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Abstract: The contribution deals with the application of self–tuning LQ control of
a laboratory CSTR (Continuous Stirred Tank Reactor). The strategy of the linear
control system is based on a recursive identification of the dual YK (Youla–Kučera)
parameter of the plant and subsequent calculation of a new YK parameter of the
controller. This YK parameter is determined via a non-conventional LQ control
design where squared derivative of the manipulated variable and control error are
considered.
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1. INTRODUCTION

To improve the quality of the products it is neces-
sary to improve the automation (control) of pro-
duction of these products. One of the most impor-
tant control problems in the chemical industry is
a control of chemical reactors. Chemical reactors
represent a typical class of plants with nonlinear
behavior.

A traditional approach to design a control sys-
tem for such plants includes nonlinear strate-
gies (Kanter et al., 2002), robust strategies (Aguilar
et al., 2002; Sampath et al., 2002) or adaptive
strategies (Dostál et al., 1999).

For the most part of theoretical works reference
signal is assumed to be from a class of stochastic
functions. However, in technologic practice, ref-
erences belong always to a class of deterministic
functions. Moreover, practical needs of control
show, that it is not always sufficient to restrict
the output and control signals only. Very often,
the manipulated variable derivatives should be

restricted as well. The solution of such a control
problem represents then a non-conventional LQ
problem (Dostál et al., 1994).

This paper describes adaptive non-conventional
LQ control of the CSTR. The nonlinear model
of the CSTR is for adaptive application approxi-
mated by an external SISO (Single-input Single-
output) linear model and then it is possible to ap-
ply any of control techniques introduced for linear
systems (Čirka et al., 2002b; Čirka et al., 2002a).

The main aim of this paper is to present an
adaptive LQ control design involving both the
controller and plant model YK parameterisations
and demonstrate its feasibility on the CSTR. Dual
YK parameter has been identified using IDTOOL
– identification toolbox for Simulink (Čirka and
Fikar, 2000). The identification algorithm has
been presented in papers (Mikleš, 1990; Mikleš et

al., 1992).

The paper is organised as follows. Section 2 recalls
the results of the Youla-Kučera parameterisation.



The simulation and experimental results obtained
from control of a laboratory chemical reactor
are in Section 3. Finally, Section 4 offers the
conclusions.

1.1 Notation

For simplicity, the arguments of polynomials are
omitted whenever possible - a polynomial X(s) is
denoted by X . We denote X∗(s) = X(−s) for any
rational function X(s).

2. CONTROL ALGORITHM

Mathematical model of the reactor is described by
the system of nonlinear differential equations with
variable parameters. The modern control theory is
the best developed for linear systems. One of the
possible control solutions for nonlinear systems is
to find an adequate linear mathematical approxi-
mation of the nonlinear object and to apply a self–
tuning algorithm. The procedure presented here
is based on the Youla–Kučera parameterisation:
in each step the dual YK parameter of the plant
model is estimated and subsequently a new YK
parameter of the controller is designed. It is as-
sumed that an initial plant model and stabilising
controller are available.

2.1 System Description

Consider the closed-loop system illustrated in
Fig. 1. A continuous-time linear time-invariant
input-output nominal representation of the plant
to be controlled is considered

Ay = Bu (1)

where y, u are process output and controller
output, respectively. A and B are polynomials
in complex argument s that describe the input-
output properties of the plant.

We assume that the condition degB ≤ degA
holds (i.e. transfer function of the plant is proper)
and A and B are coprime polynomials.

The reference w is considered to be from a class
of functions expressed as

Fw = H (2)

whereH , F are coprime polynomials and degH ≤

degF .

The feedback controller is described by the equa-
tions
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Fig. 1. Block diagram of the nominal closed-loop
system

Xũ = Y e, Fu = ũ (3)

where X,Y are coprime polynomials and X(0)
is nonzero. The second equation assures that the
controller tracks the class of references specified
by (2).

Consider the nominal plant and the nominal con-
troller transfer functions in the fractional repre-
sentations

G =
NG

DG

, C =
NC

DC

, (4)

where

NG =
B

M1

, DG =
A

M1

(5)

NC =
Y

M2

, DC =
FX

M2

(6)

and M1, M2 ∈ S with degrees deg(M1) ≥ deg(A)
and deg(M2) ≥ deg(FX), DG, NG, DC and NC ∈

RH∞. S denotes the set of stable polynomials and
RH∞ the set of stable proper rational transfer
functions.

A stabilising controller is then given by solution
of a Diophantine equation

DGDC +NGNC = 1 (7)

Substituting equations (5) and (6) into (7), the
condition of stability in S takes the form

AFX +BY = M1M2. (8)

2.2 Identification Part

The identification is based on the idea which was
first introduced by Hansen and Franklin (1988)
in view of closed-loop experiment design. It uses
the dual YK parameterisation of all linear time
invariant (LTI) plants that are stabilised by a
given known controller. In order to describe this
method, we need the following theorem.

Theorem 1. Let a nominal model plant G =
NG/DG, with NG and DG coprime over RH∞,
be stabilised by a controller C = NC/DC , with
NC and DC coprime over RH∞. Then the set of
all plants stabilised by the controller C is given by



G(Q) =
Nq

Dq

=
NG +DCQ

DG −NCQ
, (9)

where

Q ∈ RH∞ (10)

Proof Dual to that of (Vidyasagar, 1985) 2

Since our method involves polynomials rather
than polynomial fractions, we present a short
overview of the corresponding transformation be-
tween both descriptions.

Corollary 2. Let a nominal model plant G =
NG/DG = B/A, with NG, DG, B and A de-
fined by (5), be stabilised by a controller C =
NC/DC = Y/FX , with NC , DC , Y and FX
defined by (6). Then the set of all plants stabilised
by the controller C is given by

G(Q) =
Bq

Aq

=
BmQd + FXmQn

AmQd − YmQn

, (11)

where

Q=
Qn

Qd

∈ RH∞, Am = AM2,

Bm =BM2, Xm = XM1, Ym = YM1 (12)

Corollary 2 represents the standard parameterisa-
tion of the class of all plants that are stabilised
by the actual controller C. Based on the closed-
loop system in Fig. 2, Hansen and Franklin (1988)
showed that the parameter Q satisfies the relation

z = Qx (13)

where the signals x and z can be reconstructed by
filtering the measured data u, y with filters that
depend on known factors of the nominal plant P
and the nominal controller C, respectively

x=NGy −DGu (14)

z =DCy +NCu (15)

Then, the YK parameter Q can be identified from
reconstructed auxiliary signals x and z according
the following prediction error equation

ε(t, θ) = z(t) −Q(θ)x(t) (16)

where θ represents the identified parameters.

2.3 Controller Design Part

The goal of optimal deterministic LQ tracking
is to design a controller that enables the control
system to satisfy the basic requirements

-w j-e C -u j
+

+
- D−1

G
-` NG

- j
+

+
6

Q

x

z

`

?

NC
�- DC

?

G(Q)

-̀

6

y

Fig. 2. The dual YK parameterisation

• stability of the closed-loop system
• asymptotic tracking of the reference

and in addition the control law that minimises the
cost function

J =

∞
∫

0

(

ϕũ2(t) + ψe2(t)
)

dt (17)

where e = w − y denotes the control error and
ϕ > 0, ψ ≥ 0 are weighting coefficients. The cost
function (17) can be rewritten using Parseval’s
theorem, to obtain an expression in the complex
domain

J =
1

2πj

j∞
∫

−j∞

(ũ∗ϕũ+ e∗ψe) ds (18)

For controller design we propose to use the
method described in Čirka et al. (2002b). Let us
at first summarise the known results dealing with
parameterised systems:

Theorem 3. Consider the closed-loop system with
the configuration in Fig. 3 defined by G(Q) and
C(S) where Q = Qn/Qd and S = FSn/Sd are
stable proper rational functions. The closed-loop
system is stable if and only if Q and S together
define a stable loop.

Proof (Tay et al., 1989). 2

Theorem 4. Consider the minimisation of the cost
function (17) with respect to the YK parameter
S that is specified as a transfer function. Assume
that the nominal system G = NG/DG = B/A is
stabilised by a nominal controller C = NC/DC =
Y/FX and that a stable transfer function Q is
known. Solve spectral factorisation equations for
stable Dc and Df

D∗

cDc =ϕA∗

qAqF
∗F + ψB∗

qBq (19)
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Fig. 3. Block diagram of the closed-loop system

D∗

fDf =A∗

qAqH
∗H (20)

and the coupled bilateral Diophantine equations
for Sn and Sd

D∗

cSn =−ϕDfA
∗

qF
∗Ym + ψDfB

∗

qXm

−QdDV
∗ (21)

D∗

cSd =ϕDfA
∗

qF
∗AmF + ψDfB

∗

qBm

+QnFDV
∗. (22)

The optimal YK parameter is then given as

S =
Fsn

sd

=
FSn

Sd

, (23)

where

sn =
Sn

DcDf

and sd =
Sd

DcDf

Proof (Čirka et al., 2002b). 2

2.4 Combined Algorithm

The adaptive control algorithm is realised in the
following steps:

1. Suppose the initial model P = B/A is known
and stabilised by a nominal controller C =
Y/X .

2. The filtered variables x and z are obtained
from equations (14) and (15).

3. The dual YK parameter Q is recursively
estimated from equation (13) in the discrete
time intervals tk = kTs with the sampling
period Ts. Here, the modified LDDIF (Čirka
and Fikar, 2000) identification procedure was
used.

4. The polynomials Df and Dc in spectral fac-
torisations (19) and (20) are calculated.

5. The YK parameter S is updated on the base
of solution of the Diophantine equations (21)
and (22).

6. Jump to step 2.

3. RESULTS AND DISCUSSION

3.1 Mathematical Model

The control algorithm has been tested on control
of exothermic reactor. The mathematical model
of CSTR was developed in the form (Mikleš et

al., 1999)

dcA
dt

=
1

Vr

(

qAcAi − (qA + qB)cA
)

− υ

dϑr

dt
=
qA + qB
Vr

(ϑri − ϑr) −
Aα

cprVrρr

(ϑr − ϑc)

+
1

cprρr

(−∆H)υ −
ksAα

cprVrρr

(ϑr − ϑout)

dϑc

dt
=
qc
Vc

(ϑci − ϑc) +
Aα

cpcVcρc

(ϑr − ϑc)

with initial conditions:
cA(0) = csA, ϑr(0) = ϑs

r and ϑc(0) = ϑs
c.

The reaction rate is expressed as

υ= 2kcyAc
z
Be

E(ϑr−ϑ0)

Rϑrϑ0

cB =
cBiqB
qA + qB

where

c concentrations [mol m−3]
V volumes [m3]
ϑ temperatures [K]
ρ densities [kgm−3]
cp specific heat capacities [J kg−1 K−1]
q flow rates [m3 min−1]
A heat exchange surface area [m2]
α heat transfer coeficient [J s−1 m−2 K−1]

−∆H heat of reaction [Jmol−1]
k reaction rate constant [mol cm−3 s−1]
E activation energy [Jmol−1]
R gas constant [Jmol−1 K−1]

y, z the orders of reaction [-]
ks loss of heat coefficient [-]

The subscripts are (·)r for the reactant mixture,
(·)c for the coolant, (·)i for feed (inlet) values and
the superscript (·)s for steady-states values.

This mathematical model was tested by different
identification methods and parameters in Table
1 were found. For control purposes, the controlled
output and control input are defined as y = ϑr−ϑ

s
r

and u = qc − qs
c .



Table 1. Parameter values, inlet values
and initial conditions

Values of all parameters

Vr = 940 cm3

Vc = 90 cm3

cpr = 4180 J kg−1 K−1

cpc = 4180 J kg−1 K−1

ρr = 0.001 kg cm−3

ρc = 0.001 kg cm−3

qA = 15 cm3 min−1

qB = 6 cm3 min−1

−∆H = 98300 J mol−1

E = 3.0917 104 J mol−1

ks = 0.007

k = 0.091 mol cm−3 s−1

z = 0.875

y = 1.641

Aα = 116.09 J min−1 K−1

ϑ0 = 297.65 K

R = 8.314 J mol−1 K−1

ϑout = 293.15 K

Feed values

ϑri = 293.15 K

ϑci = 298.15 K

cAi = 2.64 10−3 mol cm−3

cBi = 1.5297 10−4 mol cm−3

Steady-state values

ϑs
r = 303.46 K

ϑs
c = 303.06 K

cs
A

= 1.4784 10−4 mol cm−3

Designed LQ adaptive control was verified in sim-
ulations as well as on the real plant. For the
verification of control algorithm in laboratory con-
ditions it was assumed with the high probability
that data in Table 1 were valid in experiments,
too. The results are very similar.

The goal of the adaptive control has been to
track specified temperature ϑr in the reactor with
exothermic reaction. The temperature ϑr is con-
trolled by the flow rate qc of the coolant.

The experiment was realised in two steps:

1. Control simulation of the CSTR model. The
advantage of the control simulation of the
chemical reaction with thermal effects is to
prevent run-away problems, which can occur
experimentally, particularly for such a reac-
tion.

2. Control of real laboratory CSTR.

In both cases, the nominal transfer function of the
reactor is of the form

G =
B

A
=

−3.7

840s+ 1
(24)

and the nominal controller is determined as

C =
Y

FX
=

−0.117

s
(25)

The task was
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Fig. 4. Controlled output time responses

• to identify in each step the dual YK param-
eter of the plant (model) based on the input
(the coolant feed) and output (the temper-
ature in the reactor) data, respectively. The
structure of the identified dual YK parameter
was chosen of the form Q = q0,

• and subsequently to design a new YK param-
eter of the controller.

The following references were tracked:

Step No. 1 2

Time [s] 0 5400
Temperature [K] 306.16 302.16

The boundary of the control input were used
within 0 ≤ u(t) ≤ 140 cm3min−1. The weighting
coefficients in cost (18) were ϕ = 1 and ψ = 0.003.

The obtained time responses of the temperature in
the reactor (for both cases) are compared in Fig. 4.
The small differences between the responses of
the model and real plant were caused by the
behaviour of the coolant temperature (Fig. 5) in
real experiment. Fig. 6 and 7 shows simulation
and experimental coolant feed and identified dual
YK parameter.

Note 1. We have realised several experiments
with various control structures (fixed controller
and classic self-tunning controller). Both control
structures performed well. However, the fixed con-
troller cannot handle parameter changes of the
reactor and its performance can deteriorate.

4. CONCLUSIONS

In this paper an adaptive LQ controller design
procedure was presented. The design method is
based on the idea of YK parameterisation of the
controller and the plant model. The algorithm was
applied to a CSTR. The advantage of this method
resides in the fact that in the case of CSTR only
one parameter needs to be identified in order to
update the controller.
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