0. Thus

h(xi, u
∗

i ) = αx xT
i xi+αu u∗

i
Tu∗

i = (αx+αu β) ‖xi‖
2

(43)
For a given xi, with no active constraints, and
with αu = 0, from (42) it follows that KB < αx to

satisfy the sufficient condition for stability. When
αu 6= 0, this condition is relaxed to

KB < αx + αu β . (44)

4.4 A tool to analyze robust stability

Because β in (44) depends on the optimization
problem solution it is impossible to know a priori
KB. In Section 5 we illustrate that KB < αx

provides a conservative sufficient condition for
stability. In any case, when constraint violations
occur a tighter value of the sufficient stability
condition for the constrained case, KB, can be
estimated by exploiting the state-space region of
interest from

KB ≥ max
xi

∣
∣Υ∗(xi+1) − Υ∗(x̄i+1)

∣
∣

‖xi‖2
. (45)

This procedure involves the calculation off-line of
KB according to the following cycle:

1 For a given xi, i ≥ 0, perform the following steps:

2 Solve Pρ(xi); save x̄i+1.

3 Implement u∗
i

and set i = i + 1.

i Using xi+1, solve Pρ(xi+1) to obtain Υ∗(xi+1).
ii Using x̄i+1, solve Pρ(x̄i+1) to obtain Υ∗(x̄i+1).
iii Go to 1 and repeat steps with new values of xi.

Therefore for a nonzero xi we can compute a lower
bound for KB.

5. ILLUSTRATIVE EXAMPLE

Consider an exothermic zero-order reaction
system, A → B, with concentration and
temperature dynamics described by

dCA

dt
=

F0

V
(CA0

− CA) − k0 e−Ea/(R Tr), (46)

dTr

dt
=

1

ρLCpV
(−QR + QG), (47)

with QR = −ρLCpF0(T0 − Tr) + UA(Tr − Tj),
and QG = (−∆Hr)V k0e

−Ea/(R Tr). Note that (47)
does not depend on CA. The system is open
loop unstable for Tr, i > 34 ◦C. Data and a
more detailed description of this system can be
found in Santos (2001). The control objective is
to control Tr – the set-point is Tr sp = 34 ◦C –
by manipulating the cooling fluid temperature Tj

subject to: Tr ≥ 0 ◦C and Tj ≥ 15 ◦C. To satisfy
these constraints the control problems are solved
using (15) with ρ = 1000. We set (αx, αu) =
(1, 0), (p, m) = (25, 1), ∆t = 0.5 min and we
note that the plant and the model have the same
steady state with Tr = Tj = 34 ◦C. To test
for the sufficient stability condition parametric
model mismatch on U is considered. Figure 2
shows the variation of KB with Tr,i, varying from
24 to 44 ◦C, and for various mismatches: Um =
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100, 200, 300, 400 and 500 W/m2 K. The true plant
value is Up = 300 W/m2 K. Thus, we observe in
Figure 2 that in the case of perfect model KB = 0.
We emphasize that when the constraints are not
satisfied then (16) is not zero and KB is very high.
Here, the nonexistence of a feasible solution is
overcome by increasing appropriately p to pursue
the calculation of KB.

For (αx, αu) = (1, 0), a sufficient condition for
robust stability from (42) requires KB < 1. This
can be seen in Figures 2 and 3. For Tr, i < 34 ◦C,
the profiles show KB < 1 always. Under these
conditions the system is closed loop stable in
the sense that the state converges to the origin
(set-point), Tr = 34 ◦C. On the other hand, for
Tr, i > 34 ◦C, the profiles of KB increase such
that they tend to cross the line KB = 1 as
Tr, i increases. Since (45) provides a lower bound
on KB it means the system can become closed
loop unstable under these plant/model mismatch
conditions – e.g., Figure 3 with Tr,i = 37.5 ◦C and
Um = 400 W/m2 K. On the other hand, with Um =
500 W/m2 K, the system is closed loop unstable
when Tr,i > 34 ◦C. Again, from (45) this is
consistent with the theory since KB > 1 for
Tr, i ≥ 39 ◦C.

On the other hand, stable performance may
still be observed if (42) is violated because this
condition is only sufficient. For instance, with
Um = 100 W/m2 K the system is closed loop stable
despite KB > 1. The same result is observed
for Um = 200 W/m2 K when Tr, i ≥ 37 ◦C. In
these cases Up > Um, thus the control solution
is favorable to the plant; i.e., the control system
provides a cooling rate greater than the one really
necessary. But for Um = 400 and 500 W/m2 K the
cooling rate calculated by the controller may not
be sufficient to cool down the reactor liquid and
therefore a temperature runaway may occur.

6. CONCLUSIONS

We develop a strategy based on nonlinear
programming sensitivity that determines
conditions under which the constrained model
predictive control is robustly stable with respect
to modeling errors. Here, a sufficient condition
for robust stability is derived and an offline
procedure is developed to evaluate constants
which determine sufficient conditions for this
property. These constants are available from
bounds on the model mismatch and from the
NLP solution of the receding horizon model.
This procedure is applicable to both linear and
nonlinear model predictive controllers in discrete
time that satisfy nominal stability properties
based on Lyapunov arguments.
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