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Abstract:  In this paper a predictive strategy for the reactive scheduling of a multi-stage 
bioprocessing plant is outlined. In the procedure, the various batch stages of the 
bioprocess are dynamically re-allocated to the appropriate processing units in response to 
the biological variability inherent in each stage. Forecasts of the process productivity and 
consequent completion times for the tertiary stages of industrial penicillin fermentations 
are used in conjunction with a genetic algorithm to solve the scheduling problem. Initial 
results using data from a commercial penicillin plant demonstrate that the predictive 
scheduling framework could deliver increased production and, consequently, major 
financial benefits. Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
The industrial scheduling problem involves assigning 
resources to tasks over a (fixed) period of time to 
fulfil production goals. Scheduling problems are 
often complicated by a large number of constraints. 
These constraints may be resource, capacity or 
production related. A scheduling system makes 
decisions dynamically to accommodate activities 
within the framework of available resources to 
ensure that tasks are completed either at a given time 
or at a minimum cost. Problems with scheduling 
occur over a wide range of industries. Examples of 
these are: filling and emptying of tanks in a ballast 
water treatment facility at a port (Dahal et al. 2001), 
clothing production (Dessouky et al. 1998), 
scheduling and rearrangements of tasks on field-
programmable gate arrays (FPGA) (Middendorf et 
al. 2002), scheduling of multi-product plants (Sand 
et al. 2000) and laboratory management and 
scheduling of experiments to be performed on 
chemical workstations (Aarts et al. 1995). There is a 
vast amount of literature providing different solution 
approaches. Much of the literature is based on non-
chemical processing applications e.g. machine shops, 
discrete assembly manufacture and computer system 
operation, but due to similarities in the problem 
structure, some of the literature is applicable to 
scheduling in the process industries (Reklaitis 1982 
and Shah 1999). 
 
Scheduling techniques can be observed from at the 
most basic level, manual approaches to the more 

sophisticated artificial intelligence strategies. An 
overview of these techniques is given by Morton and 
Pentico (1993). However a common problem that 
arises with scheduling is the continual need to alter 
previous schedules due to process problems and 
production changes that occur. Investigation into 
reactive scheduling and predictive scheduling in the 
manufacturing environment is discussed by 
Sabuncuoglu and Bayiz (2000) and Kizilisik (1999) 
with a special emphasis on single machine analysis.  
Fang et al. (1993) describes rescheduling in a job shop 
environment with the application of a genetic 
algorithm (GA). 
 
The process industry covers a wide range of fields such 
as chemicals, pharmaceuticals, foods, paints and many 
others. This paper concentrates on the scheduling of 
operations on a batch fermentation pharmaceutical 
plant. There is great interest in the batch processing 
area as discussed by Orçun et al. (2001). It is known 
that batch processes exhibit a certain degree of 
variability which is caused by, for instance, changes in 
operator response time; fluctuations in utility 
availability; minor equipment malfunctions; recipe 
inaccuracies and changes in raw material quality (Cott 
and Macchietto 1989). Fermentation batches are 
amongst the most challenging of batch operations to 
schedule effectively due to the high level of inherent 
biological variability. 
This study investigates the integration of a scheduling 
tool with a forecaster of production levels. At present, 
there is considerable variation in product 
concentrations (titres) with respect to processing time 



 

 

in the tertiary fermentation stage (i.e. the main 
production stage). In particular, some batches take 
less time to reach the production optimum, while 
some are left too long and the concentration of the 
product starts to decline. The current process 
scheduling method does not take this into account 
and only uses nominal batch processing times 
derived from historical plant data. However, to 
optimise the production within the plant, it is 
necessary to predict the best time to harvest the 
product with respect to overall plant output and to re-
schedule efficiently so to maximise production. 
 
 

2. PROCESS DESCRIPTION 
 

The plant shown in Figure 1 is used to produce the 
antibiotic penicillin. Each batch goes through three 
main stages of the fermentation process. The first 
two stages of the fermentation involve the growth of 
the organism (Penicillium chrysogenum). This is to 
allow time for it to increase its biomass and to adapt 
to change in volume/size and its environment 
(changing from growing on solid to liquid medium). 
The tertiary (final) fermentation stage is the 
production stage of the product penicillin. The 
choice of harvesting time for this stage is of great 
importance because, due to the unstable nature of 
penicillin, its concentration reduces after it has 
reached its peak in production. This has important 
implications for the use of any automated scheduling 
system. An effective scheduling mechanism must be 
able to take into account the variability associated 
with the optimum harvest time, as well as other 
operational factors such as contamination, 
maintenance, breakdowns and the like. 
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Fig 1. A simplified diagrammatic layout of a 

penicillin process plant. 
 
 
2.1.  Problem formulation 
 
As the aim of this work is to schedule the various 
stages of batch operation on a bioprocessing plant, it 
is necessary to be able to compute the total 
completion time of all penicillin batches given the 
allocation of resources dictated by the current 
schedule. In addition to the nominal completion 
times for each of the individual stages, factors such 
as unit clean out times, unit setup times as well as the 
processing history of the plant determine the total 
time required to complete all batches. In the case of 

the predictive strategy, the predicted completion time 
of the each tertiary processing stage is used in place of 
the nominal completion time. 

In this paper, a simple recursive algorithm, referred to 
as a recurrence relationship, with a generic structure is 
used as the basis for the scheduling problem solution. 
The generic structure means that it can be easily 
configured for a wide range of scheduling problems of 
industrial importance. Ku et al. (1987) developed 
similar relationships for jobshop problems, while Kim 
et al. (1996) suggested an algorithm for flowshop 
problems; however, it took the form of several if-then 
rules and therefore is not as easily configurable. In 
contrast, the calculation of the total completion time in 
this paper uses a more convenient matrix/vector 
formulation. 

To determine the batch completion time the batch 
sequence is characterised by a permutation of integers 
1,2,3,..,n.  Let fnI denote the time at which the nth batch 
in the sequence leaves stage I.  To calculate fnI two 
conditions must be fulfilled: 
 

1. The nth batch in the sequence cannot leave a 
stage I unit until all the ‘processing’ is 
complete and to be on a stage I unit it must 
have left stage I-1 

2. The nth batch in the sequence can only start on 
stage I after one of the previously scheduled 
batches has finished, the unit has been 
cleaned, and setup is complete and cannot 
leave stage I until it has been processed. 

 
Consider the following definitions: 
 
n = total number of batches 
M = total number of processing stages 
PI = total number of units available for processing a 
batch at stage I 
CI(n) = a (1 x PI+n-1) vector of stage I cleaning times 
relating the current batch to the previous 1,..,n-1 
batches in the sequence, i.e.  

CI(n)=[cI(1),cI(2),..cI(n-1)] 
fI(n) = the stage I completion time of the nth batch in 
the sequence 
FI(n) = a (1 x PI+n-1) vector of stage I completion 
times for the previous 1,..,n-1 batches in the sequence. 
rI(n) = are (PI x 1) vectors used to define the unit 
allocation of batch n in the sequence at stage I of the 
process.  (if the jth element of element rI(n) = 1 then 
batch n is allocated to unit j at stage I and the other 
elements of rI(n) is equal to zero) 
tI(n) = a (1 x PI) vector defining the stage I processing 
time for all available units. 
 
To calculate the completion time of batches scheduled 
on a M stage plant with PI units at stage I the following 
recurrence relationship is used: 
 

fI(n)=tI(n)rI(n)+ 
max(fI-1(n),r T

I (n)RI(n)[F T
I (n)+C T

I (n)])       (1) 
with: 

RI(n)=[RI(n-1)-rI(n-1){r T
I (n-1)RI(n-1)},rI(n-1)]   (2) 



 

 

The first part of the relation fI(n) = tI(n)rI+fI-1(n) 
accounts for condition (1), while the second term 
fI(n) = tI(n)rI(n)+r T

I (n)RI(n)[F T
I (n)+C T

I (n)]) 
accounts for condition (2). Operation 
r T

I (n)RI(n)F T
I (n) is used to calculate the completion 

time of the previous batch scheduled on the same 
stage I unit as the nth batch in the sequence, while 
r T

I (n)RI(n)C T
I (n) determines the necessary cleaning 

time and setup time between two batches. Thus, RI(n) 
is a matrix used to indicate which of the previous n-1 
batches were last allocated to a particular unit. Note 
that the RI(n) is an augmented matrix comprising a 
modified RI(n-1) and the unit allocation vector, rI(n-
1), which indicates the unit used by the previous 
batch. As RI(n) is used to indicate the last batch 
allocated to each unit, by definition rI(n-1) will be 
the new indicator for unit ‘j’, hence the modification, 

RI(n-1)-rI(n-1){r T
I (n-1)RI(n-1)} 

is used to remove the previous indicator. The 
algorithm is initialised with RI(0) = I (PI x PI) which 
will allow the calculation of the completion times for 
the batches already running on the plant. 
 
 
2.2.  Plant Information 
 
Current plant operation uses fixed (nominal) 
processing times for each stage. As discussed earlier 
this is not ideal, as it limits the overall performance 
of the plant. Consideration of a number of batches of 
process data of actual penicillin titre (Figure 2) 
underpins the need to move from fixed batch times.  
This clearly demonstrates how each batch varies in 
the rate of production. For instance, with respect to 
batch four the peak concentration is reached at 
around 200hrs while for batch two the concentration 
of penicillin is still rising. For the purposes of this 
paper, such existing information is used to establish 
the benefits that may be obtained by stopping at the 
appropriate production levels rather than running for 
a fixed period of time. 
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Fig. 2. Penicillin titre of five batches 
 

A fundamental problem in the scheduling of 
fermentation batches is that variability leads to 
deviations in ideal completion time. However, it is 
necessary to know in advance the completion time as 
the previous stage must be inoculated well prior to 
production stage completion in order to be in an 
optimal state for transfer when the new production 
batch requires it. Thus a predictor of future penicillin 
titre is essential for scheduling purposes. 
 
A further complication arises from the fact that 
penicillin titre is only available infrequently by off-line 
analysis. As a consequence the predictor is required to 
overcome measurement delay in addition to the 
horizon for scheduling requirements. One possible 
solution is to use estimators to determine the current 
penicillin titre and then use a forecaster for prediction 
from that point. The application of neural networks as 
an estimator for the penicillin titre is discussed by 
Yuan and Vanrolleghem (1998) and Lopes and 
Menezes (1998). Also, neural network models have 
been applied in biomass estimation and fault diagnosis 
for penicillin production as shown by Montague and 
Morris (1994). Currently estimators of current 
penicillin titre have not been considered, with the 
forecaster acting on off-line assays. 
 
The penicillin titre trends have a distinctive shape that 
closely matches that of the logistic function (equation 
3). The forecaster operation involves fitting the 
coefficients of the logistic function to penicillin titre 
measurements for the batch in question up to the 
current time and using the model to forecast future 
production. Forecasts are not possible in the early stage 
of the batch as few titre measurements are available but 
for scheduling purposes forecasts after around 150hrs 
of operation are sufficient as it is the latter period of 
the batch that is important. 

BxAe
Cy −+

=
1

                 (3) 

The forecaster must be capable of prediction over a 
forty hour horizon in order to allow the necessary time 
for the seed batch to be completed. Figure 3 shows the 
forecaster applied to an example batch. It can be seen 
that the required forecasting capability is achieved. 

 
Fig. 3. Batch prediction with logistic function 

0 50 100 150 200 250
Time (hours) 

Actual Batch
Predicted 

Predicting Ahead 

Ti
tre

 



 

 

The decision as to the optimum time to harvest is 
influenced by the forecast of the rate of penicillin 
production. When the rate of penicillin production 
falls below average rate achieved for a new batch 
(including the batch turn-around time) then the 
current batch should be terminated. However the 
scheduler requires the use of the forecaster to 
determine when this condition is likely to occur and 
therefore initiate a secondary stage fermentation. 
When the forecast is made, the best assumption is 
that a new batch will perform in an average manner. 
As the secondary stage fermentation progresses 
assessments of its quality may be possible and if 
different from average this would impact on 
termination time of the current tertiary stage vessel. 
Given the limited supply of information from the 
secondary stage fermentations, such modifications 
are currently not considered appropriate. 
 
 
2.3.  Solution of the scheduling problem 
 
As noted earlier, there are many techniques available 
for the solution of scheduling problems. One method 
is the use of a genetic algorithm (GA) as this kind of 
algorithm has been applied successfully to many 
combinatorial optimisation problems (Azzaro-Pantel 
et al. 1998). The application of GA to scheduling 
problems has been described in the job-shop 
environment (Rubin and Ragatz 1995, Lee and Choi 
1995 and Della Croce et al. 1995). Cartwright and 
Tuson (1994) implemented a GA to handle an 
industrial flowshop by optimising both chemical feed 
order and topology. In their study the GA provided a 
reliable method for finding near optimum feed 
order/topology combinations. 
 
 
2.4.  Genetic algorithms (GAs) 
 
Genetic algorithms (GAs) are a type of heuristic 
optimisation method that are based on the mechanics 
of genetics (Holland 1975). GAs solve problems by 
using a process analogous to natural selection to 
evolve candidate solutions which are typically 
encoded as a population of abstract mathematical 
chromosomes e.g. binary, integer, or real valued 
string sequences. For further details see Goldberg 
(1989). In the following section, the type of GA that 
is used to schedule the batch processes is discussed. 
 
Encoding Scheme: The order based GA is used, two 
separate strings are applied to represent batch order 
and unit allocation. A permutation representation is 
used for the batch order string, while the actual unit 
number is used for the unit string. Thus, the 
following strings are used e.g. to represent six 
batches and 4 units: 

Batch order string 3 4 1 5 6 2 
Unit string 2 4 1 3 2 1 

This shows that batch 3 is processed on unit 2 first, 
batch 4 on unit 4 etc. 

GA operators Crossover: The purpose of this operator 
is to combine information from relatively successful 
strings in order to produce better offspring. The classic 
one and two point crossover operators cannot be 
applied, as infeasible solutions would be generated. 
This appears often in strings with permutation. To 
avoid this a number of crossover schemes have been 
developed. Goldberg (1989) discusses partially 
matched crossover (PMX), cycle crossover (CX) and 
order crossover (OX) and Syswerda (1989) describes 
uniform crossover. In this study the PMX operator is 
used. Here, two cutting sites are chosen randomly 
(point 2 and point 5) PMX defines a matching section 
that is used to cross through position-by-position 
exchange operations. This is demonstrated below; 

Parent 1 Batch1 string 3 4 1 5 6 2 
 Unit1 string 2 4 1 3 2 1 
        
Parent 2 Batch2 string 1 5 2 3 4 6 
 Unit2 string 3 1 1 2 4 2 

The crossover takes place with a full set of 
permutations within the batch order string. The unit 
string is then realigned with the batch order string. The 
offspring obtained are: 

Child 1 Batch1 string 1 6 2 3 4 5 
 Unit1 string 1 2 1 2 4 3 
        
Child 2 Batch2 string 2 3 1 5 6 4 
 Unit2 string 1 2 1 3 2 4 

Mutation: The algorithm uses three types of mutation 
operator. The first is inversion where both batch order 
and unit string are simultaneously cut at two points and 
the information is reversed. The second is batch order 
mutation where only the batch order string is mutated 
and the third is unit string mutation where the unit 
string is mutated. The probability that a particular 
mutation operator is chosen is equal. 
 
 
2.5.  The Plant Scheduler 
 
Figure 4 illustrates the functionality of the 
predictive/reactive scheduler. Given a set of process 
batches and unit resources, the GA optimises the 
schedule to produce an optimal sequence as well as 
determining the unit allocation for each of the batches. 
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Fig. 4. The plant scheduling system 

The first batches are allocated to plant resources and 
are processed. The remaining jobs are put into the 
queue (in the order defined by the schedule) and will 



 

 

be processed on the plant when a processing resource 
becomes available. Thus, the processing time of the 
batches through each of the stages is monitored and 
their status is fed back into the scheduler. If the 
expected processing time of a batch changes from 
the unit processing time assumed initially there then 
presents an opportunity to re-schedule. 
Consequently, the GA then re-optimises the batches 
held in the queue to generate a new schedule that 
may be implemented on the plant. 
 
 
2.6.  Case Study 
 
In this work, the concept of applying the knowledge 
of batch production status together with a forecaster 
for future production levels in a predictive scheduler 
is performed using past batch data records from the 
industrial plant. The past batch data acts as a 
‘simulation’ of behaviour and can be used since in 
nearly all cases the actual batches were longer than 
appropriate. To demonstrate the overall effect of this 
application, 100 batches were scheduled. The 
batches were to be optimally sequenced through 3 
stages, the first and second stage having 4 units and 
the final tertiary stage 18 units. The predictive 
scheduler is to be compared with two other 
schedulers; on plant scheduler and fixed GA 
scheduler, both of which uses fixed batch processing 
time. This in order will show the benefits that may be 
obtained by adopting a more reactive scheduling 
methodology.  
 
An initial number of batches are placed onto the 
plant simulation. A queue is formed, as further 
batches are ready to be scheduled onto the plant 
simulation. As batch status of the main fermentation 
is being measured the predicted information of 
completion time is fed back to the scheduler. 50 runs 
of the GA based scheduler are used for the 100 
batches. This is because different batch runs may 
have different completion times (as the solution may 
represent a local rather than global minimum) and 
therefore a number of runs will allow a fair 
comparison to be made rather than producing a one-
off result. 
 
For all runs, the GA is configured with the following 
parameters: crossover probability 0.8, mutation 
probability 0.1, population size 500, and a steady-
state reproduction having a population retention of 
fifty individuals at each generation and each run of 
the GA is configured for 100 generations. 
 
 

3. RESULTS 
 

The results obtained after 50 runs are displayed by 
the box and whisker plots in Figure 5. The line that 
runs across the figure represents the time taken on 
plant to complete 100 batches, using the existing 
scheduling policy. These plots highlight the most 
salient features of the results obtained from each set 
of 50 runs. The centreline of the box is the median 

value of the data, whilst the box itself represents the 
inter quartile range of the data. From the top and 
bottom of each box a vertical whisker extends to the 
extreme values of the data. Furthermore, the notches 
around the median lines are constructed such that, if 
there is no overlap between the notches, the medians 
are significantly different at the 95% confidence level. 

 
Fig. 5. Comparison of completion times between the 

predictive and fixed scheduler. 

It can be observed from the plots produced in Figure 5 
that the predictive scheduler shows a reduction in 
completion time for the 100 batches in comparison to 
the fixed scheduler. The distribution of completion 
times is tighter as the scheduler plans operation in a 
manner that takes account of DSP availability. The 
fixed scheduler refers to fixed operational batch length, 
which is sought but not achieved. Here, batch length 
variation is a result of schedule limitations and the 
inability to send the batch to DSP. 
Table 1 summarises the mean completion times taken 
from the three schedulers (on plant, fixed GA and 
predictive GA scheduler). 

Table 1. Mean completion times of processing 100 
batches using 3 different schedulers 

 On plant Fixed Predictive 
Mean 

Completion 
Times (hrs) 

 
3168 

 
2536 

 
2094 

Using the predictive scheduler a saving of 
approximately 44 days is gained when compared to the 
on plant scheduler and approximately 18 days when 
compared to the fixed scheduler over a five month 
period.  The days gained could allow additional 
batches to be processed. More importantly, as the 
batches were processed at their near optimum 
production level, clearly an improvement in the total 
amount of penicillin produced by the overall process is 
achieved. 
 
 

4. CONCLUSIONS 
 

In this paper, predictive scheduling of a bioprocess 
plant has been considered. The reasons behind the need 
for predictive scheduling have been discussed and the 
particular problems encountered as a result of the 
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biological nature of the process considered. It has 
been demonstrated that the use of such a predictive 
scheduling strategy will be beneficial. As a result the 
plant efficiency and productivity could potentially be 
significantly improved. 
 
A key aspect of the scheduler is the forecasts of 
future productivity. Whilst in many batch chemical 
operations failure to transfer at the ‘correct’ time can 
result in reduced plant occupancy, in biological 
systems failure to transfer can additionally mean 
major productivity losses due to irreparable 
biological consequences. Whilst this paper attempts 
to address the problem of forecaster reliability, 
several aspects still remain to be considered. For 
instance a research challenge will be how to 
incorporate the increasing uncertainty associated 
with the extending forecasting horizon. Application 
of other models for predicting penicillin could be 
compared for forecasting accuracy. Subsequent work 
will consider how the development of an on-line 
forecaster to allow advance prediction with 
associated uncertainty will impact on the scheduler.  
Furthermore, work has recently identified significant 
variations in inoculum quality which would impact 
on future production performance and thus optimal 
completion times. Assessment of secondary stage 
fermentation information to update completion is an 
obvious improvement. 
 
This paper has begun to address the issues associated 
with biological process scheduling on a complex 
multi-unit fermentation plant but many further 
advances are still required before an effective 
predictive scheduler suitable for the industrial 
environment is achieved. The scale of operation and 
the major financial opportunities that schedule 
improvement would provide a strong motivation for 
tackling the problems. 
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