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Abstract: A novel stochastic control framework for batch and repetitive processes
is proposed. The framework provides a pertinent means to incorporate real-
time feedback control (RFC) into iterative learning control (ILC) so that the
performance of ILC is virtually decoupled from that of RFC. This is a new
advancement since the currently practiced methods for combined RFC and ILC
have suffered from the problem that RFC has undesirable effects on ILC such as
digression from its convergent track along the run index when there occur run-
independent real-time disturbances. Performance of the proposed technique has
been demonstrated in two numerical processes.
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1. INTRODUCTION

Iterative learning control (ILC) is a relatively
new technique that has been developed to im-
prove the tracking performance of a process that
executes the same operation repeatedly. For the
past two decades since the Arimoto’s contribu-
tion (Arimoto et al., 1984), ILC methods have
been steadily improved from SISO (single-input
single-output) modeless deterministic approach to
MIMO (multi-input multi-output) model-based
stochastic approach and the application areas
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have been extended from the mechatronic sys-
tems like robots and disk drivers (Arimoto et

al., 1984; Bien and Huh, 1989) to chemical pro-
cesses (Lee et al., 1994), microelectronic systems
(Lee et al., 2001; Qin et al., 2002), biomedical
problems (Good et al., 2002), and so forth. It is
anticipated that the application of ILC will be
broadened more because of the growing impor-
tance of batch or run-to-run operation in various
industrial processes by the recent trend to produce
small quantity of high-valued multiple products.

Basically, ILC concerns the issue of learning from
the past operations in order to attain the ulti-
mate tracking performance under model uncer-
tainty and run-wise repeated disturbances. In real
applications, however, it is desirable to treat the
disturbance within a run and thus real-time feed-



back control (RFC) need to be combined with
ILC.

There are different methods to combine RFC with
ILC. A widely practiced method is to add a
feedback control block to ILC such that

uk(t) = uk−1(t) +H1(t)ek−1(1 : N)

+H2(t)ek(1 : t) (1)

where (i : j) means data from t = i to j; k repre-
sents the run index;H1 andH2 represent the gains
for ILC and FBC, respectively. In fact, RFC-ILC
can be realized without H1 since uk−1(t) already
contains the information of ek−1(t). Nevertheless,
(1) represents the most general form of RFC-ILC.

A trouble with existing combined RFC-ILC tech-
niques is that they lack the capability of dis-
tinguishing the run-independent real-time distur-
bance from the run-wise persisting disturbance.
Both RFC and ILC try to reject the disturbances,
in real-time for RFC and run-wise for ILC, respec-
tively. When there occurs a large run-independent
disturbance in the kth batch, uk(t) may change
excessively to reject the disturbance, and dete-
riorate the control performance of the following
runs since uk(t) acts as a feedforward input signal
for the next run. To the authors’ knowledge, it
seems that there has been no attempt to decouple
ILC from RFC such that ILC deals with only the
disturbance with strong run-wise correlation while
RFC handles the run-independent disturbance.

The purpose of the research is to develop a novel
framework for combined ILC and RFC, that can
separately handle the run-independent real-time
disturbance and the run-wise correlated distur-
bance. For this, a quite general form of dis-
turbance model is first assumed in a stochastic
framework by decomposing the disturbance into
three parts: the run-wise persisting part, the run-
independent part, and the measurement noise.
Each of them is separately handled by either ILC
or RBC with the aid of the Kalman filters. To
complete this, not only the state but also the input
is split into two parts: one for ILC and the other
for RFC. Through this approach, the resulting
controller is able to appropriately discriminate the
real-time disturbance from the run-wise persisting
disturbance and prevents the effects of the real-
time disturbance from being carried over to the
future runs. To realize the above concept, we
propose a two-stage technique where RFC and
ILC are executed in turn during and after a batch
run. As a prototypical algorithm, we revised QILC
(Quadratic criterion-based ILC) (Lee et al., 2000)
and BMPC (Batch Model-based Predictive Con-
trol) (Lee and Lee, 1997) and combine them into
a two-stage algorithm.

2. DISTURBANCE PROPAGATION IN
EXISTING TECHNIQUES

2.1 Process Modelling

We consider a linear discrete-time batch process
with u(t) and y(t) as input and output variables,
respectively, defined over a finite interval with N
sampling steps. Although the process undergoes
dynamics within a batch run, it can be represented
as a linear algebraic system which relates the
input sequence vector to the output sequence
vector over the underlying discrete-time domain.

y = Gu− d (2)

where

y=
[
yT (1) yT (2) · · · yT (N)

]T
(3)

and likewise for u and d. In the above, d(t)
represents the effects of all possible uncertainties
including the disturbance, model error, and bias
term. For stochastic ILC design, it is sensible to
decompose d into two terms: a run-wise correlated
part and a run-independent part.

d = w + v. (4)

If we represent the run-wise correlated part as
an integrated white noise process along the run
index, then dk can be expressed as follows:

wk =wk−1 +∆wk (5)

dk =wk + vk

where both {∆wk} and {vk} represent the zero-
mean white noise processes along k with covari-
ance matrices R∆w and Rv, respectively.

Let ek = yd − ek and ēk = ek − vk where yd is
the desired output trajectory. Then the following
inter-run transition model of tracking error can be
derived from (2) and (5):

ēk = ēk−1 −G∆uk +∆wk (6)

ek = ēk + vk.

2.2 Pure ILC

The pure ILC algorithm can be written as

∆uk = H1ēk−1 (7)

In practice, ēk−1 is not measured, hence should be
replaced by an estimate. (7) represents the idea of
ILC and we rely on it for analysis purpose.

Substituting (7) into (6) gives



ek = [I−GH1]ēk−1 + vk +∆wk (8)

ēk = [I−GH1]ēk−1 +∆wk (9)

vk and ∆wk appear in ek without any attenua-
tion. It is a natural result because vk and ∆wk

are newly entered disturbance at k while ∆uk is
calculated based on the previous run information.
It can be seen that ēk and, as a consequence,
∆uk+1 are not affected by vk. This implies that
ILC based on (6) can keep its integrity rejecting
the effect of the real-time disturbance.

When vk = ∆wk = 0 and ‖I−GH1‖ < 1, ek → 0
as k →∞.

2.3 ILC combined with Real-time Feedback

An ILC algorithm combined with RFC (RFC-
ILC) can be expressed as

∆uk = H2ek (10)

To reject the real-time disturbance, ek instead
of ēk is fed back. For causality, H2 has a low-
triangular structure. Again, the real algorithm
may be more complicated than the above. (10)
retains the key features of an RFC-ILC algorithm.

Substituting (10) into (6) results in

ek = [I + GH2]
−1(ēk−1 + vk +∆wk) (11)

ēk = [I + GH2]
−1(ēk−1 −GH2vk +∆wk)(12)

It can seen that the effects of vk and ∆wk are
attenuated in ek by the real-time control action.
The larger GH2 is, the more the disturbance
is rejected. However, a large GH2 makes ēk be
strongly affected by vk, which not only gives
an harmful effect on the ILC track but also
deteriorates the performance of ek+1.

3. PROPOSED BATCH CONTROL
TECHNIQUE

One of the representative RFC-ILC techniques for
batch chemical processes, called BMPC (Lee and
Lee, 1997), is based on the updating rule (10), and
has the problem discussed in the previous section.
On the other hand, a pure ILC technique, called
QILC (Lee et al., 2000), is based on (7) and can
keep the genuine learning track not being affected
by the real-time disturbance. Bearing the above
in mind, we propose a new RFC-ILC formulation
where RFC is separated from ILC so that the
effect of the real-time disturbance is blocked from
transferring to the learning track.

The proposed technique is designed to perform
two-stage calculation: ILC after a run, say it k −

1th run, and RFC calculation during the kth run
on the basis of the learning input. Detailed ILC
and RFC algorithms are constructed by modifying
existing QILC and BMPC, respectively.

3.1 Process Modeling

Let us decompose the disturbance into three
terms: wk, vk, nk which refer to the parts that
will be rejected by ILC and by RFC, and the
measurement noise, respectively.

dk =wk + vk + nk (13)

wk =wk−1 +∆wk.

Also we decompose the a control action uk into ūk

and ûk, each of which is responsible for ∆wk and
vk, respectively. With these variables, the process
model can be expressed as

yk =Guk − dk = G(ūk + ûk)− (wk + vk + nk)

=Gūk −wk
︸ ︷︷ ︸

ȳk

+Gûk − vk

︸ ︷︷ ︸

ŷk

−nk

= ȳk + Gûk − vk − nk = ŷk − nk (14)

ūk and ûk will be used by ILC and RFC to
cancel wk and vk, respectively, while steering yk

to follow yd. If perfect disturbance rejection would
be made, yk → yd − nk in the end.

Similarly to (6), the following model equation can
be derived from (14):

ēk = ēk−1 −G∆ūk +∆wk

êk = ēk −Gûk + vk (15)

ek = êk + nk.

In the above, ēk = yd − ȳk and êk = yd − ŷk,
respectively.

3.2 Revised QILC

ILC calculates ∆ūk instead of ∆uk. After the
k − 1th run, ek−1, ūk−1, and uk−1 are available.
Then ∆ūk is determined such that

min
∆ūk

1

2

{

‖ēT
k|k−1‖

2
Q + ‖∆ūk‖

2
R

}

(16)

subject to ēk|k−1 = ēk−1|k−1 −G∆ūk (17)

ēk−1|k−1 = ēk−1|k−2

+ K(ek−1 − (ēk−1|k−2 −Gûk−1))

where K is the Kalman gain which depends on
R∆wk

and Rv. Inequality constraints on ēk|k−1

and ∆ūk can be incorporated together. The above
calculation is repeated after the each run.



3.3 Real-time Predictive Control

Let us define the state at t + 1, which will be
regulated by RFC, as

êk(t+ 1) = êk with ∆ūk(t+ 1) = · · · = 0,

ûk(t+ 1) = · · · = 0, vk(t) = · · · = 0

= ēk−1 −G(0)(∆ūk(0) + ûk(0))− · · ·

−G(t)(∆ūk(t) + ûk(t))

+
[
vT

k (0) · · · v
T
k (t) 0 · · ·

]T
+∆wk. (18)

The relationship in the above can be derived from
(15) and G(i) represents the ith block column
in G. If we write (18) for êk(t) and take the
difference from êk(t) while assuming the dynamics
of the real-time disturbance as

v(t) = αv(t− 1) +m(t), (19)

the state space equation in time is constructed:

[
êk(t+ 1)
v(t+ 1)

]

=

[
I H(t)
0 αI

] [
êk(t)
v(t)

]

(20)

−

[
G(t)
0

]

(∆ūk(t) + ûk(t)) +

[
0
I

]

m(t)

ek(t) =
[
HT (t) 0

]
[
êk(t)
v(t)

]

+ n(t) (21)

with

[
êk(0)
v(0)

]

=

[
ēk−1 +∆wk

v0

]

(22)

where H(t) is a zero matrix except I at the tth

block column such that

H(t) = [

t−1 cols
︷ ︸︸ ︷

0 · · · 0 I 0 · · · 0]T . (23)

For simplicity, let’s define

∆uk(t) = ∆ūk(t) + ûk(t) = uk(t)− ūk−1(t) (24)

The prediction equation can be readily derived

from (20). Let
[
êT

k (t+m|t) vT (t+m|t)
]T

be the
prediction of the state made at time t when there
are m future control moves. Then we have

[
êk(t+m|t)
v(t+m|t)

]

=





I

m−1∑

j=0

H(t+ j)

0 αI






[
êk(t|t)
v(t|t)

]

−

[
Gm(t)

0

]

∆um
k (t) (25)

where

Gm(t) =
[
G(t), · · · , G(t+m− 1)

]
,

∆um
k (t) =






∆uk(t)
...

∆uk(t+m− 1)




 (26)

and
[
êT

k (t|t) v
T (t|t)

]T
is the state estimate by the

Kalman filter applied to (20)-(22).

∆uk(t) is calculated to minimize

J =
1

2

{
‖êk(t+m|t)‖2Γ + ‖∆um

k (t)‖2Λ
}

(27)

Inequality constraints can be imposed on the
output and input variables.

Note that that calculation of ∆uk(t) is equivalent
to calculation of ûk(t) since ūk−1(t) is known.
After the batch run, ûk is available and ∆ūk+1

can be computed by QILC.

ILC in the proposed technique is based on the
updating rule in (7). Hence the learning is ba-
sically unaffected by the run-independent distur-
bance even under the active feedback action by
the predictive control.

3.4 Tuning Guideline

It is thought that tuning through the noise covari-
ance matrices is more transparent than through
the quadratic cost weighting matrices in the pro-
posed controller. In fact, it is well known that the
covariance matrices and the weighting matrices
have symmetric effects on the controller perfor-
mance (Lee et al., 2000). In the constrained case,
however, the input penalty in the quadratic cost
loses its meaning when the input is stuck on the
constraint boundary, while the Kalman gain can
still function as an effective tuning knob. In this
respect, it is suggested to fix Q and Γ as scaling
matrices and set R and Λ as small positive definite
matrices only for regularization, and to use R∆w,
Rv (determined by Rm according to (19), and Rn

as the tuning factors. Their effects on the respec-
tive controllers are rather obvious from the nature
of the Kalman filter. If R∆w is given to be large
in relation to Rv +Rn (note that vk +nk in (13)
is equivalent to vk in (4)), the run-independent
disturbance is weakly filtered and has a strong in-
fluence on the ILC performance. Therefore such a
choice should be made when the run-independent
disturbance is not large. By the similar reasoning,
the behavior of RFC is determined by the ratio
R∆w + Rv to Rn. When the ratio is large, real-
time control is enhanced.

4. NUMERICAL ILLUSTRATIONS

The performance of the proposed algorithm is
examined for two numerical processes, a linear
single-input single-output (SISO) batch process
and a semi-batch reactor system with series-
parallel reactions (Chin et al., 2000).



Fig. 1. (a) Controlled variables (b) Manipulated
variables for the 11th and 12th runs under a
run-independent disturbance.

4.1 Linear SISO System

The plant and nominal model are the sampled-
data systems (sampling interval=1) of the follow-
ing transfer functions, respectively:

Gp=
2.5

300s2 + 35s+ 1
, Gm=

1.5

270s2 + 33s+ 1
.(28)

It is assumed that a run-independent disturbance,
a step response of a low pass filter, enters from
t = 31 only at the 11th run.

4.1.1. Results and Discussion Figure 1 shows
the performance of the proposed control tech-
nique. It can be seen that ū12(t) is only slightly
influenced by the run-independent disturbance al-
though the disturbance is aggressively rejected by
the real-time predictive control yielding largely
changing u11(t). The consequence is that the
learning process can be continued with only a
minor interrupt. Such a performance cannot be
achieved by the existing RFC-ILC techniques.

4.2 Semi-Batch Reactor

The jacketed semi-batch reactor model in (Chin
et al., 2000), where the following reaction takes
place

A+B
k1−→ C

Fig. 2. Two different disturbance scenarios.

B + C
k2−→ D (29)

is revisited in this example. A is charged initially
and the heat-up is followed until B starts to be
fed at t = 31 min. The reaction commences at this
point and continues until the batch terminal time
of tf = 100 min. During this period, A is sampled
at every 10 min for concentration measurement.
The desired product is C and the main objective
is to maintain the final yield of C at 42 mol.
We considered two manipulated variables: jacket
temperature Tj(t) and flow rate of B,QB(t) where
the following constraints are imposed:

20oC ≤ Tj(t) ≤ 45oC (30)

0.5 (liter/min) ≤ QB(t) ≤ 1.5 (liter/min)

The sample time for control was chosen to be 1
min. In this example, two different disturbance
patterns in CB (concentration of feed B) are
assumed as shown in Figure 2. In the first case,
CB changes randomly around 0.95 (mol/l) from
the 11st run. In the second case,CB is decreased
from 0.95 (mol/l) to 0.9 (mol/l) at the 11th run
and kept at 0.9 (mol/l) thereafter.

4.2.1. Results and Discussion Figure 3 shows
a result for the first disturbance scenario (run-
independent disturbance). One can see that ūk(t)
is almost uninfluenced by the disturbance and re-
mains on the already-converged input trajectories.
In Figure 4, a result for the repeated disturbance
is given. It can be observed that ūk(t) changes and
converges to new profiles that can perfect reject
the repeated disturbance. Although not shown
here due to limited space, the performance of
quality (final yield of C) control as well tem-
perature tracking control were found to be quite
satisfactory for both disturbance scenarios.

5. CONCLUSIONS

We proposed a new learning control methodol-
ogy to handle two different types of disturbances,
run-wise persisting and uncorrelated disturbances



Fig. 3. (a) Jacket temperature (b) feed flowrate of
B under the run-independent disturbance.

Fig. 4. (a) Jacket temperature (b) feed flowrate of
B under the run-wise repeated disturbance.

separately with a simple tuning guideline. The
present BMPC or other combined iterative learn-
ing control (ILC) and real-time feedback control
(RFC) methods share a problem that an excessive
input movement by a large real-time disturbance

is transferred to the next run as a feedforward
input signal, which leads to deterioration of the
learning performance. To solve this problem, we
have devised a two-stage algorithm, RFC during
a batch run to fight against run-wise uncorrelated
disturbance and then ILC after the batch run
for input update only by the run-wise persisting
disturbance. The proposed control algorithm is
based on the earlier study on BMPC and QILC
for the inheritance of their advantages.

Numerical studies reveal that the proposed tech-
nique works as anticipated overcoming the prob-
lem of existing batch control methods.

To the authors’ knowledge, the present paper is
the first achievement that correctly deals with
the disturbance rejection problem in batch process
control. The two-stage technique based on QILC
and BMPC has been given as a prototypical
technique to realize the idea.
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