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Abstract: The main objective of this industry-university collaboration is to develop
an on-line process monitoring system that can detect a particular malfunction in
an industrial monomer plant. The most serious malfunction is a blockage caused
by an accumulation of polymers inside a cooling unit. Since the blockage requires
shutdown maintenance, it is crucial to detect its symptom as early as possible and
properly adjust the operating condition to avoid further polymer accumulation. The
developed on-line monitoring system can detect the symptom of the blockage by
using multivariate statistical process control, distinguish it from normal changes
in operating conditions by using external analysis, and persuade operators to take
appropriate action. Copyright c©2003 IFAC
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1. INTRODUCTION

Long-term stable operation is becoming
increasingly important in the chemical industry,
because 1) a trouble shutdown of one plant inflicts
a heavier loss on the company as production sites
become more consolidated, and 2) plant managers
have to get the best out of existing equipments
and maximize the production efficiency. To
achieve long-term efficient operation, one needs
to recognize that:

• It seems impossible to entirely avoid
troubles due to process upsets or equipment
malfunction.

• Unexpected trouble may happen at an
unexpected location during a high load
operation that has never been experienced.

• The integration of operating rooms and
the deployment of advanced process control

systems reduce the number of operators; each
operator’s responsibilities have increased.

In modern chemical plants, operators must
monitor a large number of process variables
one after another for safe operation. Since
measured process variables are highly correlated,
it is difficult for operators to detect every
fault without monitoring the correlation between
process variables. A more difficult task than
fault detection is to identify a real cause of the
fault and to take prompt and appropriate action.
To support operators, automation of process
monitoring is greatly desired in the industry.

Multivariate statistical process control (MSPC)
has been investigated as a data-based technique
for multivariable process monitoring (Kresta
et al., 1991; Kourti and MacGregor, 1995;
Ku et al., 1995; Kano et al., 2002). MSPC
is based on chemometric techniques such as



principal component analysis (PCA) and partial
least squares (PLS). PCA is a tool for data
compression and information extraction; it finds
linear combinations of variables that describe
major trends in a data set. On the other hand,
PLS relates output variables to latent variables,
which are given as linear combinations of input
variables. A typical application of PLS in the
chemical industry is to estimate product quality
from measurable variables (Kano et al., 2000).
These chemometric techniques are very useful
for modeling and monitoring chemical processes
where a great number of measured variables
are highly correlated. Many researchers and
practitioners have investigated MSPC to extract
useful information from process data and use it
for process monitoring.

In conventional SPC, a process is assumed
to be operated in a particular steady state,
and deviations of measurements from their
steady-state values are used for monitoring.
However, operating conditions cannot be constant
in many processes due to production rate
adjustments, product grade transitions, and so
on. Therefore, it is crucial to develop a new SPC
method that can cope with changes in operating
conditions. In order to develop a new monitoring
system for distinguishing between faults and
normal changes in operating conditions, external
analysis was proposed and integrated with MSPC
(Kano et al., 2003).

In the present work, an on-line monitoring system
is developed to detect a blockage, caused by
an accumulation of polymers, in an industrial
monomer plant. Since the blockage requires
shutdown maintenance, it is crucial to detect
its symptom as early as possible and properly
adjust the operating condition for avoiding further
polymer accumulation.

2. MSPC WITH EXTERNAL ANALYSIS

In the present work, changes in operating
conditions, which should be distinguished from
faults, are assumed to be given from the outside of
a process as changes in a feed flow rate, set-points
of controllers, and so on. Thus, variables that
are used for monitoring can be classified into
two groups. The first group consists of variables
representing operating conditions such as a feed
flow rate and a set-point, hereafter referred to as
external variables. The second group consists of
variables affected by external variables and other
unmeasured disturbances. Those variables are
referred to as main variables. Changes in external
variables are not faults. Therefore, both the
changes in external variables and their influence
on main variables should be distinguished from

faults. To achieve this goal, operation data of main
variables are decomposed into two parts: one is a
part explained by external variables, and the other
is a part not explained by them. As a result, the
influence of changes in external variables can be
removed from operation data. This technique is
called external analysis and it can be integrated
with any SPC method (Kano et al., 2003).

In this section, it is briefly shown that the external
analysis can be used for removing the influence of
external variables from operation data and it can
be integrated with PCA-based SPC.

2.1 External Analysis

Consider a data matrix X ∈ �k×m, where k
and m are the number of samples and that
of variables, respectively. For simplicity, each
variable is assumed to be normalized. When mg

of m variables are classified as external variables
and mh(= m − mg) are main variables, the data
matrix is described as

X =
[
H G

]
(1)

where G ∈ �k×mg consists of external variables
and H ∈ �k×mh consists of main variables.
The data matrix H of main variables should
be decomposed into two parts: a part explained
by the data matrix G of external variables and
the other part not explained. For this purpose,
multiple linear regression analysis can be used by
regarding external variables and main variables
as inputs and outputs, respectively. That is, a
regression coefficient matrix C ∈ �mg×mh is
determined so that the sum of squared errors or
the squared Frobenius norm of an error matrix is
minimized.

C = (GT G)−1GT H (2)

where the error matrix E ∈ �k×mh is defined as

E = H − GC. (3)

As a result, the main data matrix H can be
decomposed into two parts, GC and E. GC is
a part explained by the external variables, and
E is the other part that cannot be explained by
the external variables. Any SPC method can be
used for monitoring error variables. Equation (2)
can be used only if external variables are
linearly independent of each other. When external
variables are highly correlated to each other, a
multivariate data analysis technique such as PLS,
which can cope with a collinearity problem, should
be used instead of ordinary least squares.

When process dynamics cannot be ignored, the
influence of changes in external variables cannot



be removed from operation data by using the
static external analysis. In such a case, a dynamic
model must be built. Kano et al. (2003) have
proposed dynamic external analysis, and they
have shown that the dynamic external analysis
can be successfully applied to a chemical process.

2.2 MSPC Integrated with External Analysis

The basic statistic to monitor E in Eq. (3)
is the Hotelling T 2 statistic. The Hotelling T 2

control chart is an original Shewhart-type control
chart for correlated variables, and it is related
to PCA-based SPC. PCA-based SPC was further
investigated and a residual analysis was developed
(Jackson and Mudholkar, 1979). In recent years,
the T 2 statistic of several important principal
components and the Q statistic, which is the
sum of squared residuals or the sum of prediction
errors (SPE), are usually used for statistical
process monitoring. The T 2 statistic of principal
components is defined as

T 2 =
R∑

r=1

t2r
σ2

tr

(4)

where tr is a score of the r-th principal component
and σ2

tr
is its variance. R denotes the number of

principal components retained in the PCA model.
The score tr is defined as

[
t1 t2 · · · tR

]
= eP (5)

where e ∈ �1×mh is an error vector, which is a
row of E, and P ∈ �mh×R is a loading matrix.
On the other hand, the Q statistic is defined as

Q =
mh∑

i=1

(ei − êi)2 (6)

where ei and êi are a calculated value of the i-th
error variable and its predicted (reconstructed)
value, respectively. êi is derived from

[
ê1 ê2 · · · êmh

]
= ePP T (7)

The T 2 statistic is a measure of the variation
within the PCA model, and the Q statistic is a
measure of the amount of variation not captured
by the PCA model.

3. MONITORING A MONOMER PLANT

This section introduces an application of MSPC
integrated with external analysis to a monomer
plant of Mitsubishi Chemical Corporation. The
main objective of this collaborative research
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Fig. 1. Simplified PFD of the monomer plant.

Table 1. Process variables.

Symbol in Fig.1 Variable

F1 Raw material feed flow rate
F2 Recovery feed flow rate
P1 Equipment A inlet pressure
P2 Equipment A outlet pressure
P3 Equipment B outlet pressure
T Reactor outlet temperature

project is to develop a monitoring system that
can detect a particular malfunction as early as
possible. The malfunction to detect is a blockage
in an equipment of the monomer plant. Since
the blockage, caused by an accumulation of
polymers, requires shutdown maintenance, it is
crucial to detect its symptom as early as possible
and properly adjust the operating condition
to prevent polymers from further accumulating.
Conventional MSPC does not function well
because it cannot distinguish the blockage from
normal changes in operating conditions such as
load changes. In the present work, therefore,
external analysis is used to remove the influence
of operating condition changes from process
variables, and the error is monitored by using
PCA-based SPC.

3.1 Malfunction in the Monomer Plant

The process flow of the monomer plant is shown
in Fig. 1. The product monomers are produced in
the reactor, and then the reactant is condensed
in the equipment A. Undesirable polymerization
reactions take place under specific conditions
in the equipment A although the operating
condition is controlled to prevent monomers
from polymerizing. The accumulation of polymers
inside the equipment A blocks the flow and makes
stable operation impossible.

Several important process variables are listed
in Table 1. The symptom of the blockage
could be detected by monitoring changes in
differential pressure, P1-P2, because the blockage
affects the pressure drop in the equipment A.
The differential pressure will increase as more
polymers accumulate. This monitoring strategy
based on the differential pressure is very simple
and easy to understand, but it is useful only
when the differential pressure is not affected
by other factors. In practice, not only polymer
accumulation but also flow rates affect the



differential pressure. For efficient monitoring, it
is necessary to take into account the influence of
operating conditions on the differential pressure.

3.2 Analysis of Abnormal Conditions

Trend graphs of the measured process variables
listed in Table 1 are shown in Fig. 2. The sampling
period of each variable is one hour, and each graph
includes 7500 samples (about 10 months). All six
variables, except the differential pressure, P1-P2,
are mean-centered.

The trend of P1-P2 shows that the differential
pressure began to increase around 2000 hours.
The uptrend of the differential pressure indicates
the possibility of the polymer accumulation in the
equipment A. Finally, at 2300 hours, operators
gave up carrying on the operation and shut
down the monomer plant. The blockage caused
by polymer accumulation was found inside the
equipment A. The monomer plant was restarted
at 2800 hours after a considerable part of
accumulated polymers were removed. However,
further polymer accumulation proceeded after
3500 hours, and then the plant was shut down
again. The plant was restarted at 4500 hours after
the whole accumulated polymers were removed.
The differential pressure increased again after
the second start-up. In particular, the differential
pressure after 6500 hours is higher than that
in the period when polymers blocked the flow
(2000-2300 hours). However, polymers did not
accumulate and a blockage did not occur in that
period. This fact indicates that a rise in the
differential pressure does not necessarily mean a
blockage and the differential pressure is affected
by other factors. After 6500 hours, the recovery
feed flow rate F2 decreased and consequently the
pressures P1, P2, and P3 decreased. This change
caused the differential pressure to increase. In
addition, a load change also affects the differential
pressure. The pressure measurements P1, P2, and
P3 increased from 4500 to 6000 hours as the
feed flow rate F1 increased. In this period, the
differential pressure P1-P2 increased because of
high throughput.

3.3 Design of Monitoring System

A rise in the differential pressure is a useful
indicator for detecting the blockage, but it is also
affected by operating conditions such as a feed
flow rate. Therefore, the influence of operating
conditions has to be removed from the differential
pressure. For this purpose, the static external
analysis was used. In this application, only static
properties of the process should be taken into
account because the sampling period is one hour.
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Fig. 2. Time-series plot of process variables.
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Fig. 3. Time-series plot of the T 2 and Q statistics.

The variables listed in Table 1 were used for
monitoring. The external variables are the raw
material feed flow rate F1 and the recovery feed
flow rate F2. Those variables represent operating
conditions. The other four variables were used as
main variables.

External analysis and PCA were applied to data
in the period when the process is operated under
the normal condition (0-2000 hours), and the
developed model was validated by the other data
(2001-7500 hours except two shutdown periods).
The number of principal components was selected
so that the Q statistic could increase markedly
when polymers accumulated. The selected number
of principal components was three, and 98% of the
variance in the reference data can be explained by
three principal components. The control limits of
two statistics are determined so that the number
of samples outside the control limit is 1% of the
entire samples while the process is operated under
a normal condition. The control limits of T 2 and
Q are 10.7 and 0.43, respectively.

3.4 Monitoring Results

The monitoring results, the trend graphs of
T 2 and Q, are shown in Fig. 3. Although the



T 2 statistic exceeds its control limit from 2300
through 4500 hours, it also exceeds its control
limit after 4500 hours. Therefore, the T 2 statistic
is not a suitable index for detecting polymer
accumulation. This result is not surprising
because the T 2 statistic is a measure of the
variation within the PCA model. The T 2 statistic
is mainly affected by operating condition changes,
which do not affect the correlation structure. As
shown in Fig. 2, the operating condition of the
monomer plant before 2000 hours is considerably
different from that after 4500 hours. For example,
the reactor outlet temperature is almost constant
before 2000 hours, but it becomes lower and
fluctuates wildly after 4500 hours. Such changes
make the T 2 statistic exceed its control limit
even though any fault does not occur. Since
changes in the reactor outlet temperature cannot
be explained by the external variables F1 and
F2, the changes affect the T 2 statistic even when
external analysis is conducted.

On the other hand, the Q statistic remarkably
increases after 2000 hours and exceeds its control
limit. The Q statistic is about 50 from 2800 to
3800 hours when polymers are blocking the flow.
In addition, the Q statistic is under its control
limit after accumulated polymers are removed.
The Q statistic after 4800 hours is similar to that
of the reference data even though the operating
conditions are quite different from each other and
the differential pressure increases considerably
in this period. This result demonstrates the
usefulness of the Q statistic for detecting polymer
accumulation. It should be noted here, however,
that conventional PCA-based SPC does not
function well in this application. It cannot
distinguish between polymer accumulation and
operating condition changes. The key to success
is to remove the influence of operating condition
changes from monitored variables by conducting
the external analysis.

Figure 3 shows that the Q statistic is a suitable
index for detecting polymer accumulation.
However, it is necessary to confirm that polymer
accumulation is the real cause of the abnormal
condition because another factor may affect
the Q statistic and make it exceed the control
limit. To identify the variables that contribute
significantly to an out-of-control value of the Q
statistic, contributions from process variables to
the Q statistic can be used (Nomikos, 1996). This
information helps operators to further diagnose
an actual cause of the fault. A contribution of
the i-th variable to the Q statistic is defined as

Ci = ei − êi. (8)

Contributions from four main variables to the Q
statistic at the 2350th step are shown in Fig. 4.
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Fig. 4. Contribution plot of the Q statistic.

It is clear from this contribution plot that the
contributions of the pressure of the equipment A,
P1 and P2, are significant. P1 is positive large,
and P2 is negative large. This result indicates
that the differential pressure P1-P2 contributes
significantly to the out-of-control value of the Q
statistic. Therefore, polymer accumulation is the
most possible cause. On the basis of this diagnosis,
the operating condition should be adjusted to
avoid a blockage caused by polymer accumulation.

3.5 On-line Monitoring

To monitor this monomer plant, in particular,
to detect polymer accumulation, an on-line
monitoring system was developed. The developed
monitoring system performs the following
procedures:

(1) Calculates the mean and the standard
deviation of each monitored (external and
main) variable, determines the regression
coefficient matrix used for the external
analysis, and builds the PCA model. This
step is conducted off-line by using the
reference data.

(2) Collects data every hour.
(3) Normalizes the data.
(4) Applies the external analysis to the

normalized data.
(5) Calculates the Q statistic.
(6) Compares the calculated Q statistic and its

control limit, and gives an alarm if Q exceeds
its control limit.

The calculated Q statistic is stored in the
database every hour, and its trend graph can be
checked with trend graphs of monitored variables
if necessary.

After the installation of the on-line monitoring
system, polymer accumulation proceeded again
in the equipment A. The external variables,
F1 and F2, and the Q statistic are shown in
Fig. 5. The recovery feed flow rate F2 was kept
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Fig. 5. On-line monitoring result.

almost constant during this period, but the raw
material feed flow rate F1 was increased stepwise
several times. The changes in the raw material
feed flow rate did not affect the Q statistic,
because the influence of the external variables
was successfully removed from the monitored
variables by using the external analysis. The Q
statistic, however, increased steadily and exceeded
its control limit after 1100 hours. This chart
helped operators to suspect polymer accumulation
and persuaded them to examine the equipment
A. It was confirmed that polymer accumulation
was proceeding. To avoid further accumulation
of polymers and also to cope with the decrease
in heat transfer efficiency, the raw material feed
flow rate was decreased after 1280 hours. This
result demonstrates that the developed on-line
monitoring system, which integrates MSPC with
external analysis, is useful for detecting polymer
accumulation and avoiding a serious blockage in
the monomer plant.

Another approach to avoid further polymer
accumulation is to increase an inhibitor feed flow
rate or a diluent water feed flow rate, which is used
for cooling the reactant. Those approaches are
useful, but they cannot remove the accumulated
polymers. In the monomer plant, the equipment A
consists of a number of parallel units. Therefore,
the equipment A can be partially shut down
and the accumulated polymers can be removed.
As a result, by detecting polymer accumulation
and avoiding a serious blockage, the developed
monitoring system enables long-term, safe, and
efficient operation of the monomer plant.

4. CONCLUSIONS

In this research project, PCA-based SPC was
integrated with external analysis and applied
to an industrial monomer plant. The developed
monitoring system can distinguish polymer
accumulation, which causes a serious blockage
of the flow, from normal changes in operating

conditions by using the static external analysis,
and thus the system can successfully detect the
polymer accumulation at its early stage. Although
the developed monitoring system focuses only
on the polymer accumulation in a particular
equipment, it can detect symptoms of the most
serious malfunction and persuade operators to
take prompt and appropriate action. In practice,
a reliable specialist is preferable to a moderate
generalist. Various MSPC methods have been
developed for general purposes in the last
decade or so, but more important problems to
investigate are how to diagnose the real cause
of a serious fault and how to help operators to
take appropriate action. Those problems seem to
remain unsolved.
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