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Abstract: Exploiting the moving horizon strategy, we provide in this paper a
solution of the constrained L2-gain attenuation control problem that is less
conservative than a recently suggested switching approach based on off-line
controller computations. The main advantage of the presented scheme is its
capability of automatically relaxing or tightening the performance specification
in order to obey hard control constraints while achieving the best possible
performance in a suitable class of LMI-generated control gains.
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1. INTRODUCTION

In the past two decades H∞-control has received
considerable interest, in particular for the possibility
to beneficially manage the trade-off between high
performance requirements and high control action.
It is somewhat unfortunate, however, that the de-
signer has only influence onto closed-loop trans-
fer function shapes in the frequency domain and
that there is no direct way to enforce hard time-
domain constraints on the control inputs. To over-
come this drawback, a large variety of approaches
have been proposed in the literature such as anti-
windup techniques (Kothare et al., 1994), satura-
tion avoidance methods based on maximal output
invariant sets (Gilbert and Tan, 1991), model pre-
dictive control (Mayne et al., 2000) and switching
techniques (Hirata and Fujita, 2000). For a survey
we refer to (Scherer et al., 2002) and the references
therein.

In this paper, we provide a moving horizon scheme
for the L2-gain attenuation problem with hard con-
trol constraints, where a constrained H∞ problem
is solved on-line and updated by the new measure-
ment. The scheme has the capability to automat-
ically trade-off constraint satisfaction and perfor-
mance by relaxing or tightening the performance
specification, which leads to performance improve-
ments. The feedback gain is determined on-line
such that the ellipsoids, where constraints are re-
spected, are shaped according to the actual state and
hence performance can be further improved, whereas
the off-line controller construction in (Scherer et
al., 2002) is based on extremal solutions of the
Riccati equation corresponding to the H∞ problem.
Therefore, this paper can be viewed as a direct
extension of (Scherer et al., 2002) towards a non-
conservative solution of the constrained L2-gain at-
tenuation control problem. In a similar fashion, it is



suggested in (Kothare et al., 1996) to use the moving
horizon strategy in order to ensure robust stability
while minimizing an upper bound of a quadratic
cost, whereas our scheme explicitly strives for L2-
gain performance guarantees for the overall closed-
loop system.

The paper is organized as follows. In Section 2 we
describe an off-line solution to the constrained H∞

control, using the concept of state-space ellipsoids
and reachable sets (Boyd et al., 1994). In Section
3 we derive the crucial condition to guarantee dis-
sipation after briefly showing why the naive im-
plementation of the moving horizon strategy might
fail. Then, an extended LMI optimization problem
is formulated that will be solved on-line at each
sampling time to determine the feedback gain, up-
dated with the actual state. An algorithm for a
concrete implementation of the proposed scheme is
given in Section 4. Simulation results for the same
open-loop unstable continuous stirred tank reactor
as in (Scherer et al., 2002) are presented in Section 5.

2. PRELIMINARIES

Consider a discrete system described by

x(k + 1) = Ax(k) + Bw(k) + Bu(k) (1a)

z(k) = Cx(k) + Dw(k) + Duu(k) (1b)

subject to control constraints

|ui(k)| ≤ ui,max, ∀k ≥ 0, i = 1, 2, · · · , m2. (2)

Here x ∈ R
n denotes the states, w ∈ R

m1 the
external disturbances, u ∈ R

m2 the control inputs
and z ∈ R

p the controlled outputs.

With state-feedback control u = Kx, the closed-loop
system is

x(k + 1) = Aclx(k) + Bw(k) (3a)

z(k) = Cclx(k) + Dw(k) (3b)

where Acl = A + BuK and Ccl = C + DuK. Let us
briefly recap the case without control constraints.
The discrete time closed-loop L2-gain from w to z is
smaller than γ if and only if there exists a symmetric
P > 0 such that
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> 0 (4)

It is easily seen that (4) implies Schur stability of
Acl, and with V (x) = xT Px one easily obtains the
dissipation inequality

V (x(k)) +

k−1
∑

i=0

(

‖z(i)‖2 − γ2‖w(i)‖2
)

≤ V (x(0))

(5)

for any trajectory x(·), w(·) of the closed-loop sys-
tem (3). Due to V (x) ≥ 0, for x(0) = 0 we can
conclude that the discrete L2-gain of the closed-loop
system is not larger than γ. With the substitution
Q = P−1 and Y = KQ and by performing a
congruence transformation with diag(Q, I, Q, I), (4)
is equivalent to
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> 0 (6)

which is an LMI in γ2, Q, Y . Let γopt denote the
infimal value for which (6) with P > 0 is feasible.

Let us now come back to the case with control
constraints. For this purpose we assume that the
disturbance energy is bounded as

∞
∑

i=0

‖w(i)‖2 ≤ α2. (7)

Due to (5), the output energy is bounded as

∞
∑

i=0

‖z(i)‖2 ≤ r (8)

and the state trajectory remains in the ellipsoid

E1(P, r) := {x ∈ R
n : V (x) ≤ r} (9)

if the initial state x(0) is contained in the ellipsoid

E2(P, r, α) := {x ∈ R
n : γ2α2 + V (x) ≤ r}. (10)

Exploiting u = Y Q−1x, we infer (Boyd et al., 1994)

max
k≥0

|ui(k)|
2

= max
k≥0

∣
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. (11)

Therefore the control constraints (2) can be enforced
by guaranteeing that Q and Y also satisfy

(1

r
X Y

Y T Q

)

≥ 0, Xii ≤ u2

i,max (12)

for some X . We note that (12) is an LMI in X , Y ,
Q for fixed r, and that the constraint ξ ∈ E2(P, r, α)
can as well be re-formulated as

(

r − γ2α2 ξT

ξ Q

)

≥ 0 (13)

which is an LMI in γ2 and Q for fixed α.
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This leads to an algorithm for solving the con-
strained L2-gain attenuation problem. For fixed α, r

and ξ = x(0) solve the LMI optimization problem

min
γ2,Q,Y,X

γ2 subject to (6), (12) and (13). (14)

Suppose that (γ0, Q0, Y0) is an (almost) optimal
solution of (14). If the system is controlled with the
state-feedback gain K0 = Y0Q

−1

0
, we conclude with

P0 = Q−1

0
from the above discussion that

• the control constraints (2) are respected for all
disturbances satisfying (7);

• the disturbances are attenuated in the sense of

∞
∑

i=0

(

‖z(i)‖2 − γ2

0
‖w(i)‖2

)

≤ x(0)T P0x(0).

Remarks.

• In this construction the bound α reflects the a
priori knowledge on the disturbance, whereas
both the output energy bound r and the corre-
sponding optimal value γ0 = γ0(α, r) are mea-
sures for disturbance attenuation. It is simple to
extract various limits of these two parameters
for feasibility of (14), such as r ≥ γ2

optα
2 (where

the choice with equality is too ambitious due to
control constraints).

• If ξ = x(0) = 0, the optimal value γc of problem
(14) satisfies γopt ≤ γc, reflecting a performance
degradation due to control constraints. More-
over it follows from (13) that γc ≤ γ0 which
relates to a further performance degradation
due to non-zero initial conditions.

The above construction is a pretty standard ap-
proach to guaranteeing disturbance attenuation by
constrained control. It clearly reflects an inher-
ent trade-off between satisfying the constraints and
achieving high controller performance. If having to
be prepared for unforeseen large disturbances one
has to choose a large value of α (and hence large r)
which leads to large γ or low performance, even if
the actual disturbance affecting the system is rather
mild and admits a smaller bound on its energy. On
the other hand, enforcing high performance levels
(small γ) requires to either reduce α or r, which
might result in control constraint violation in case
that the system is affected by unexpectedly large
disturbances. This motivates an on-line scheme to
trade-off the satisfaction of constraints and the level
of performance. To this end, the moving horizon
strategy, which is well-known in the literature of
model predictive control, serves as a candidate.

3. MOVING HORIZON STRATEGY

The basis of the moving horizon strategy in model
predictive control is solving an optimal control prob-

lem on-line at each sampling time, updated by the
new measurement (Mayne et al., 2000).

Exploiting the moving horizon strategy, one would
solve on-line the LMI optimization problem (14)
with the actual state x(k) at each time k, which
contains the past information on internal dynamics,
external disturbances and controls. In this scheme,
the current state x(k) serves as “feedback” not only
for the computation of control values but also for the
choice of the feedback gain. The latter provides an
opportunity to trade-off constraint satisfaction and
performance. By minimizing the performance level
γ on-line, one obtains the best possible performance,
while keeping constraints satisfied. Unfortunately,
this simple implementation of the moving horizon
strategy might fail to guarantee dissipation for the
controlled system, as shown in detail in (Scherer et
al., 2002). In the same reference it is also shown how
to recover dissipation, and we repeat in this paper
the key points for the discrete-time problem and
in view of its implementation in a moving horizon
scheme.

Assume that the LMI optimization problem (14)
admits a solution for the closed-loop state x(k) at
each sampling time k, denoted as (γk, Qk, Yk). The
feedback control is defined by

u(k) = Kkx(k), k = 0, 1, 2, · · ·

with Kk = YkPk and Pk = Q−1

k .

At time k = 0, according to the principle of moving
horizon strategy, u(0) = K0x(0) will be applied to
the system until the next sampling instant k = 1.
With the actual state x(1) as initial condition, the
LMI optimization problem (14) will be solved again.
Let us investigate whether the solution at time k = 1
keeps the closed-loop system dissipative. We first
observe that

‖z(0)‖2 − γ2

0
‖w(1)‖2 ≤ x(0)T P0x(0) − x(1)T P0x(1)

‖z(1)‖2 − γ2

1
‖w(1)‖2 ≤ x(1)T P1x(1) − x(2)T P1x(2)

and hence

1
∑

i=0

‖z(i)‖2 − max{γ0, γ1}
2‖w(i)‖2 ≤ x(0)T P0x(0)−

−
[

x(1)T P0x(1) − x(1)T P1x(1))
]

− x(2)T P1x(2).

If
[

x(1)T P0x(1) − x(1)T P1x(1)
]

≥ 0, dissipation
holds with level max{γ0, γ1}. The solution of the
LMI optimization problem (14) at the time k = 2
with x(2) leads in a similar fashion to

2
∑

i=0

[

‖z(i)‖2 − max{γ0, γ1, γ2}
2‖w(i)‖2

]

≤

≤ x(0)T P0x(0) −
[

x(1)T P0x(1) − x(1)T P1x(1))
]

−

−
[

x(2)T P1x(2) − x(2)T P2x(2))
]

− x(3)T P2x(3).

To guarantee dissipation one requires
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x(0)T P0x(0) −
[

x(1)T P0x(1) − x(1)T P1x(1))
]

−

−
[

x(2)T P1x(2) − x(2)T P2x(2))
]

≤ x(0)T P0x(0).

In general, just solving the LMI optimization prob-
lem (14) at times k = 1 and k = 2 with respective
initial conditions does not guarantee this inequality
to hold. Therefore, the naive implementation of the
moving horizon strategy will generally fail. However,
the discussion reveals the crucial strategy to guar-
antee dissipation as follows: Define

pk−1 := x(0)T P0x(0)−

−
k−1
∑

j=1

[x(j)T Pj−1x(j) − x(j)T Pjx(j)]. (15)

For dissipation one has to enforce at iteration k that

pk−1 −
[

x(k)T Pk−1x(k) − x(k)T Pkx(k)
]

≤ p0.

(16)

Moreover pk can be recursively updated as

pk := pk−1 −
[

x(k)T Pk−1x(k) − x(k)T Pkx(k)
]

.

It is easy to include the dissipation constraint (16)
in the optimization problem (14) to end up with the
following extended LMI problem at time k with the
actual state x(k):

min
γ2,Q,Y,X

γ2 (17)

subject to (6), (12), (13) for ξ = x(k), and

(

p0 − pk−1 + x(k)T Pk−1x(k) x(k)T

x(k) Q

)

≥ 0. (18)

The implementation of this on-line scheme is pos-
sible since Pk−1 and pk−1 have been determined at
the previous time instant k − 1 and are held fixed.
Let us suppose that (17) admits an (almost) optimal
solution (γk , Qk, Yk) and define the feedback gain
Kk = YkQ−1

k as well as Pk = Q−1

k . Controlling the
system with u(k) = Kkx(k) then implies that

• the control constraints (2) are respected;
• the controller automatically relaxes the perfor-

mance requirement if necessary not to violate
constraints and it enhances the performance
level if possible and in such a manner that the
closed-loop system is guaranteed to obey the
dissipation inequality

l
∑

i=k

‖z(i)‖2 − γ2‖w(i)‖2 ≤ x(k)T Pkx(k)

for 0 ≤ k ≤ l and with γ = max{γk, . . . , γl}.

Let us stress that the feature of automatic perfor-
mance adaptation is viewed to be the most rele-
vant progress over (Scherer et al., 2002). Moreover
we recall that the off-line controller construction
in (Scherer et al., 2002) was based on extremal

solutions of the Riccati equation corresponding to
the H∞ problem, whereas the present scheme picks
the solution (shapes of ellipsoids) depending on the
individual system state which leads to performance
improvements.

For the actual on-line implementation of this scheme
it is essential that the LMI optimization prob-
lem (17) is feasible at each time-instant k, which
gives rise to the need for an on-line adaptation of the
parameters α and r as suggested in the algorithm in
the next section. If the LMI’s are not feasible for
all combinations of α and r one could either relax
the control constraint to enforce feasibility (which is
always successful for stabilizable systems but which
might not be practically possible) or one could
switch to a standard MPC scheme with quadratic
cost which incurs a loss of guaranteed disturbance
suppression properties.

4. ALGORITHM FOR MOVING HORIZON
IMPLEMENTATION

Let us now discuss a concrete implementation of
the suggested scheme, together with one out of a
multitude of possibilities how to adapt the param-
eters α and r. In fact we keep α fixed while we try
to enforce feasibility of (17) by increasing r (from
a given r0) whenever necessary. Moreover, for the
given α, r0 and with x(0) = 0, we consider the con-
troller Kc = Kc(α, r0) - defined with Pc = Pc(α, r0)
- as the one with best performance, and at each time
k we first check whether this best gain guarantees
dissipation and constraint satisfaction in order to
avoid unnecessary on-line computations.

Algorithm

Step 1 Initialization. Let α and r0 be given. Solve
the LMI optimization problem (14) with ξ =
x(0) = 0 and compute Kc = Y Q−1 and
Pc = Q−1.

Step 2 At time k = 0, set r = r0. If x(0) = 0, set
K0 = Kc, P0 = Pc, p0 = 0 and go to Step
6. If x(0) 6= 0, solve the LMI optimization
problem (14) with ξ = x(0). If it admits
a solution, compute K0 = Y Q−1, P0 =
Q−1, p0 = x(0)T P0x(0) and go to Step 6.
If not feasible, increase r until feasibility is
retained.

Step 3 At time k, set r = r0. If x(k) ∈ E2(Pc, r0, α)
and pk−1 − x(k)T Pk−1x(k) + x(k)T Pcx(k) ≤
p0, then set Kk = Kc, Pk = Pc, and go
to Step 5.

Step 4 Solve the LMI optimization problem (17)
with ξ = x(k). If it admits a solution,
compute Kk = Y Q−1, Pk = Q−1, and go
to Step 5. If not feasible, increase r and
repeat Step 4.
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Step 5 Prepare for the next computation:
pk = pk−1−

[

x(k)T Pk−1x(k) − x(k)T Pkx(k)
]

.

Step 6 Apply u(k) = Kkx(k) to control the system.
Replace k by k +1 and continue with Step 3.

5. EXAMPLE: CONTROL OF AN UNSTABLE
CSTR

We take the same example as in (Scherer et al., 2002)
for demonstrating the proposed moving horizon
scheme. This is a continuous stirred tank reactor,
in which the substance B is produced from the ini-
tial reactant A in the main reaction, and unwanted
parallel and consecutive reactions form by-products
D and C, as A

r1−→ B
r3−→ C and A

r2−→ D. The
reaction velocities ri are assumed to depend on the
concentration and/or the temperature nonlinearly.
The inflow of the CSTR contains only the substance
A and is assumed to come from an upstream unit.
Therefore, the concentration and temperature in the
inflow can be viewed as external disturbances. The
control objective is to maintain the concentration of
the main product B despite these inflow variations.
As control inputs we may choose the inflow rate nor-
malized by the reactor volume and the heat removal,
which suffer saturation. A more detailed description
of the CSTR can be found in (Allgöwer, 1996).

We discretize the linearized model given in (Scherer
et al., 2002) with a sampling time of δ = 0.1min.
We obtain a system in the form of (3) with

A =





0.9739 −0.0942 −0.4378
−0.0012 1.0321 0.1567
−0.0162 0.0640 1.0648





(B1|Bu) =





0.0592 −0.0017 0.0022 0.0502
0 0.0006 −0.0008 −0.0103

−0.0005 0.0082 −0.0103 −0.0028



 ,

where x ∈ R
3 represent the normalized concentra-

tions of substances A and B, and the normalized
reaction temperature, respectively; w ∈ R

2 and
u ∈ R

2 denote the normalized disturbances and
controls, respectively. It is assumed that controls are
bounded as |ui(k)| ≤ 1, ∀k ≥ 0, i = 1, 2. We further
choose the same controlled output z = col(Hx, Eu)
as in (Scherer et al., 2002) with H = diag(0.5, 1, 1)
and E = diag(0.1, 0.1). An (almost) optimal atten-
uation level for the unconstrained H∞ problem is
γopt = 0.1819.

Let us assume that the disturbance could be oc-
casionally very large and the energy is bounded as
∑i=∞

i=0
‖w(i)‖2 ≤ 6. Following the algorithm given in

Section 4, we implement a moving horizon controller
with α = 0.1 and r0 = 200γ2

optα
2. A much smaller α

is chosen, since it is allowed for the moving horizon
controller and leads to better performance. Accord-
ing to the discussion in Section 3, the moving hori-
zon controller respects the control constraints while

keeping the closed-loop system dissipative. For rea-
sons of comparison, we design a fixed controller by
solving LMI optimization problem (14) with α2

f = 6,

rf = 4.6γ2

optα
2

f and ξ = x(0) = 0. The subscript f is
affixed for the fixed controller. This design ensures
that for any disturbance with energy bounded by 6,
the fixed controller satisfies the control constraints
and admits a performance level of γf = 0.3893.
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Fig. 1. Comparison of disturbance attenuation. Both
moving horizon and fixed controllers guarantee
dissipation and constraint satisfaction.

Fig. 1 shows the results of attenuating an impulse
variation in inflow concentration and inflow temper-
ature, respectively. The impulse is with a width of 50
sampling periods and an energy of about 6. For these
disturbances, no on-line adaptation of γ happens in
the moving horizon controller, nevertheless perfor-
mance improvement over the fixed controller can be
clearly seen in the bottom-right picture of Fig. 1,
which is achieved by allowing to choose smaller α.

When unexpected stronger disturbances affect the
systems, the fixed controller may violate the hard
constraints. In this case, we just clip the control
signals to keep them within bounds, which implies
the loss of dissipation guarantee for the fixed con-
troller. Fig. 2 and Fig. 3 present the results for
such disturbances, from both the moving horizon
controller and the fixed controller. The disturbances
consist of a sinusoidal variation and an impulse with
high intensity as plotted in the bottom-left picture
of Fig. 2 and as defined by

w1(k) =

{

s1 + w̄1(k) for 0 ≤ k ≤ 50

w̄1(k) for k > 50

w̄1(k) = a1 sin(−0.024(k + 100)) sin(0.2(k + 100))

w2(k) =











w̄2(k) for 0 ≤ k < 200

s2 + w̄2(k) for 200 ≤ k ≥ 250

w̄2(k) for k > 250

w̄2(k) = a2 sin(−0.024(k + 110)) cos(0.2(k + 110))
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with a1 = a2 = 0.02, s1 = −0.41 and s2 = 0.75.
Automatic performance adaptations are indicated
clearly in the bottom-right picture of Fig 2, which
leads to better performance of the moving horizon
controller as illustrated in the bottom-right picture
of Fig 3. More precisely, the moving horizon con-
troller makes the best of the control constraints to
achieve the improvement during the first impulse;
relaxing on-line performance so as to avoid actuator
saturation leads to the improvement during the sec-
ond impulse. Moreover, the performance improve-
ment around k = 100 and k = 300 is obtained by
tightening the performance specification when the
impulse variations in the inflow are removed.
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Fig. 2. Responses for moving horizon controller.
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Fig. 3. Responses for fixed controller and comparison
of disturbance attenuation with moving horizon
controller.

6. CONCLUSIONS

In combining the moving horizon paradigm with
dissipation theory, we proposed in this paper an on-
line optimization scheme to solve the L2-gain atten-
uation problem with hard control constraints. Tech-
nically, the feedback gain is determined on-line by

solving a constrained H∞ control problem updated
by the actual state, while a dissipation constraint is
introduced to guarantee disturbance attenuation for
the closed-loop system. This scenario automatically
manages the trade-off between satisfying constraints
and achieving high performance, which is viewed as
the most relevant progress over (Scherer et al., 2002)
with corresponding improvements of performance.

It should be pointed out that the tuning mechanism
for the parameters α and r in the proposed scheme
requires further investigation. If the disturbances
are not directly feed through to the outputs, it
is straightforward to include output constraints as
well, and other extensions pointed out in (Scherer et
al., 2002) are under consideration.
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