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Abstract: This paper describes the application of a nonlinear model-based control strategy 
in a real challenging process. A predictive controller based on a nonlinear model derived 
from physical relationships, mainly heat and mass balances, has been developed and 
commissioned in the Inner Triplet Heat Exchanger Unit (IT-HXTU) prototype of the LHC 
particle accelerator being built at CERN, operating at a temperature of about 1.9 K. The 
development includes a state estimator with a receding horizon estimation procedure to 
improve the regulator predictions. Copyright © 2003 IFAC 
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1. INTRODUCTION 
 
MPC strategies have become the preferred control 
technique for many process control problems, most 
of the industrial MPC controllers using an internal 
linear dynamic model. Nevertheless, many common 
processes exhibit nonlinear behavior and they may 
be required to operate over a wide range of 
conditions, therefore, these controllers are often 
tuned in a conservative way, which can result in 
serious degradation of controller performance. An 
alternative is to use a non-linear internal model. 
Many controllers, using different types of internal 
models, have been proposed in the literature, but the 
number of non-linear MPC is still low in industry. 
 
In this paper we present an implementation of a non-
linear MPC to a challenging process, which requires 
to operate under strong requirements. It corresponds 
to the new particle accelerator, the LHC, which is 
under construction at CERN, Geneva. In its final 
form it will expand in a circumference of about 27 
Km in France and Switzerland. In order to test the 
proposed design some prototypes such as the String1 
(Casas et al., 1998) and the IT-HXTU (Byrns et al., 
1998) were built (Fig.1).  
 
The aim of the LHC is to accelerate particles at  
speeds close to the one of the light in order to study 
the results of its collisions. For this purpose, the 
particles are driven within the LHC accelerator using 
very strong magnetic fields, which requires high 
electrical currents of about 12 kA for its magnets. A 
practical operation of the magnets requires operating 
with no electrical resistance in the coils, 
superconductivity condition, that can be maintained 
only at extremely low temperatures of around 1.9K. 
The main aim of the control system presented in this 
paper is to maintain this temperature in a narrow 
range, 50 mK, in spite of the unknown disturbances 

acting on the process. This is required in order to 
avoid a “quench” that will stop the operation. 
 

 
 

Fig. 1 Inner Triplet Prototype (length: 30 meters) 
 
Several linear control strategies has been tested at 
String1, including PID and linear MPC (Blanco, 
1999; Cristea, 1998) but all of them suffer from the 
above mentioned problem: their performance is 
degraded when, due to different heat load charges, 
the unit must operate in different working conditions. 
This was the main reason to implement NMPC. This 
paper presents the non-linear approach, as well as 
state and disturbance estimations that were not taken 
into account in previous versions, and it is organized 
as follows: After the introduction, section 2 describes 
the String1 and its cryogenic system. Section 3 is 
devoted to the process model and section 4 to the 
non-linear controller including the state estimator. 
Experimental results are given in section 5. The 
paper ends with some brief conclusions. 
 



 

 

2. PROCESS DESCRIPTION 
 

The LHC 1.8 K Cooling Loop represents a structure 
of four magnets (four quadropoles in the IT-HXTU 
and one quadrupole and three dipoles in the String1 
prototypes) mounted at a slope of 1.4% to match the 
steepest inclination in the real accelerator tunnel. The 
superconducting magnets operate below 1.9 K in a 
bath of pressurized helium.  
 
 

 
 
Fig. 2. Process and Schematic Diagram (String1) 
 
Referring to Fig.2, the heat deposited on the bath is 
extracted by gradual vaporization of saturated 
superfluid helium flowing along the wetted length of 
a heat exchanger (HX) tube threading the string of 
magnets. The tube is only partially wetted, being the 
wetted length a main control variable. The liquid 
helium used for cooling at the 1.8K level is taken 
from the main reservoir (SFB) at 4.2 K and 1.15 bar 
(1). The helium is subcooled in the subcooling-heat 
exchanger (2) to 2.2 K, and then it is sent through the 
heat exchanger in the overflow pot (3). The 
subcooled liquid is then expanded to saturation at 17 
mbar and 1.8 K in the Joule-Thomson valve (4), 
where a vapor fraction is created as well. The helium 
is led to the end of String (5). Here, it is let out in the 
HX, and flows back towards the overflow pot that, in 
normal operation, is empty. The helium vapor at 
17mbar is taken out from the overflow pot (3) and 
through the subcooling-heat exchanger (6), thus 
providing the subcooling for the incoming 
pressurized liquid at 4.2 K. 
 
The regulation goal is keeping the temperature of the 
superconducting magnets as constant as possible 
within strict operating constraints imposed by the 
maximum temperature at which the magnets can 
operate, the cooling capacity of the cryogenic 
system, the heat loads, and at last, the accuracy of the 
instrumentation. A small margin of a few mK is 
allowed before the superconductivity of the magnet 
coils is lost. If this happens, a potentially dangerous 
situation (quench) is created because of the heat 
released in the new conditions and the sudden helium 
vaporization it implies. 
 
The Joule-Thomson valve opening is the 
manipulated variable, and the temperature sensors 
located in the cold mass (two per magnet) provide 
the controlled variables, the warmest temperature is 
taken as controlled variable at every time step. 

Disturbances are of two different types: general heat 
loads and variations in the flow through the Joule-
Thomson valve. Heat loads are produced mainly by 
heat inleaks from the higher temperature levels, 
current magnet ramping and particle beam losses 
(simulated by electrical heaters). The set point is the 
saturation temperature plus a certain ∆T, typically 
0.03 K. 
 
This process has shown difficult dynamic behavior, 
being a non-self regulating process (integrating 
response), with variable dead time (transportation lag 
between 6-12 minutes) and exhibiting inverse 
response. 
 

 
 
Fig. 3 - Advanced control motivation 
 
 
An additional aim in implementing MPC on the plant 
was optimizing its operation. As can be seen in Fig. 
3 reducing the variance in the magnets temperature 
will allow, either operating at a higher temperature 
setpoint without violating the upper constraints 
(which implies money savings because of the 
reduced demand on the cryogenic system) or 
admitting less instrumentation accuracy (which also 
implies savings in design and construction).  
 
The fact that trying to squeeze as much as possible 
the control band is a strong constraint and a full 
justification for the choice of a MPC technology. The 
violation of this constraint would imply an eventual 
high-cost shutdown during normal operation.  
 
 

3. PLANT MODELLING 
 
Nonlinear predictive control (NMPC) is a natural 
extension of the linear MPC technique. The 
algorithm is again based in the use of an internal 
plant model, this time a nonlinear one which captures 
the main process characteristics. A key element in 
NMPC is the nature of the internal model. Several 
alternatives are possible including first-principle 
models, neural nets, Volterra series, etc. In our case a 
physical model was used trying to balance the 
capture of the process dynamics under several 
operating conditions and the simplicity of the 
representation. 
 



 

 

A non-linear model based on physical laws and 
balances has been developed and validated using real 
experimental data obtained in the IT-HXTU 
installation. The implementation of this first 
principles model provides precise predictions over a 
very different operational conditions having into 
account changes in the saturation pressure and 
existing dynamic heat loads. Nevertheless, for 
control purposes, a simplified model is considered, 
based on some assumptions and equations (Blanco, 
2001). 
 
All magnets are assumed to operate at equal 
temperature T. Considering a single cold mass 
temperature simplifies the model and the heat 
transfer calculation through the interconnections. An 
energy balance leads to: 
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where Q are heat loads and the cooling provided by 
the heat exchanger, qcool , is calculated through  
 

)( swscool TTHAq −=                    (2) 
where the heat transfer coefficient, H, is estimated 
experimentally, the saturation temperature, Ts, is 
obtained by direct measurement of the saturation 
pressure, and the wetted area Aws is estimated from 
the helium II mass accumulated in the heat 
exchanger tube by the following  calculation 
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where Lws is the wetted length on the HX and it is 
calculated through. 
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f1 and f2 being strong non-linear functions of mass 
depending of the geometry of the pipe. 
The accumulated helium II mass in the heat 
exchanger is calculated by 

FvFrlfjt
dt

dmHX −−=                 (5) 

where the lfjt is the liquid flow passing through the 
Joule-Thomson valve, Fr, the helium II liquid 
overflow and Fv the helium which evaporates in the 
HX, having also into account the vapour fraction, 
flash, produced by the Joule-Thomson valve. 
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where mfjt represents the total mass flow passing 
through the JT valve which depends on the valve 
characteristic, and vflash the vapour fraction 
produced. This is computed from an enthalpy 
balance between the incoming high-pressure stream 
and the two coexisting phases at saturation pressure 
at the output of the JT valve. 
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Finally, the vapour on the heat exchanger is 
composed by two components, vapour fraction 

produced by the JT valve, and evaporation of the He 
II liquid. 

fg
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gfjt represents the gas flow produced by the JT valve 
and it is calculated by (9), being hfg the latent heat of 
vaporization of liquid helium. 
 

vflashmg fjtfjt ⋅=                       (9) 
The JT valve is characterized by a calibration curve 
and its opening represents the input of the model, 
vopen, and the constants, cti, give the valve 
characteristic. 
 

321 2 ctvctvctmfjt openopen +⋅+⋅=         (10) 
 

 
Fig. 4 Simplified vs. Complete first principles model  
 
A comparison between the simplified model versus 
the complete model shows the magnet temperature 
when the JT valve is moved (Fig.4). A good trade off 
between complexity and quality of the model is 
obtained. 
 
The value of some parameters, i.e. the cold mass and 
the heat transfer, was estimated by off-line 
optimization of the model errors.  
 
 

4. PREDICTIVE CONTROLLER 
 
The objective of the non-linear model predictive 
control (NMPC) is finding the future optimal 
manipulated variable sequence in order to minimize 
a function based on a desired output trajectory over a 
prediction horizon. The cost function is the integral 
of the sum of squares of the residuals between the 
model predicted outputs and the setpoint values over 
the prediction horizon N2, plus a penalty term. A 
typical formulation is 
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where y and u are the process output and input. The 
minimization (11) is done subject to the continuous 
model equations and the typical restrictions applied 
on the manipulated and controlled variables: 
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Of the Nu moves optimal control sequence, only the 
first component is implemented. The optimization is 
solved using the scheme of Fig.5. Within this 
schema, the model equations are not explicit 
restrictions to the optimisation problem, being the 
manipulated variables the only decision variables. 
The simulation package will integrate the model 
equations along the prediction horizon taking as 
initial conditions the current process state and 
evaluating the formulated objective at the end of the 
integration. Path constraints are implemented as 
penalty functions. A simultaneous solution approach 
was also tested, but convergence and computation 
time did not improve the sequential one. 
 
 

 
Fig. 5 Nonlinear controller – Continuous  

implementation framework 
 
 
4.1 Nonlinear State Estimator 
 
In our plant, the liquid helium II accumulated in the 
HX tube is not measurable. This is a critical factor of 
the model predictions, not only because it is a state 
but because it provides the wetted area in the heat 
exchanger from where the heat in the pressurized 
helium is removed. So, as we have an incomplete 
state vector, in order to apply the NMPC, a method 
of reconstructing the current state of the system from 
the measured outputs must be included. There are 
different approaches to the state estimation problem. 
We have chosen a receding horizon one (Muske and 
Edgar, 1997) because it match very well within the 
predictive control framework, it allows easy 
extensions to the non-linear case maintaining the 
same model as in the controller and with explicit 
inclusion of constraints in the variables and, finally, 
because state disturbances can be computed as a sub-
product of the estimation. In our case it is really 
important estimating the non measurable overall heat 
load because it highly influences the model 
predictions. LHC prototypes operation has shown the 
variance on this disturbance in short periods of time. 

 
In analogy to the model predictive control concept, 
the estimation problem is formulated as an optimal 
control problem on a finite horizon into the past. In 
the framework of the receding horizon estimation a 
quadratic cost function penalizing, among other 
things, model and measurement errors, is minimized. 
The optimisation problem is subject to model 
equations. Physical limits on the process variables 
are incorporated through inequality constraints.  
 
More precisely, the problem is to estimate the initial 
conditions at time instant t-N, and the state 
disturbances, which have driven the process to its 
present state applying the past control sequence, by 
minimizing the difference between the outputs given 
by the evolution of the system from its initial 
conditions and the actual measured outputs (Fig. 6). 
In our case this can be translated into estimating the 
liquid helium mass in the HX tube at time instant t-N 
and the heat loads in the range [t-N, t-1], so that, if 
the JT valve were operating as in the real plant in this 
time interval, the computed temperature would 
approach the measured one and the heat loads are as 
small as possible. 
 

 
Fig. 6 Receding Horizon State Estimation 
 
 
The standard approach can be synthesized as the 
optimization problem:  
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where N represents the receding horizon, one of the 
parameters to tune. yk-N+j is the real process output 
and ymk-N+j is the output of the model starting with 
m0=mHX at the time (k-N) when the past controls 
and the estimated process disturbances jNkQ +−  are 
applied. 
 
Once the initial state and disturbances are estimated, 
the unknown state at time t can be computed 
integrating the model with the optimal values 
obtained.  
 



 

 

Nevertheless, when applying (13) we realize that, 
due to the particular estructure of our process model, 
they were many solutions able to provide a perfect fit 
between the measured and computed temperatures. 
So, in our case,  instead of (13) an alternative criteria 
was formulated, where, on one hand, the model 
temperature was equated to the measured one in the 
interval, and a new cost function was defined based 
on: (A) minimize the initial difference between the 
mass and its estimated value in the previous iteration 
mHXk-N (B) penalization of the mass changes only if 
the JT valve was smooth during the horizon, in other 
case, where the JT was active, this contribution is 
cancelled, and finally (C) minimize the heat load 
change with respect to the value estimated in the 
previous iteration which provides a smooth JT valve 
moves.  
 
With this structure the objective becomes 
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where γi weights the contribution of each factor and 
A, B, C represent 
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where mcal

HXk-N represents the liquid helium II in the 
heat exchanger already calculated N periods before, 
mHXj

cal the mass calculated along the receding 
horizon, vopenj

rec  the manipulated variable (JT 
valve) moves recorded during the receding horizon, 
Qtrj

cal the calculated dynamic heat load and Qtrj
rec the 

previously calculated and recorded dynamic heat 
load during the horizon. 
 
Estimating only the initial state and heat load 
disturbances makes the problem tractable. The 
advantage of this solution is the smaller number of 
decision variables for any given horizon length, 
resulting in less computational time to solve the 
optimization problem (Gelb, 1974). In this case the 
state disturbance, the heat load present in the 
process, is included in the estimation procedure by 
means of the model equations. A good starting point 
helps in the estimation, which can be found if the 
process starts operating in a known steady state like 
helium overflowing. Besides (14), the optimization 
includes constraints on the values of the decision 
variables. 
 
The control structure designed for the nonlinear 
controller incorporates a nonlinear predictive 
algorithm and a state estimator. The solution 
proposed yields a new approach based of an initial 
state estimate and of a moving horizon algebraic 
estimator in a combined structure. The state 

estimator provides the optimal mass accumulated in 
the heat exchanger tube and the dynamic heat load 
valuation. A block diagram of the structure can be 
seen in Fig. 7. 
 

 
 
Fig. 7 NMPC proposed control structure 
 
4.2 Simulation results 
 
Simulation studies have been performed in order to 
verify the performance of the implemented estimator 
and the improvement on the control. An example is 
shown in the Fig. 8 where several steps of the heat 
load (12 Watts) were applied and the values of the 
estimated state disturbance are compared against the 
values given by the model showing good agreement. 
The only tuning parameter, apart from the weights, 
in the proposed objective structure, is the receding 
horizon value N (here, N=4). The process is 
represented by the full simulation model. 
 

 
Fig. 8 Performance of the Nonlinear State Estimator 
 
 
The complexity of the optimization problem is not 
growing proportionally to the length of the horizon 
due to the fact that only one initial value is 
considered as a decision variable and the remainders 
are algebraic calculations. N has not much influence 
on neither the controller nor the state estimator 
performance. In the test, only the parameter γ 0 
conditions the way the heat load is estimated, the 
greater the number, the faster the heat load 
disturbance estimation. 
 
4.3 Optimization: numerical solutions 
 
Both, the controller law solution and the state 
estimation problems, presented in the nonlinear 
predictive controller framework, lead to the same 
nonlinear programming problem, which could be 
formulated generically as a real time minimization of 



 

 

a nonlinear function subject to constraints. These 
constraints could be simple bounds on the variables 
and both, linear and nonlinear constraints. In the case 
of the LHC 1.8 K Cooling Loop the method used is a 
SQP one, due to its ability to solve problems with 
nonlinear constraints. 
 
 

5. EXPERIMENTAL RESULTS 
 
The validation of the state estimator module based 
on the receding horizon was done experimentally by 
powering the electrical heaters located in the cold 
mass. These simulate a change in the overall heat 
load due to a unknown disturbance, then data was 
stored corresponding to the electrical watts applied 
and the heat load estimation carried out by the state 
estimator. 
 

 
Fig. 9 . RHE performance. Heat load steps  
 
In Fig. 9 several step changes on the heat load were 
applied to the process. Performance of the state 
estimator is fast and precise, and the heat load is 
estimated immediately after its change despite the 
abrupt jump. This situation could be produced by 
several factors in the real systems, for example, a 
degradation of the insulation vacuum which leads to 
a higher existing overall heat load. The other state 
estimated, the accumulated helium mass in the HX 
tube is not shown because is a non-measured 
variable and no comparison are possible. 
Performance of the controller is also displayed in the 
same Fig. 9. The temperature excursions, due to the  
 

 
Fig. 10 NMPC vs. PI control: Tracking 

characteristics 

heat load applied, are cancelled around 1.99 K in all 
the different operational zones showing a robust 
behavior of the regulator. 
 
Once the state estimator was tested and validated, 
more experiments were performed in order to 
validate the nonlinear predictive controller. Changes 
in the set point were considered to check also for 
tracking features (Fig. 10). A comparison with a 
classical PI controller is done in order to show the 
improvements in terms of control performance and 
robustness. 
 
 

6. CONCLUSIONS 
 
The LHC full-scale prototypes were employed as a 
test-bed of what advanced nonlinear control can do 
for improving for cryogenic processes regulation. 
The nonlinear process model construction gave a 
better understanding of the process, provided the 
ideas to overcome the usual changes in process 
dynamics and helped to improve the regulation 
strategies by means of the simulation. The response 
has been improved and optimized by the use of the 
nonlinear predictive controller with a receding 
horizon state estimator. The regulation structure 
proposed is based in a nonlinear predictive controller 
algorithm combined with a state estimator with an 
initial state estimate approach and a moving horizon 
algebraic calculation for the disturbance. 
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