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Abstract: For using process operational data to realize process monitoring, kinds of improved PCA 
are applied to cope with complexity of industrial processes. In this paper, a novel nonlinear wavelet 
packet PCA (NLWPPCA) method, which combines input training network with wavelet packet PCA, 
is proposed. Wavelet packet PCA integrates ability of PCA to de-correlate the variables by extracting 
a linear relationship with what of wavelet packet analysis to extract auto-correlated measurements. 
Then the paper gives the methodology of process monitoring based on NLWPPCA. Finally, the 
proposed approach is successfully applied to an eight variables nonlinear process with noise and 
Tennessee Eastman process for process monitoring. Copyright  2003 IFAC 
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1. INTRODUCTION 

 
With the increase in on-line data acquisition systems 
in industrial processes, the collection of process 
operational data is becoming routine. Then process 
plants are becoming data rich but information poor. 
There is therefore a need to extract the inherent 
information within the data. Data mining techniques, 
which mining inherent useful knowledge from kinds 
of databases or data warehouses, are introduced to 
process monitoring. Then process monitoring based 
on data mining is to collect raw data from time-series 
database or data sets, reprocess data using data 
reconciliation method, mine outliers and 
classification or clustering analyze these outliers. 
Principal components analysis (PCA) as an effective 
method of data mining techniques has been widely 
applied in process monitoring. However, many 
industrial processes exhibit significant nonlinear 
behaviour and industrial data is also synonymous 
with process measurement noise. In these cases the 
application of PCA is not strictly appropriate. Then 
many improved methods are proposed and applied. 
Kramer (1991) used an auto-associative neural 
network, trained using backpropagation to produce a 
nonlinear PCA. Dong and McAvoy (1994) integrated  
 
 

principal curves with a neural network to build a 
nonlinear PCA. Tan and Mavrovouniotis (1995) 
proposed a nonlinear PCA based on input-training 
neural network. Bakshi (1998) introduced the 
principle of multiscale PCA, which combines the 
attractive properties of linear PCA and wavelet 
analysis by computing the PCA of wavelet 
coefficients at each scale and then combining the 
results at relevant scales. Chen, et al. (1999) 
combined neural networks and multiscale wavelet 
analysis in a modified version of the adaptive 
resonance theory for diagnostic system development. 
Shao, et al. (1999) proposed a nonlinear PCA 
algorithm for process monitoring based on an 
input-training neural network and also applied 
wavelet denoising and non-parametric control limits. 
Fourie and Vaal (2000) gave an on-line nonlinear 
multiscale principal component analysis 
methodology. 
 
Wavelet packet PCA integrates PCA and wavelet 
packet analysis. Wavelet packet analysis decomposes 
the high-frequency part further, which wavelet 
analysis not does, and adaptively selects relative 
frequency bond based on character of signal to be 
analyzed. To further improve denoising character of 
multiscale PCA, the paper describes a wavelet packet 
PCA, which combines the ability of PCA to 
decorrelate the variables by extracting a linear 
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relationship with that of wavelet packet analysis to 
extract autocorrelated measurements. Then, a novel 
nonlinear wavelet packet PCA is proposed by 
combining input-training neural network with 
wavelet packet. Finally, the nonlinear wavelet packet 
PCA will be used to analyze two simulated systems 
to verify its operation. 
 
 

2. WAVELET PACKET PCA 
 
In the WPPCA, signals are decomposed first using 
wavelet packet to get wavelet packet decomposition 
coefficients matrixes. Then these coefficients 
matrixes use PCA to confirm the retain number of 
principal components and compute principal 
components score matrixes and load matrixes. 
Wavelet packet coefficients are obtained by 
rebuilding the score matrixes and the load matrixes. 
These coefficients are de-noised by using wavelet 
packet de-noise limit method, Rebuild signals are 
obtained by using wavelet packet rebuild algorithm. 
Finally, These rebuild signals are analyzed by PCA. 
The steps in the WPPCA methodology are shown in 
Figure 1, and the detailed procedures are given as 
follows. 
 
(1) For each column in data matrix, select wavelet 

packet function Ψj,k,n(t) and wavelet packet 
dividing level L and compute wavelet packet 
decomposition coefficients {WL,0, WL,1, …, 
WL,2

L
-1}; 

(2) For each variable, use the same best full wavelet 

packet base algorithm to process wavelet packet 
decomposition tree and find best wavelet packet 
decomposition coefficients; 

(3) Select these coefficients as column vector to 
build wavelet packet coefficients matrixes with 
different tree nodes {XL,0, XL,1,…,XL,2

L
-1}, the 

row number of these matrix is n/2L and the 
column number is m; 

(4) For these coefficients matrixes, respectively use 
conventional PCA to confirm the retain number 
of principal components and compute principal 
components score matrixes {TL,0, TL,1,…,TL,2

L
-1} 

and load matrixes {PL,0, PL,1,…,PL,2
L

-1}; 
(5) Use retain score matrixes and load matrixes to 

rebuild wavelet packet coefficients matrixes 
{X’L,0, X’L,1,…,X’L,2

L
-1}; 

(6) For each column in {X’L,0, X’L,1,…,X’L,2
L

-1}, 
combines corresponding column vectors to get 
rebuild wavelet packet coefficients; 

(7) For these coefficients, respectively use wavelet 
packet de-noise limit method to process these 
coefficients and get de-noising coefficients; 

(8) Use wavelet packet rebuild algorithm to get 
each variable samples {x′1, x′2,…,x′m}; 

(9) Build new data matrix X’ and use PCA to select 
the retain number of principal components and 
compute score matrix T’ and load matrix P’.  

 
The WPPCA combines the ability of PCA to 
de-correlate the variables by extracting a linear 
relationship with that of wavelet packet analysis to 
extract auto-correlated measurements.
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Figure 1 Methodology of wavelet packet PCA 



 
3. NONLINEAR WAVELET PACKET PCA 

 
Nonlinear PCA is an extension of linear PCA. 
Nonlinear PCA can extract both linear and nonlinear 
correlations, while PCA identifies linear correlations 
between process variables. Neural networks have 
long been recognized as a useful tool for extracting 
features from highly nonlinear data. Some 
researchers have proposed different approaches based 
on kinds of neural networks. Malthouse (1998) 
discussed these approaches and recommended the 
techniques developed from the principal curve 
method and the input-training network to overcome 
the continuous function projection constraint. The 
nonlinear wavelet packet PCA (NLWPPCA) method 
proposed in this paper is based upon the 
input-training neural network (IT-net). In the IT-net 
each data input pattern is not fixed but adjusted in 

conjunction with the internal network parameters to 
reproduce a corresponding output pattern using the 
steepest gradient descent optimization rule. In the 
approach, the process observation data are defined as 
the output layer pattern and the nonlinear principal 
scores are identified from the input layer. The 
architecture of the IT-net is shown in Figure 2.  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

The NLWPPCA enables both nonlinear characters and 
noise characters to be analyzed. Figure 3 illustrates the 
NLWPPCA methodology. The implement steps of the 
NLWPPCA algorithm is as followed:Collect normal 
operation data matrix X; 
 
(1) For each column in X, use wavelet packet PCA 

algorithm to compute linear principal scores 
matrix T’ and principal loads matrix P’; 

(2) Let linear principal scores matrix T’ as the IT-net 
output layer pattern, let nonlinear principal scores 
matrix T as the IT-net input layer pattern, select 
input layer nodes k and determine hidden layer 
nodes q and other network initial values; 

(3) Use extend backpropagation algorithm to optimize 
network parameters and input values, then get the 
IT-net model F(.);  

(4) Let the IT-net input layer values, which be trained, 
as the forward feedback neural network output 
layer, let linear principal scores matrix T’ as the 
forward feedback neural network (FF-net) input 
layer, and select similar structure as the IT-net; 

(5) Use backpropagation algorithm to train the 
parameters, then get the FF-net model G(.); 

(6) Determine the nonlinear principal scores matrix T, 

load matrix P, and get the NLWPPCA model as 
X=F(T)PT+E, where E is an error matrix.  

 
 

4 PROCESS MONITORING BASED ON NLWPPCA 
 
Algorithm implement of process monitoring based on 
NLWPPCA is illustrated in Figure 4. It includes two 
parts: off-line model determination and on-line process 
monitoring. Where off-line model determination 
includes: select best full wavelet packet base, select 
appropriate denoising threshold, determine the retain 
principal components number, compute linear principal 
scores matrix and loads matrix, determine the IT-net 
structure and initial parameters, use extend 
backpropagation algorithm to get nonlinear principal 
scores matrix, train the forward network to get the 
NLWPPCA model, determine statistical value 
limitation to monitor process. Where on-line process 
monitoring includes: reprocess real-time operation data 
to input the normal NLWPPCA model, compute each 
statistical value SPE and T2, compare these values with 
the corresponding thresholds, determine abnormal 
situation.
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Figure 2 Structure of IT-net 

Figure 3 Methodology of nonlinear wavelet packet PCA 



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

5. CASE STUDY 
 
In this Section, the proposed process monitoring 
based on NLWPPCA is demonstrated and tested by 
applying in an eight variables nonlinear process with 
noise and a recognized chemical process tested base 
Tennessee Eastman process. We will demonstrate the 
use of NLWPPCA approach for nonlinear monitoring 
purposes first with respect to a simple multivariate 
process as well as with the much more complex and 
realistic Tennessee Eastman process. 
 
5.1 An eight variables nonlinear process with noise 
 
Consider the following process: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where wnoise is a white noise with zero mean and 
variance 1. 1000 samples are selected as normal 
operation data for analysis. The initial data matrix 
consists of as follow: 

X=[x1
T x2

T x3
T x4

T x5
T x6

T x7
T x8

T]  
For data matrix X, use the proposed NLWPPCA 
algorithm to build off-line model. Where structure of 
the IT-net is 1-3-2, and hidden layer function is 

Sigmoid function. The IT-net is trained by extend 
Levenberg-Marquardt (LM) algorithm. When train 
step is 56, train error is 0.005. Similar, select 
structure of the FF-net is 2-3-1 and use LM algorithm 
to train the FF-net. When train step is 18, the error is 
0.005. Determine the statistical limitation: 
SPEa=0.1234, T2

a=6.0060. The NLWPPCA model is 
used to monitor 200 real-time samples of the eight 
variables nonlinear process. To verify performance of 
monitoring, introduces mean error disturbance at 160 
sample time and cancels it at 180. The process 
real-time trend is illustrated in Figure 5. Figure 6 
shows the SPE plot and T2 plot.  
 
The relationship between the first principal 
component and the second one is shown in Figure 7. 
Figure 8 describes the contribution plot of the first 
and the second principal component. From Figure 5, 
it is not easy to identify the process operational 
situation because of nonlinear character. However, 
from SPE plot, SPE values before 160 times step is 
clearly below the SPE limitation and out of control 
after 160. So, SPE plot successfully finds the 
abnormity. Similarly, T2 plot also finds the abnormity. 
From scores plot, finds some outliers away from the 
clustering points, which directly shows the trend. In 
addition, some projection points are overlapped for 
wavelet packet denoising. Figure 8 shows that 
contribution of the second and 7th variables to the 
first pc is biggish and contribution of the second, 5th 
and 7th variables to the second pc is biggish. Then, it 
is inferred that the abnormity is brought by the 
second, 5th and 7th variables. The conclusion is 
consistent with process model. The simulation 
illustrates the proposed approach is valid for 
nonlinear process with noise monitoring.  
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Figure 4 Algorithm of process monitoring based on NLWPPCA 

x1=8+0.1*randn(n,1)+0.8*wnoise;  
x2=11+0.2*randn(n,1)+0.8*wnoise;  
x3=17+0.3*randn(n,1)+0.8*wnoise;  
x4=5+((-1.3*x1

3+0.2*x2
2)/(x2*x3))+0.8*wnoise; 

x5=120+0.8*(-3.8*x1
2+0.8*x2

2+0.9*x3*x4) 
+0.8*wnoise; 

x6=5+x2-0.3*x3+0.8*wnoise; 
x7=-x1+0.8*x2+x4+0.8*wnoise; 
x8=x2+x3+0.8*wnoise; 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2 Tennessee Eastman process 
 

Table 1 Process disturbance 

Case Disturbance Type 
IDV(1) A/C feed ratio, B composition 

constant 
Step 

IDV(2) B composition, A/C ratio 
constant 

Step 

IDV(3) D feed temperature Step 
IDV(4) Reactor cooling water inlet 

temperature 
Step 

IDV(5) Condenser cooling water inlet 
temperature 

Step 

IDV(6) A feed loss Step 
IDV(7) C header pressure loss – 

reduced availability 
Step 

IDV(8) A, B, C feed composition Random 
IDV(9) D feed temperature Random 
IDV(10) C feed temperature Random 
IDV(11) Reactor cooling water inlet 

temperature 
Random 

IDV(12) Condenser cooling water inlet 
temperature 

Random 

IDV(13) Reaction kinetics Slow drift
IDV(14) Reactor cooling water valve Sticking  
IDV(15) Condenser cooling water valve Sticking 
IDV(16) Unknown  Unknown

 

Tennessee Eastman process, which was developed by 
Downs and Vogel (1993), consists of five major unit 
operations: a reactor, a condenser, a vapor-liquid 
separator, a recycle compressor, and a product 
stripper. The process has 41 measurements, including 
22 continuous process measurements and 19 
composition measurements, and 12 manipulated 
variables. Some disturbances are programmed for 
researching the characteristics of the control system, 
listed in Table 1.  
 
The reference set contains 1000 samples from normal 
operation with a sampling interval of 3 min. A 
NLWPPCA model is developed from the data matrix. 
Nine principal components are selected, which 
capture 97.7% of the variation in the reference set. 
The control limits shown in every plot correspond 
approximately to the 95% confidence region, which 
is determined by using the methodology presented by 
Nomikos and MacGregor: 

 SPEa=7.1509, T2
a=75.0008. 

 
The simulation is run under the first disturbance 
IDV[1], which is loaded at the 300th time step. SPE 
plot and T2 plot are shown in Figure 9. From these 
plots, disturbance is quickly and easily detected. 
Figure 10 shows the scores plot. The figure clearly 
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Figure 7 Scores plot with mean error 
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Figure 5 Real-time trends with mean error 
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Figure 6 SPE and T2 plots with mean error 



illustrates that process projection points are away 
from the normal situation. This result shows that for 

the TE process the proposed NLWPPCA will get well 
effect in process monitoring. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. CONCLUSIONS 
 
In this paper, a nonlinear wavelet packet PCA 
approach has been proposed for process monitoring. 
The advantage of this method is that both linear and 
nonlinear correlations can be extracted from the 
process data with noise. Heavy noise and data spikes 
in the industrial data sets were first eliminated 
through wavelet packet denoising method. Whilst, 
input-training neural network was introduced to 
extract nonlinear character in industrial processes. 
The results of the application of the NLWPPCA 
algorithm to an eight nonlinear process and TE 

process demonstrate the improved performance over 
that of linear methods for fault detection. 
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Figure 9 SPE plot and T2 plot for IDV[1] 
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Figure 10 Scores plot for IDV[1] 


