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1. INTRODUCTION

Manousiouthakis et al. (1986) generalized the con-
cept of Relative Gain Array (RGA) (Bristol, 1966)
to Block Relative Gain (BRG). It is a powerful
technique for input-output controllability analysis
and screening alternatives for block decentralized
control quickly at the design stage. During the
past few years, RGA has been studied exten-
sively (Grosdidier et al., 1985; Hovd and Skoges-
tad, 1992) and its properties are well understood,
but BRG has largely been overlooked. Some re-
searchers (Nett and Manousiouthakis, 1987; Chen,
1992) have found relations between BRG and Eu-
clidian condition number. It is shown that gener-
ally, a system is difficult to control, if the maxi-
mum singular value of BRG is large. Despite these
studies, BRG has not gained widespread popu-
larity and block pairings are selected primarily
based on heuristics (Castro and Doyle, 2002). This
can be attributed to lack of studies showing that,
similar to RGA, information regarding closed loop
properties can be obtained using BRG. This mo-
tivates the present work.

In this paper, we establish the connection between
BRG and closed loop properties like stability, in-
put output controllability, block diagonal domi-
nance and interactions. We show that the common

conjecture that a system is weakly interacting,
if BRG is close to the identity matrix, is not
true. Further, a system can have large interactions
despite BRG being exactly the identity matrix.
Based on these insights, simple rules for pairing
of variables are proposed.

This paper focuses on extracting useful feedback
properties from gain information, since it is often
the only reliable information available at design
stage (Grosdidier et al., 1985). The discussion is
limited to square, stable and linear time invariant
(LTI) systems represented as G(s). The steady
state gain matrix is represented as G(0) or simply
G ∈ R

n×n and its individual elements as gij . A
vector of variables is denoted by a boldface letter
(e.g. y, u). The objective is to decompose the
original system into a set of M non-overlapping
square subsystems such that, Gii ∈ R

mi×mi ; i =
1, 2 · · ·M ,

∑

i mi = n. The pair (yi,uj) denotes
the variables related by Gij(s), which is the ijth

block of G(s).

2. PRELIMINARIES

Let the system be partitioned as shown in Fig-
ure 1. The steady state BRG between (y1,u1) is
defined as (Manousiouthakis et al., 1986),



G11(s)   G12(s)

G21(s)   G22(s)

    I
-
+ +

+

d(s)

y(s)r(s) u(s)e(s)
s

k
C11(s)        0

0        C22(s)

K(s)

Fig. 1. Block Diagram of Closed loop system

[ΛB ]11 = G11[G
−1]11 (1)

where G11 and [G−1]11 are the first m1 × m1

blocks of G and G−1 respectively. If, G22 is
non-singular, then recognizing that [G−1]11 =
Ḡ−1

11 , [Ḡ]11 = G11 − G12G
−1
22 G21 (Horn and

Johnson, 1990), the BRG between (y1,u1) can be
alternatively calculated as

[ΛB ]11 = G11Ḡ
−1
11 (2)

Similarly, the BRG between (yi,ui) can be de-
fined as

[ΛB ]ii = Gii[G
−1]ii = GiiḠ

−1
ii (3)

Manousiouthakis et al. (1986) have suggested
choosing the pairings such that the eigenvalues of
[ΛB ]ii are close to 1 for all i. This rule is based on
the incorrect conjecture that a system is weakly

interacting if the BRG is close to the identity
matrix. Due to this limitation, this rule can lead
to pairings with significant interactions in many
cases.

3. CLOSED LOOP PROPERTIES

3.1 Stability

In this section, we establish the connection be-
tween the BRG and simultaneous stabilization of
the closed loop system and individual loops. It is
based on a similar result for RGA shown to be
true by Grosdidier et al. (1985).

Let the system G(s) be partitioned as shown in
Figure 1. If the controller contains an integrating
element to give asymptotically zero tracking error,
Kii(s) can be expressed as k

s
Cii(s), k > 0. It

is assumed that Cii(s) and Gii(s) are stable,
contain no transmission zeros and G(s)C(s) is
proper. Defining, L(s) = G(s)K(s), the closed
loop system is given by

y(s) = [I + L(s)]−1L(s)r(s) + [I + L(s)]−1d(s)

and y1(s) is given by

y1(s) =
[

L̂11(s)L11(s) + L̂12(s)L21(s)
]

r1(s)

+ [L̂11(s)L12(s) + L̂12(s)L22(s)]r2(s)

+ L̂11(s)d1(s) + L̂12(s)d2(s) (4)

where L̂ij(s) = [L−1(s)]ij . Using the property of
partitioned matrices (Horn and Johnson, 1990):

L̂11(s) = [(I + L11(s)) − L12(s)

(I + L22(s))
−1L21(s)]

−1

L̂12(s) = (I + L11(s))
−1L12(s)[L21(s)(I+

+ L11(s))
−1L12(s) − (I + L22(s))]

−1

At low frequencies, [I + Lij(s)]
−1 ≈ L−1

ij (s)
(Hovd and Skogestad, 1992). This approximation
is valid, when the controller contains integral ac-
tion. Using this approximation,

L̂11(s)≈
[

I + Ḡ11(s)K11(s)
]

−1

L̂12(s)≈−L−1
11 (s)L12

[

I + Ḡ22(s)K22(s)
]

−1

where Ḡ11(s) and Ḡ22(s) represent Schur comple-
ments of G22(s) and G11(s) in G(s) respectively.
If any of the zeros of [I+ Ḡ11(s)K11(s)] lie in the
right half plane and no pole-zero cancellations oc-
cur in (4), then the closed loop system is unstable.
Similarly, it can be shown that if the system is
to be decomposed into M blocks, the stability of
system depends on the location of zeros of [I +
Ḡii(s)Kii(s)], i = 1, 2 · · ·M . Now, we can relate
this finding to BRG using the concept of integral
controllability (Grosdidier et al., 1985).

Lemma 1. If Re{λj(Ḡii(0)Cii(0))} < 0; j =
1, 2 · · ·mi for some i, then the closed loop system
is not integral controllable.

Sketch of Proof. Since G(s) is stable and Gii(s)
non-singular for all i by assumption, Ḡii(s) is also
stable. Now, Lemma 1 can be shown to be true by
following the proof of Theorem 7 of Grosdidier et

al. (1985).

It should be noted that the low frequency ap-
proximation has little effect on the applicabil-
ity of Lemma 1, since the maximum value of
Ḡii(s)Kii(s) is seen at origin of s-plane.

Lemma 2. If Re{λj(Gii(0)Cii(0))} < 0; j =
1, 2 · · ·mi, then the subsystem (yi(s), ri(s)), con-
sidered in isolation, is not integral controllable.

PROOF. If all other loops are open, the stability
of subsystem (yi(s), ri(s)) depends on the zeros of
[I + Gii(s)Kii(s)]. The proof follows by replacing
Ḡii by Gii in Lemma 1. 2

Proposition 3. If det([ΛB(0)]ii) < 0, then one of
the following is true,

(1) The ith loop by itself is unstable or
(2) The closed loop system is unstable.

PROOF. Using (3),



det([ΛB(0)]ii) =
det(Gii(0))

det(Ḡii(0))
=

det(Gii(0)Cii(0))

det(Ḡii(0)Cii(0))

Thus, det([ΛB(0)]ii) < 0, if det(Gii(0)Cii(0)) < 0
or det(Ḡii(0)Cii(0)) < 0. If det(Gii(0)Cii(0)) <

0, then at least one of the eigenvalues of Gii(0)Cii(0)
is negative since,

det(Ḡii(0)Cii(0)) =

mi
∏

j=1

λj(Ḡii(0)Cii(0))

The closed loop system is unstable, if any eigen-
value of Ḡii(0)Cii(0) is negative (see Lemma 1).
Similarly, the ith loop, considered in isolation with
other loops, is unstable if det(Gii(0)Cii(0)) < 0
(see Lemma 2). 2

Proposition 3 can be interpreted on similar terms
as Theorem 6 of Grosdidier et al. (1985), where
the implications of negative RGA elements were
drawn. If det([ΛB(0)]ii) < 0 for some i and a
controller exists, which stabilizes the individual
loops, then the closed loop system is unstable. If
the controller is designed such that the closed loop
system is stable, then the ith loop is unstable. In
this case, the system is loop failure sensitive.

Proposition 3 provides only a necessary condi-
tion for stability. Consider the case when the
sum of the number of negative eigenvalues of
Ḡii(0)Cii(0) and Gii(0)Cii(0)) is even. Then,
det([ΛB ]ii) will be positive, despite the closed
loop system and the individual loop being unsta-
ble.

Remark 4. The elements of the BRG with only
1 × 1 blocks are same as the diagonal elements
of the RGA (Manousiouthakis et al., 1986). Thus,
Proposition 3 generalizes Bristol’s pairing rule of
avoiding pairing on negative RGA elements to
block pairings.

3.2 Input-Output Controllability

It is well known that Right Half Plane (RHP)
zeros pose a limitation on the achievable perfor-
mance of the system. Hovd and Skogestad (1992)
have shown that the frequency dependent RGA
can be used to detect the presence of RHP zeros.
The applicability of their result is limited to the
individual elements of the system and (n − 1) ×
(n− 1) subsystems of G(s). The next proposition
complements their result for subsystems having
different dimensions.

Proposition 5. Consider the partition of the sys-
tem matrix G(s) as shown in Figure 1. Then
[ΛB(s)]11 is an m1 ×m1 transfer function matrix.
If there exists m1, 2 ≤ m1 ≤ n − 2, such that
lims→j∞ det([ΛB(s)]11) is nonzero, finite and has

a different sign from det([ΛB(0)]11), then at least
one of the following is true,

(1) G11(s) has an RHP transmission zero.
(2) G22(s) has an RHP transmission zero.

PROOF. For a given partitioning of the sys-
tem, 2 ≤ m1 ≤ n − 2, consider that lims→j∞

det([ΛB(s)]11) is nonzero and finite. If the signs
of det([ΛB(0)]11) and lims→j∞ det([ΛB(s)]11) are
different, then there exists a frequency ωo, ωo > 0,
such that det([ΛB(jωo)]11) = 0.

The equality, det([ΛB(s)]11) = 0, is satisfied, iff
one or both of det(G11(jωo)) and det(Ḡ−1

11 (jωo))
are zero. Now, det(G11(jωo)) being zero implies
the presence of an RHP transmission zero in
G11(s) at that frequency. If det(Ḡ−1

11 (jωo)) =
0, then Ḡ−1

11 (s) contains an RHP transmission
zero and Ḡ11(s) contains an RHP pole at that
frequency. Due to stability assumptions, an RHP
pole in Ḡ11(s) at s = jωo can arise only due to
an RHP zero in G22(s) at s = jωo. 2

Manousiouthakis et al. (1986) have shown that
BRG is input scaling independent. Thus, if an
input channel of G(s) contains an RHP zero,
the signs of det([ΛB(j∞)]11) and det([ΛB(0)]11)
will remain unchanged. The change of sign of
det([ΛB(s)]11) is only a sufficient, but not a nec-
essary condition for the presence of RHP zeros in
the subsystems of G(s).

Proposition 5 excludes the case in which any
subsystem contains a zero at the origin, (s = 0).
Should a subsystem contain a zero at the origin,
it would be extremely difficult to control the
system. The relation between zeros at the origin
and the steady state BRG is established in the
next corollary. The proof of this corollary follows
directly from the proof of Proposition 5.

Corollary 6. If there exists m1, 1 < m1 < n − 1,
such that det([ΛB(0)]11) = 0, then one or both of
the subsystems, G11(s) and G22(s) contain a zero
or a transmission zero at the origin.

Either of these conditions is undesirable, as it
makes the subsystem uncontrollable using a con-
troller with integral action. The system may also
contain zeros close to the origin in the open left
half plane (LHP). Presence of such poorly damped
zeros also affects the controllability.

The gain of a multivariate system depends on the
input direction. Let the gain of (y1(s),u1(s)) be
‖G11(0)v‖2, ‖v‖2 = 1. Similarly, let the apparent
gain of this loop, when all other loops are closed
be ‖Ḡ11(0)w‖2, ‖w‖2 = 1.



Proposition 7. The worst case gain mismatch be-
tween G11(0) and Ḡ11(0) is bounded as follows,

σ̄([ΛB(0)]11)≤ max
‖v‖2=1

‖w‖2=1

‖G11(0)v‖2

‖Ḡ11(0)w‖2
(5)

1

σ([ΛB(0)]11)
≤ max

‖v‖2=1

‖w‖2=1

‖Ḡ11(0)w‖2

‖G11(0)v‖2
(6)

PROOF. For (5),

max
‖G11(0)v‖2

‖Ḡ11(0)w‖2
=

σ̄(G11(0))

σ(Ḡ11(0))

= σ̄(G11(0))σ̄(Ḡ−1
11 (0))

≥ σ̄([ΛB(0)]11)

For (6),

max
‖Ḡ11(0)w‖2

‖G11(0)v‖2
=

σ̄(Ḡ11(0))

σ(G11(0))

= σ̄(Ḡ11(0))σ̄(G−1
11 (0))

≥ σ̄([ΛB(0)]
−1
11 )

≥
1

σ([ΛB(0)]11)
2

Proposition 7 suggests that if at least one of the
conditions, σ̄([ΛB(0)]11) � 1 and σ([ΛB(0)]11) �
1, is satisfied, then the gain of the (y1(s),u1(s))
loop changes considerably due to closure of all the
other loops. If σ̄([ΛB(0)]11) ≈ σ([ΛB(0)]11) ≈ 1,
the change in gain may still be large, as (5) and (6)
are lower bounds on the gain mismatch with one of
the loops open. This affirms our earlier assertion
that if the BRG is far from the identity matrix,
the system has large interactions, but the converse
is not true. This is further discussed in §3.4.

3.3 Block diagonal dominance

An advantage of block decentralized controllers is
that if the blocks are weakly interacting, then the
individual controllers can be tuned independently
of each other. The concept of block diagonal
dominance can be used to assess this property
of the partitioned system. In this section, the
relation between block diagonal dominance and
BRG is established.

Let the system matrix G(s) be split into a block
diagonal part, Gbd(s) and an off-block diagonal
part, G(s) − Gbd(s). Furthermore, assume that
the controller K(s) has a block diagonal struc-
ture same as Gbd(s). Define E(s) = (G(s) −
Gbd(s))Gbd(s)

−1. Then, a system is block diag-
onal dominant (Grosdidier and Morari, 1986), if

µ∆(E(s)) < 1 (7)

where µ∆ is the structured singular value (Skogestad
and Postlethwaite, 1996) with ∆ having same
structure as Gbd(s). Next we show that informa-
tion regarding block diagonal dominance can be
obtained using the BRG.

Proposition 8. For a system partitioned into 2
blocks,

µ∆(E(s)) ≥

√

∣

∣

∣

∣

1

σ([ΛB(s)]ii)
− 1

∣

∣

∣

∣

(8)

PROOF. Consider the system being partitioned
as shown in Figure 1. Then,

E(s) =

[

0 G12(s)G22(s)
−1

G21(s)G11(s)
−1 0

]

Using Theorem 2 of Skogestad and Morari (1988),

µ2
∆

(E(s)) = σ̄(G12(s)G
−1
22 (s))σ̄(G21(s)G

−1
11 (s))

µ2
∆

(E(s))≥ σ̄(G12(s)G
−1
22 (s)G21(s)G

−1
11 (s)) (9)

Using (2),

1

σ([ΛB(s)]11)
≤ 1+

σ̄(G12(s)G
−1
22 (s)G21(s)G

−1
11 (s)) (10)

Substituting (9) in (10) and rearranging,

µ∆(E(s)) ≥

√

∣

∣

∣

∣

1

σ([ΛB(s)]11)
− 1

∣

∣

∣

∣

(11)

Similarly, (8) can be shown to be true for
[ΛB(s)]22. 2

Using (8), it can be shown that,

lim
σ([ΛB(0)]ii)→0

µ∆(E(0)) = ∞

Thus the system in Figure 1 cannot be block
diagonal dominant if σ([ΛB(0)]ii) � 1. Though
this result is proven for the case, when the system
is partitioned into two blocks, numerical evidence
suggests that it is true for any partitioning.

3.4 Closed loop Interactions

If G(s) = Gbd(s) or the system itself is block
diagonal, it is trivially non-interacting . In this
section, such a system is referred to as an ideal

system. When the controller contains integral
action, the sensitivity functions of the actual and
ideal systems are related as,



S(s)≈ Sbd(s)Γ(s) (12)

S(s) = (I + G(s)K(s))−1

Sbd(s) = (I + Gbd(s)K(s))−1

where Γ(s) = Gbd(s)G(s)−1 is the Performance
Relative Gain Array (PRGA) (Hovd and Sko-
gestad, 1992). Let Γ(s) be expressed through
its singular value decomposition as, Γ(s) =
U(s)Σ(s)V(s)T . Then,

Γ(s)vi(s) = σi(s)ui(s), ∀i = 1 · · ·n

where σi(s) is the ith singular value and ui(s) and
vi(s) are the corresponding left and right singu-
lar vectors, calculated at a particular frequency.
Grosdidier (1990) has argued that the exogenous
signals oriented in the direction of singular vectors
associated with σ̄(Γ(s)) most adversely affect the
closed loop performance and vice versa. Then, a
necessary condition for interactions to be mini-
mum is that σi(Γ(s)) ≈ 1 for all i = 1, · · ·n.
Recognizing that [ΛB(s)]ii = [Γ(s)]ii,

σ̄([ΛB(s)]ii) ≤ σ̄(Γ(s)) (13)

Therefore, if σ̄([ΛB(s)]ii) � 1, then σ̄(Γ(s)) � 1.
When [ΛB(s)]ii = I, then σj([ΛB(s)]ii) = 1 for
all j = 1, · · ·mi. Then (13) suggests that σ̄(Γ(s))
can still be large, despite BRG being exactly the
identity matrix.

Based on these observations and Proposition 7,
we conclude that the system has large interactions
if σ̄(ΛB(s)) � 1 and σ(ΛB(s)) � 1 or in other
words, BRG is very different from the identity

matrix , but the converse is not true. Use of
PRGA is necessary for drawing any conclusions
regarding closed loop interactions. Note that due
to the approximation involved (see (12)), this
result holds only at low frequencies.

4. ALTERNATE PAIRING RULES

In earlier sections, it was shown that useful in-
formation regarding closed loop properties can be
extracted using BRG. In this section, we summa-
rize those results in the form of pairing rules.

Pairing Rule 1. Avoid pairing on variables with
det([ΛB(0)]ii) ≤ 0 (Proposition 3 and Corol-
lary 6).

Pairing Rule 2. Avoid pairing on variables if
σ([ΛB(0)]ii) � 1 for some i = 1, · · ·M (Propo-
sitions 7 and 8).

Pairing Rule 3. Prefer pairing on variables for
which

∑

i |σi(Γ(0)) − 1| is small, provided Rules 1
and 2 are satisfied (see §3.4).

These rules are based on gain information only
and may suggest inferior pairings for systems
containing large time delays. In such cases, if a
reliable dynamic model is available, then ensuring
that

∑

i |σi(Γ(s)) − 1| is small up to the crossover
frequency is helpful. In addition,

Pairing Rule 4. Avoid pairing on variables with
different signs of det([ΛB(0)]ii) and
det([ΛB(j∞)]ii) (Proposition 5).

Remark 9. Alternatives satisfying µ∆(E(0)) < 1
also possess the property of decentralized integral
controllability (DIC) resulting in easier on-line
controller tuning. However, the computational
load for calculation of µ is substantial (Skogestad
and Postlethwaite, 1996). Then, Pairing Rule 2
can be seen as a pre-screening step resulting in
reduced computational load.

Remark 10. Since BRG and PRGA are output
scaling dependent, so are its singular values.
Therefore, prior to pairing selection, specification
of a suitable scaling of system matrix is necessary
to avoid ambiguity. A possible approach is to
normalize the system matrix such that ‖yi‖ ≤ 1
for all i = 1, · · ·n.

Remark 11. These pairing rules equally hold for
fully decentralized control structures. For many
problems,

∑

i |σi(Γ(0)) − 1| is small, if the diag-
onal elements of RGA elements are close to 1.
Thus, Bristol’s rule of pairing on RGA elements
close to 1 is implicit here, but, in general, it is
neither necessary nor sufficient for the system to
be weakly interacting.

5. NUMERICAL EXAMPLE

Example 12. Consider the 4×4 ALSTOM gasifier
system (Dixon et al., 2000). The gasifier is de-
scribed by 3 linearized state space models of 25th

order at 100%, 50% and 0% load conditions. Prior
to pairing selection, the outputs of the system are
scaled such that ‖yi‖2 ≤ 1 at all load conditions.

Screening of various block decentralized alterna-
tives for the system is done such that det([ΛB(0)]ii)
> 0 and σ(ΛB(0)) > 0.1 at different load condi-
tions. A representative set of alternatives satisfy-
ing these conditions is presented in Table 1. The
pairings (1, 1) 1 and (1-4, 1-4) contain RHP zeros
at s = 3.3013 and 3.2879 respectively at 100% load
conditions making the use of these alternatives
unattractive.

Based on steady state analysis, ((1-2-4, 1-3-4),(3-
2)) seems to be the best structure. This was

1 (1,1) represent the pairing (y1,u1).



100% load 0% load
Pairing mini σ([ΛB(0)]ii)

∑

i
|σi(Γ(0)) − 1| mini σ([ΛB(0)]ii)

∑

i
|σi(Γ(0)) − 1| Remarks

(1,1),(2,3),(3,2),(4,4) 0.33 2.96 0.48 3.28 RHP zero

(1-2,1-3),(3,2),(4,4) 0.73 2.41 0.48 1.56

(1-4,1-4),(2,3),(3,2) 0.17 2.99 0.44 4.15 RHP zero

(1-2,1-3),(3-4,2-4) 0.86 1.83 0.53 1.73

(1-2-3,1-2-3),(4-4) 0.30 2.99 0.43 1.16

(1-2-4,1-3-4),(3-2) 0.80 1.86 0.75 1.12

Table 1. Block decentralized pairings for ALSTOM gasifier system

further confirmed by using frequency-dependent
PRGA. It is also seen that this alternative satisfies
µ∆(E(0)) < 1 at all load conditions and thus is
DIC.

This system has also been analyzed by Chin and
Munro (2002) at 100% load conditions, where they
have suggested the use of ((1-3-4, 2-3-4), (2-1)).
This alternative satisfies Rules 1 and 2 at 100%
load conditions, but the relative gain of the pair-
ing (2-1) is negative at 0% load conditions. This
shows that this alternative will be loop failure
sensitive under varying operating conditions.

6. CONCLUSIONS

The main contributions of this paper include:

(i) an extension of Bristol’s rule of avoiding
pairing on negative RGA elements to block
pairings (Proposition 3),

(ii) a connection between Grosdidier’s interac-
tion measure and BRG. (Proposition 8),

(iii) a correction and restatement of the common
conjecture that a system is weakly interact-
ing, if BRG is close to the identity matrix
(§3.4).

The pairing rules proposed in this paper will be
helpful in selecting block pairings for the system.
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