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Abstract: A structured kinetic model, which takes account of major metabolic pathways 
of glycerol and methanol in Pichia pastoris, is presented. Based on the combined 
kinetic and bioreactor model, feeding profiles of methanol are determined with the aim 
of maintaining constant specific growth rate during production stage. Compared with 
the decreasing type of specific growth rate resulted from constant feeding profile in the 
standard protocol, the constant specific growth rate is believed to be advantageous for 
improving the productivity. Experimental results indicate that simulations of biomass 
and protein concentration agree well with the measured data, and the specific growth 
rates were successfully controlled at various set points.  
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1. Introduction 

 
The specific growth rate of microorganisms has been 
found to have prominent influence on the 
productivity in bioprocesses (Jimenez, et al., 1997; 
Chung, 1999). d’Anjou, et al. (1997) developed a 
mass balance and Monod type kinetic model for P. 
pastoris expressing sea raven anti-freeze protein (SR-
AFP). Although the measurements agreed with 
model simulations only qualitatively, the growth 
associated product formation was revealed. Based on 
a mass balance model, Kobayashi, et al. (2000) 
obtained the optimal specific growth rate for P. 
pastoris expressing recombinant human serum 
albumin (rHSA) by dynamic programming method. 
In the work of Jahic, et al. (2002), a kinetic model for 
P. pastoris expressing a fusion protein was proposed 
to describe cell growth and oxygen consumption. 
They found that the productivity could be increased 
by increasing the specific growth rate. In this paper, 
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a structured model for Pichia pastoris expressing 
rHSA is constructed based on the analysis of 
metabolic pathways of glycerol and methanol. With 
this model, methanol feeding strategy during 
production stage is investigated. The aim is to control 
the specific growth rate at desired set points. 
 
 

2. Process Description 
 
Recombinant human serum albumin is expressed by 
P. pastoris GS115. The inoculum was grown for 12 
to 24 hours until OD600 reached 2 to 6. 5-10% 
inoculum was used for inoculation. Cultivations were 
carried out in a 30L bioreactor (B.Braun, Germany) 
with a working volume of 20L at 30℃. pH was 
maintained at 6.5 by adding 25% ammonia solution, 
and DO at 30% by adjusting agitation. The solutions 
of glycerol and methanol were fed with calibrated 
peristaltic pumps (Watson 101, England). The 
medium composition was the same as Boze, et al. 
(2001) used. 
 
 



 
 
 

The cultivation included a glycerol phase and a 
methanol phase. The glycerol phase was divided into 
a batch stage and a fed-batch stage. Cultivation 
began with the batch stage. Upon the depletion of the 
glycerol in the batch medium, fed-batch stage 
commenced by adding glycerol solution at 
predetermined feeding rates. The glycerol fed-batch 
culture lasted 16-20 h in order for obtaining high cell 
density. The methanol phase was subdivided into a 
10 h induction stage and a production stage. In the 
induction stage, methanol was fed with a low initial 
value in order for the cells to adapt the shifting of 
carbon source. The majority of rHSA was yielded in 
the production stage. To determine biomass and 
protein concentration, samples were collected at 
intervals of 2 h in the glycerol phase and 4 h in the 
methanol phase, respectively. Biomass concentration 
in wet weight was routinely measured. Methanol 
concentration was measured by HPLC, and the 
concentration of rHSA was measured with 2D-
electrophoresis.  

 
 

3. Modeling and Validation 
 
3.1 Metabolic flux in the glycerol phase 
 
In the glycerol phase, the main metabolic pathways 
include phosphorylation, glycolysis, TCA cycle and 
respiratory chain. The balance equations describing 
fluxes of metabolites, ATP and NADH in these 
pathways are presented in Eqs. (1); (2); (4) and (5); 
(7), respectively (Gancedo, et al, 1968; Nevoigt and 
Stahl, 1997). The formation of the byproduct ethanol 
(Sonnleitner and Kaeppeli, 1986; Ratledge and 
Kristiansen, 1987) was neglected in this model for 
simplification. Eqs. (3) and (6) present the main flux 
of biomass formation. The assumption was made that 
ATP was consumed mostly for cell growth and 
maintenance, as described in Eq. (8). The meaning of 
the symbols appearing in these equations is explained 
in the nomenclature. 
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3.2 Metabolic flux in the methanol phase 
 
In the methanol phase, methanol is first oxidized to 
formaldehyde (Gellissen, 2000), as described in Eq. 
(9). The assumption was made that the majority of 
formaldehyde was condensed with xylulose 5-

monophosphate to form glyceraldehydes 3-phosphate 
(GAP) in an assimilatory pathway, as presented in Eq. 
(10), where three molecules of formaldehyde are 
consumed to produce one net molecule of GAP 
(Gellissen, 2000; Lueers, et al., 1998; Cereghino and 
Cregg, 2000). The rest part is oxidized to formate, 
and further dissimilated to CO2 with the generation 
of reducing power NADH. This is described with Eq. 
(11). The ratio of formaldehyde catalyzed between 
dissimilation and assimilation, denoted by φ, is being 
under investigation. Here, φ was set to 0.25. For 
simplification, biomass formation was 
mathematically assumed to be resulted from 
formaldehyde, see Eq. (12), although it is from GAP 
metabolically (Gellissen, 2000; Lueers, et al., 1998). 
The metabolism from GAP to pyruvate is presented 
in in Eq. (13). 

For
q

MeOH SS MeOH →                      (9) 

ATPGAPS Sr
For −→

3
1

                (10) 

NADHCOS Sr
For 22 +→ϕ              (11) 

materialCellS BK

For  → 13
1 µ

             (12) 

NADHATPpyruvateS GAPr
GAP ++→ 2   (13) 

 
The formation of byproducts during the methanol 
phase was also neglected, since the specific growth 
rate was controlled relatively low. Therefore, the 
metabolic pathways after pyruvate and the 
respiratory chain were assumed to be the same as 
those in glycerol phase. It should be pointed out that 
some model parameters, such as KB1, KB2 etc., may 
take dissimilar values depending on different phases. 
 
 
3.3 Modeling equations 
 
Based on above statement, the structured model for 
glycerol phase is presented in Eq. (14), which 
describes the balances of the carbon source, NADH, 
ATP and pyruvate. These balance relationships are 
obtained from Eqs. (1)~(3); (2), (4)~(7); (2), (5)~(8); 
(2), (4), respectively. 
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The specific glycerol uptake rate qGly is described 
with Monod kinetics, see Eq. (15) 
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However, as a common observation in bioprocesses, 
it was found that the actual glycerol uptake rate was 



 
 
 

much lower than qS,M in the early batch stage. 
Actually, it is known that Monod kinetics covers only 
the rapid metabolic regulation, but the pathways for 
gluconeogenesis are subject to long-term regulation 
by enzyme induction and repression during batch 
stage (Bellgardt, 1983). An extended first order 
closed-loop regulator is introduced to describe the 
lag phase, which was proposed and well validated by 
Bellgardt, et al. (1986). The regulator model is 
described with Eq. (16). The actual specific glycerol 
uptake rate qGly is obtained according to Eq. (17) 
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In the methanol phase, the balance equations for 
carbon source, NADH, ATP and pyruvate are 
obtained from Eqs. (9)~(12); (4)~(7), (11), (13); 
(5)~(8), (10); (4), (10), (13), respectively, see Eq. 
(18).  
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The specific protein production rate ρ was assumed 
to follow the model Eq. (19).  

ba += µρ                              (19) 
 
 
3.4 Bioreactor model 
 
The bioreactor model is established based on mass 
balance. It includes four balance equations for 
medium volume, biomass, substrate and product 
concentrations, see Eqs. (20)~(23), where the 
coefficient of evaporation α was estimated by 0.0006 
l (l h)-1 based on the mass balance data of the given 
equipment.  
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The coupling of the structured kinetic model and the 
bioreactor model is shown in Fig. 1.  

 
 
 
 
 
 
 
 
 
 
 
Fig.1 Combined metabolic-bioreactor model 
 
 
3.5 Validation of the model  
 
Several experiments were carried out to validate the 
model, and two of them were shown in Fig. 2. It was 
found that both cell growth and protein production 
are well described by the model. For confidential 
reasons, the scale has been removed in this figure as 
well as in other figures. 
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Fig. 2 Comparison of model simulation with 
measurements. Lines: model simulation; symbols: 
measurements.  

 
There are seventeen model parameters in Eqs. (14)~ 
(16), (18) and (19). Three of them took fixed values 
as those for baker’s yeast as listed in Table. 1 (Yuan 
and Bellgardt, 1994). The rest were identified by the 
Simplex method (Nelder and Mead, 1965), see 
Tables 2 and 3. 
 

 
 

 
Bioreactor 

Model 

 
Kinetic 
Model 

 
Manipulated 
Variables 

qS, µ 

Initial Conditions

FS,SR

FNH3 

FO 

State Variables 
 
X, S, P, VF 



 
 
 

Table 1 Parameters taking fixed values as those for 
baker’s yeast 

 
Para. YATP P/O qlim0 

Unit 
 
 
Value 

g 
mol-1 

 
10.5 

mol 
mol-1 

 
1.5 

mol 
(gh)-1 

 
0.0006 

 
Table 2 Parameters identified for  

glycerol growth phase 
 

Para. qGlymax KGly mATP KB1 KB2 k1 k2

Unit mol 
(gh)-1 g l-1 mol 

(gh)-1 
mol 
g-1 

mol 
g-1 h-1 h-1

 
Exp.1 

 
0.0057 

 
0.05 0.001 

 
0.001

 
0.014 0.6 0.3

Exp.2 0.0057 0.04 0.001 0.001 0.013 0.5 0.3
 

Table 3 Parameters identified for  
methanol growth phase 

 
Para. qMeOHmax 

 

KMeOH

 

mATP 
 

KB1 
 

KB2 
 

a
 

b 
 

Unit mol 
  (g )-1 

g 
l-1 

mol 
(gh)-1 

mol 
g-1 

mol 
g-1 - h-1

 
Exp.2 

 
0.001 

 
0.16 

 
0.0001 

 
0.015 

 
0.013 

 
0.04

 
0.0001

 
 

4. Model Based Feeding Control 
   
In the literature, exponential type feeding strategy 
has been proven to be beneficial for improving the 
recombinant proteins productivity of Escherichia coli 
system (Paalme, et al., 1990; Yee and Blanch, 1992). 
According to the standard protocol, the methanol 
feeding rate is constant. Such feeding strategy results 
in a decreasing specific growth rate. This may be one 
of the reasons for the low productivity of rHSA 
found in our study (data not shown). Therefore, 
exponential type methanol feeding profiles are 
designed with the support of the model. The goal is 
to maintain the specific growth rate at preset values 
during the production stage. The sum of squared 
errors of the specific growth rate between model 
simulation and the preset value during the whole 
production stage was chosen as the objective 
function. First, the increasing type of feeding profile 
is used during induction stage (30≤t≤40h), see Eq. 
(24). The slope of ω1 was optimized by Golden 
Section Search to make the specific growth rate as 
close as possible to the preset value at 40 h. During 
production stage (t>40h), the feeding profile shown 
in Eq. (25) is used. Obviously, the constant ω2 can be 
calculated as (10ω1+12). The parameter ω3 was then 
estimated with the same method. Two additional 
experiments were carried out to validate the control 
strategy. The results of the control experiments are 
illustrated in Fig. 3.  
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Fig.3 Experiments to test the model based feeding 
profile. Lines: model simulation; symbols: 
measurements. 
 
 

5. Discussion and Conclusion 
 
In this paper, a structured model for Pichia pastoris 
was constructed and validated. Based on the model, 
the specific growth rate was successfully controlled 
at predetermined constant levels in the methanol 
phase. The metabolic model is established based on 
the simplified flux analysis. It is more complicated in 
comparison with the mass balance model found in 
the literature (Kobayashi, et al., 2000). However, it 
enables further investigations on metabolic fluxes. 
Moreover, this structured model may be applied in 
those situations, where the set point control of 
residual methanol concentration is required. It was 
also found that most model parameters have relative 
constant values for different experiments, which 
implies that the model is robust to some extent.  
 
For the methanol phase, Veenhuis, et al. (1983) 
pointed out that the dissimilation of formaldehyde 
generates the primary part of energy source NADH. 
That means, the flux of dissimilation plays a 
significant role in the metabolic network. On the 
other hand, according to Sibirny et al. (1990), the 
most energy for methanol growth comes from the 
assimilatory pathway, and the main function of 



 
 
 

dissimilation of formaldehyde is to protect the cell 
from the toxic effect of the accumulated 
formaldehyde. In this paper, higher flux via 
assimilatory pathways (corresponding to lower φ) 
was adopted.  
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7. Nomenclature 
 
EtOH   ethanol residual concentration g l-1 
FS         substrate feeding rate l h-1 
FGly        glycerol feeding rate l h-1 
FMeOH      methanol feeding rate l h-1    
FNH3        ammonia solution feeding rate l h-1  
FO        withdrawal rate cause by sampling l h-1 
Gly       glycerol concentration in the medium g l-1 
mATP      maintenance coefficient for ATP mol (g 

h)-1 
MeOH     methanol concentration in the medium g l-1 

MS        molecular weight of substrates 
P         heterologous protein concentration g l-1 

P/O       effectiveness coefficient of oxidative 
phosphorylation  

qGly       actual specific uptake rate of glycerol 
    mol (g h)-1 

qlim     specific uptake rate of glycerol obtained 
from regulator model mol(g h)-1 

qlim0       initial value of specific uptake rate of  
glycerol mol(g h)-1 

qS,M       specific uptake rate of glycerol obtained 
from Monod model mol(g h)-1 

qMeOH       specific methanol uptake rate mol(g h)-1 
qO2        specific oxygen uptake rate mol (g h)-1   
qS        specific substrate uptake rate mol (g h)-1   
rAc        specific acetyle-CoA production rate  
    mol (g h)-1 
rATP       specific ATP uptake rate   mol(g h)-1 
rGAP       specific glyceraldehydes-3-phosphate  

uptake rate  mol(g h)-1 
rNAD    specific NADH uptake rate in 
      respiratory chain mol(g h)-1 
rS          specific rate of glycolysis mol(g h)-1 
rTCA        specific acetyle-CoA uptake rate mol(g  
     h)-1 
S          substrate concentration in the medium 

   g l-1 
SMeOH      extracellular methanol concentration 
     g l-1 
SR         substrate concentration in the feed g l-1 

SGly        extracellular glycerol concentration g l-1 
SGP             intracellular glycerol 3-phosphate  
     concentration g l-1 

SFor         intracellular  formaldehyde  
    concentration  g l-1 

VF          volume of broth l 
X          biomass concentration g l-1 
YATP        yield coefficient of ATP g mol-1 

α          coefficient of evaporation l (l h)-1 

µ          specific growth rate h-1  
µr          preset value of the specific growth rate 

 h-1 
ρ          specific product formation rate h-1  
φ          ratio of formaldehyde consumed  
     between dissimilatory and assimilatory  
     pathways  
Suffix max   maximum values of the corresponding  

parameters or variables 
KB1, KB2, KGly, KMeOH, a, b, k1, k2   model parameters 
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