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Abstract: Industry uses mostly information on measurements passing limits as inputs
to diagnostic systems. Asking the question on what can be achieved by such systems,
we aim at an optimal design of diagnostic systems. The approach is, in contrast to
the currently available techniques, based on continuous models that are mapped into
discrete-event dynamic systems in the form of nondeterministic automata, with faults
being constraint to have event-dynamic, that is, they occur and persist. We compute
domains in which faults can be isolated or detected and discuss guidelines on how to
design an application-optimal fault detection and isolation mechanisms.
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1. THE PROBLEM BEING STUDIED

Industrial diagnostic systems use as input
mostly measurements indicating passing of lim-
its placed on process variables, such as temper-
ature has exceeded value x or pressure is lower
than value y. These measurements indicate the
limit that is crossed and also the direction in
which the process did cross the limit. Currently
industry uses mostly diagnostic systems that are
built carefully based on process knowledge and
experience of the operators. These systems are
invariably quite complex and far from easy to
build or maintain. The past has seen a number
of efforts to improve the situation, which reflects
into a rich literature. A wide selection of dif-
ferent methods are reviewed in Gertler (1988),
Frank (1990), Patton et al. (1989), Pouliezos and
Stavrakakis (1994), Isermann (1997). One of the
most common techniques is based on fault tree
analysis. Today, it is almost a traditional tech-
nique and its development has a rich history Lapp
and Powers (1977), Ulerich and Powers (1988),
Vries de (1990). With the evolvement of on-line
filtering techniques and their extension to parame-

ter estimation, their mostly high sensitivity of the
parameters to faults has been utilised for the con-
struction of diagnostic system Isermann (1984),
Isermann (1993), Chow and Willsky (1984). The
dawn of discrete-event dynamic added over time
another viewpoint that yielded alternative design
methods, of which examples are reported in Lin
(1994), Bavishi and Chong (1994), Sampath et al.
(1995), Sampath et al. (1996), Cassandras and
Lafortune (1999). Knowledge-based systems are
also very popular as they provide a systematic
method to capture people’s knowledge about the
process, experimental or theoretical, into a easy-
to-program structure and neural nets provided
a matching modelling technique that did not
have to rely on mechanistic process knowledge,
which was considered too expensive to develop
Hoskins and Himmelblau (1988), Venkatasubra-
manian and Chan (1989), Venkatasubramanian
et al. (1990), Maki and Loparo (1997).

Several years ago, we took an alternative
route, which grew out of two efforts: one on
computer-aided modelling that provides a system-
atic and easy method to construct mechanistic
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Fig. 1. The generic plant set-up with a continu-
ous plant, a state-event detection mechanism
providing the primitive measures and two
discrete-event signal inputs one controlled
and the other one not.

process models, at least to the extent possible,
and second the need for safe supervisory control,
which was a project that aimed at the design of su-
pervisory systems that are guaranteed complete,
meaning including all aspects of the process be-
haviour on the supervisory level. Quite obviously,
mainly the latter induced the question on how
to handle faults in such systems, as supervisory
control systems are directly linked to diagnos-
tic systems for handling shut-down or recovery.
Consequently we posed the question on what can
be achieved having only available such limited
information as limit crossing and the direction
of the crossing; and: can we find design methods
for diagnostic systems, a problem that turned out
to be at least equally challenging than designing
supervisory control systems Philips (2001).

Figure (1) shows the context of plants that we
consider, namely a continuous plant, which is af-
fected by fast-switching unobserved disturbances
and commands that change the parameters of the
controllers in the plant and their setpoints or ask
to switch flows or the like.The scheme assumes
that the plant is operating in continuous time and
that it provides information about the state. Both
may raise some questions as the plant’s signals
are usually sampled and it is not the state that
is available, but an estimate of the state being
reconstructed using an observer. However, we take
the view of a larger time scale in which, for all
practical purposes, the plant and its associated
measurement and low-level control systems pro-
vide essentially continuous state information. The
obvious conditions on the relative sampling rate
and the delays caused by filtering and reconstruc-
tion must be satisfied.

2. WHERE CAN WE DETECT WHAT

A diagnostic system should provide informa-
tion on faults. Obviously one would like to detect
these faults whenever they occur. But then, it

is also obvious that this will not be possible for
various reasons but mostly because of accuracy of
measurements and accuracy of knowing the sys-
tems behaviour under different operational modes
(normal or various different faults). We shall cer-
tainly come back to some of these questions later
in this exposition. But first, we shall focus on
the ideal world, just to learn on what would be
possible and analyse a process model. When we
aimed at the design of supervisory control sys-
tems, we took a similar approach and derived a
method to map continuous plants that are, on
the high level, controlled by commands and which
generate as output limit crossing signals generated
by event detectors. Thus we describe a hybrid
system, but choose to map the continuous part
controlled by commands and generating discrete
event signals as a discrete-event dynamic system
Preisig et al. (1997),Philips (2001). In its core, the
method maps the continuous state space of the
plant into a discrete equivalent, which is a space of
hypercubes defined by the limits, which, in turn,
define the event detectors operation.

Mathematically, let us choose the plant as
being described by:

ẋ := f(t,x,uc,dc)

x ∈ R
n, dc ∈ R

m, uc ∈ R
p . (1)

with the two vector signals uc and dc being piece-
wise constant signals for the command input and
the persistent fault signals and f(t,x,uc,dc) a
vector of analytical functions. The plant is ob-
served by a set of event detectors attached to the
individual state measurements, or reconstruction
in the case they are not directly attachable, each
defined by a set of limits:

Bi :=
{

β1
i , . . . , βbi

i , . . . βni
i

}
then the continuous state space is mapped into
a discrete space of hypercubes representing the
discrete space:

H(x) :=
{

[xi]∀i | βbi−1
i ≤ xi ≤ βbi

i

}
An event is, in this context, defined as a cross-
ing of a face of a hypercube, that is, a bound-
ary is crossed. The dynamics of the discretely-
controlled and discretely-observed plant is a non-
deterministic automaton Preisig et al. (1997),
Philips (2001). The crossing of the boundary may
only occur if there exists at least one point on
the face having a gradient that points across
the boundary. Requesting a reasonable kind be-
haviour of the system, that is in the simplest case,
analytical functions describing the dynamics, the
directionality of the gradient in a particular di-
rection changes on a hypersurface defined by the
particular component being zero. This hyper sur-
face is defined by the expression:



ẋi := fi(t,x,uk,dl) := 0 . (2)

Assuming, which is not very limiting, that these
hypersurfaces are reasonably kind, preferably
monotone, one sees quickly that they split the
state space into two parts, one in which all bound-
aries defined for this state variable are crossed in
positive direction, and one in which it is crossed
in negative direction, which are the measurements
we have available.

3. DIAGNOSABILITY

With this result, we know where a particular
measurement, the signal indicating limit crossing
and its direction, gives us information about the
dynamics of the process. Diagnosability tries to
distinguish between different plant behaviours,
which above we termed modes of operation. The
task now is to find the piece of the state space
in which such rudimentary process information
yields information about the mode of operation.
Mathematically spoken we seek a subspace in
which the behaviour of the plant operating un-
der mode a behaves differently from the plant
operating under mode b such that it is uniquely
observable with the given measurement. All com-
binations of inputs are defined as instances of the
discrete command and disturbance vectors. For
the command (control) vector the running index
k ∈ K ⊂ N

+ is used and for the disturbances
it is the letter l ∈ L ⊂ N

+ both shown as su-
perscript, in distinction to the vector component
index which is shown as subscript. Let Ni be the
index set of the states being coupled with state
i and Li the index set of the disturbances being
coupled with state i we first define the space:

Xi,s(k, l) :=
{
x ∈ V | s := sign

(
fi(t,x,uk,dl)

)}
(3)

in which the ith component of the gradient as-
sumes the sign s and next

Oi,s(k,Ar) :=


 ⋂

∀j∈Ar

Xi,s(k, j)


 ∩

∩


 ⋂

∀j∈{Li−Ar}
Xi,−s(k, j)




∀i;∀r . (4)

with

A := {Ar} := {T0, Tj} ∪ F ,

F := {Fr} := {{Tj1,j2}, {Tj1,j2,j3}, . . . } ,

Tj1,j2 := {j1, j2|j1 �= j2; j1, j2 ∈ Li} ,

Tj1,j2,j3 := {j1, j2, j3|j1 �= j2 �= j3; j· ∈ Li} ,

. . . := . . . ,

T0 := {0} ,

Tj := {j ∈ Li} ,

with

Li :=

{
j

∣∣∣∣∣ ∂fi(t,x,uk,dl)
∂dj

l
�= 0

}
. (5)

being the set of persistent fault inputs that are
coupled with state i. The index set T0 represents
the no-fault case, whilst the sets Tj each having
only one element are for the jthfaults. The other
test sets T{j1,... } are for groups of faults. The non-
empty subspaces Oi,s(k,Ar) have the properties
that gradient information in the xi-direction is
sufficient information to diagnose the plant for
the cases listed in Table 1, which is what we were
seeking.

s detected -s detected

∃ Oi,s(k, T0) �= 0 no fault {j} ⊂ Li

∃ Oi,s(k, Tj) �= 0 fault j not fault j

∃ Oi,s(k,Fr) �= 0 {j} ⊂ Fr {j} ⊂ Li −Fr

Table 1. Different types of overlapping
subspaces for the ithcomponent

Now that tells us on what we can achieve, our
main result. How about, though, the design of
diagnostic units operating on such measurements?

4. DESIGN ISSUES

If the automaton to be constructed serves
the purpose of fault detection & and fault iso-
lation, then the boundaries that make the state-
event detector, are to be place into the subspaces
Oi,s(k,Ar) for each component. The computation
of the automaton is solved, as the procedure for
the computation of the non-deterministic automa-
ton is given (Preisig et al. (1997), Philips (2001)).
Remains the question on how precisely to place
the boundaries into these subspaces. The question
cannot be answered in a deterministic manner, as
it is a true design issue. Why? The automaton
operates in a square world, with the size of the
hypercubes defining a type of resolution for the
detection. If we make the resolution high, the
detection will operate on this high resolution and
if it is low it will be correspondingly operating
on the low resolution. It is the designer’s choice
and must be based on the dynamics of the process
and the significance of the fault to be detected. It
involves such questions as how quickly should it



be detected and how much of faulty behaviour can
be tolerated under various conditions. De facto,
the designer gets the information on which part
of the state space he is to approximate with the
automaton and he is left with the decision on the
fidelity of the approximation. The automaton, as
it is described in Preisig et al. (1997) and Philips
(2001) does not provide any timing information
but first results on computing minimal and max-
imal transition times are now available Preisig
et al. (2002), though for monotone plants only or
for parts of the state space that exhibit monotone
behaviour. Work on non-monotone plants is cur-
rently in progress.

There are two additional obvious issues to
be mentioned. Firstly, the design of a diagnostic
system is based on a process model. Consequently
the diagnostic system will not be designed to
detect faults that are not modelled, but then
this is not the case with any of the diagnostic
system; none can operate and act on information
it does not have. The second limitation is the
fact that the measurement is sensitive to noise. It
must be assumed that the detection of the event
and consequently the detection of the direction
is essentially done with certainty thus with a
probability that is near to 1. This raises certainly
questions on the implementation, but then effects
of noise are always present independent on the
behaviour of the diagnostic system. We prefer to
separate these question, being aware that we deal
with dynamics in a certain time scale, which is
limited and which allows us to design appropriate
state reconstruction and filters.

Combination of faults can easily be handled as
they can simply be defined as additional operating
modes. The set-up of the initial description is
design to handle this complexity. Further, the
knowledgeable reader may point out that the
dimensionality of the discrete state space grows
combinatorially with the number of state variables
and the number of boundaries being defined for
the individual state variables. Whilst the basic
observation is correct, the reality shows that the
systems are almost always very sparse and the
at the individual functions (equations 2) are very
weekly coupled in the state space and the input
spaces indeed. Thus since the automaton is based
on these local measurements, it is always locally
of small dimension: the two sets Ni and Li are
usually rather small. Thus the state explosion
argument is not applicable.

5. EXAMPLE

The sample plant consists simply of two tanks
standing side by side with a feed of fluid that is
driven by a pump into the first tank and a pipe
connecting the two tanks at the bottom. Once the

pump is running, the plant is obviously not stable
as it consists of two coupled, pure integrators.

For a given set of parameters, the subspaces
are shown in Figure 5 with the levels (volumes
or masses) of the two tanks as the respective
co-ordinates.Table 2 and the Table 3 list the
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ẋ2(1, 2) := 0

ẋ2(1, 0) := 0

ẋ1(1, 2) := 0

ẋ1(1, 0) := 0

Fig. 2. Phase diagram of two tank system for
case 1-3. (Case 1: pump on, pipe open, pump
running; case 2 : pump on, pipe blocked,
pump running; case 3: pump on, pipe open,
pump failing.)

component-equilibrium surfaces, here lines, and
the different subspaces for the two signs and the
two co-ordinates. From the analysis, it is evident
that only one co-ordinate (level, volume, mass
of tank 1) provides information for diagnoses if
one does not use transition time in which case
the fault of a blocked pipe could be detected as
not generating a transition in the x2 direction.
Otherwise, it is the stripe in the middle in which
it is case 3 that shows a negative sign whilst the
other two cases would move in positive direction.
Moving across a boundary in the negative x1-
direction isolates the fault of the pump not being
on.

The second fault that can be isolated using
directional information on state component x1

is detectable in the upper-left triangle in which
it is case 2, which is the only one that moves
in positive direction for this operation mode,



case k l u1 d1 d2 x0
1 dyn x0

2 dyn

1 1 - 1 0 0 x2 + p2
p1

+ x1 +

2 1 1 1 1 0 x1 → x+
1 − x−

2 ≤ x2 ≤ x+
2 0

3 1 2 1 0 1 x2 + x1 +

4 2 - 0 0 0 x2 + x1 +

5 2 1 0 1 0 x−
1 ≤ x1 ≤ x+

1 0 x−
2 ≤ x2 ≤ x+

2 0

6 2 2 0 0 1 x2 + x1 +

Table 2. Component equilibrium surfaces for all cases (+ indicates stable, - unstable
and 0 no dynamics for the respective component)

case k l u1 d1 d2 X1,−1(k, l) X1,+1(k, l) X2,−1(k, l) X2,+1(k, l)

1 1 - 1 0 0 x1 > x2 + 1 x1 < x2 + 1 x2 > x1 x2 < x1

2 1 1 1 1 0 0 x1 > x1
− 0 0

3 1 2 1 0 1 x1 > x2 x1 < x2 x2 > x1 x2 < x1

4 2 - 0 0 0 x1 > x2 x1 < x2 x2 > x1 x2 < x1

5 2 1 0 1 0 0 0 0 0

6 2 2 0 0 1 x1 > x2 x1 < x2 x2 > x1 x2 < x1

Table 3. Subspaces for both co-ordinates, each case and both signs

whilst for the other two operation modes the
gradient in this direction is negative. Thus a move
across a boundary in this the upper-left triangular
subspace in positive x1 direction indicates the
fault ”blocked pipe”.

6. CONCLUSIONS

Insight gained on modelling the discretely-con-
trolled and discretely-observed continuous plant
section of a hybrid system as a non-deterministic
automaton gives valuable insight into what can
be achieved with simple measurements of state-
variable limit crossing and direction of the cross-
ing.

The key is to analyse the flow of the dynamic
behaviour in the continuous domain under the
different operating modes and seek the parts of
the state space in which directional information is
sufficient to diagnose faulty behaviours.

The design of diagnostic systems focusing on
individual or any combination of faults are only
constraint by the ability to model the plant be-
haviour under any combination of faulty condi-
tions and the accuracy with which the fault is to
be detected, both in state space as well as in time.

Since the dynamic equations are sparsely cou-
pled and since we analyse the behaviour compo-
nent by component, the state dimension remains
quite small and the often in this context cited
dimension-explosion problem does simply not oc-
cur.
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