
OPTIMAL EXPERIMENTAL DESIGN FOR TRAINING OF
A FAULT DETECTION ALGORITHM

Shi Jin Lou, Thomas Duever1, Hector Budman

Department of Chemical Engineering

University of Waterloo, Waterloo, Ontario, Canada, N2L 2G1

Abstract: This paper focuses on Optimal Experimental Design to train a Projection Pursuit Regression
(PPR) model used for fault detection. A novel experimental design method, referred to as Gaussian
Probability Design, is proposed and compared with the conventional Factorial Design. The Gaussian
Probability Design automatically searches for the sparseness of the data, and adds pairs of training data on
both sides of a class boundary in areas where the data density is the lowest. This design method
outperforms the Factorial Design in reducing the fault misclassification more effectively with the same
amount of new training data.

Keywords: Optimal Experimental Design, fault diagnosis, Projection Pursuit Regression

1 Corresponding author. Tel: +1-519-888 4567 ext. 2540; Fax: +1-519-746-4979. E-mail:
tduever@cape.uwaterloo.ca

1. INTRODUCTION

In most model learning problems, the learner has
the ability to act on its environment and gather
specific experimental data that will minimize the
model errors. A special case of a model learning
problem is the training of a fault detection
algorithm. In most of the literature dealing with
fault detection, the learner has been treated as a
passive recipient of data and its active role in
determining optimal data for training has been
ignored. More specifically, the fault detection
algorithms were generally trained on specific
faults on the assumption that only these faults
will occurred in the future. Thus, research work
on optimal experimental design (OED) for
training of fault detection techniques has not
been extensively considered and reported in the
literature. This work addresses the generalization
problem where future faults may occur that did
not occur during training. Therefore, optimal
experimental design may be a venue to minimize
the misclassification of faults that were not
observed during training of the fault detection
algorithm.

In this work, the Projection Pursuit Regression
(PPR) technique has been chosen as the basis for
the design of the fault detection algorithm. PPR
is a multivariate statistical technique [1,3,4],
ideally suited for nonlinear systems and has been
applied to fault detection [2]. Similar to other
multivariate methods it is based on the
decomposition of the inputs along principal
components. However the basis functions

referred to as hidden functions are not fixed a
priori but determined by the training data and the
output calculation is based on a nearest
neighbourhood approach applied in the hidden
functions space. In a previous work by Lou et al
[5], PPR has been found to be a good trade-off as
compared to other techniques from the point of
view of extrapolation errors due to insufficient
training data and noise rejection. This paper
deals with a novel method to design optimal
experiments for the training of a PPR-based fault
detection algorithm. The objective is to design
experimental data in some predetermined
window of operating conditions to minimize the
fault misclassifications during testing. The
incentive is to minimize the number of
experiments for the sake of economy. Three
different sets of data will be considered: training
set #1: obtained using the conventional Factorial
Design to obtain a first model, training set #2:
added based on the knowledge of the first data
set, and a testing set, to assess the classification
accuracy of the algorithm trained with the two
training data sets. The current work presents a
methodology to design the second training data
set mentioned above. Thus, this study follows a
sequential approach where the optimal design of
training set #2 is based on a priori knowledge of
training set #1.

Cohn (1996) has applied techniques from OED
to guide the query selection of a neural network
learner [6]. Cohn demonstrated that these
techniques allow the learner to minimize the
generalization error by minimizing its variance.

mailto:tduever@cape.uwaterloo.ca

His OED approach is claimed to be applicable to
any network architecture whose output is
differentiable with respect to its parameters and
may be used for both regression and pattern
classification problems. However, for PPR
models, the derivatives of the output with respect
to the parameters are actually the outputs of the
hidden functions. Since for PPR models, each
class corresponds to the same hidden output
value in each hidden function, all data points
belonging to the same class will have the same
derivative values with respect to the parameters.
Thus, Cohn’s method will not be useful for
distinguishing between better or worse
experimental points belonging to the same class.

In this work a method, referred as to Gaussian
Probability Design, is proposed for designing the
second set of training data mentioned above. In
order to test the efficiency of the proposed
design, the design of training set #2 will be
compared to a conventional factorial design of
this set. Finally, the methods are illustrated and
compared for a CSTR case study. This case
study, previously used [7] for testing fault
detection algorithms, considers faults as extreme
values in the inlet temperature and concentration
conditions. These conditions are inferred from
the measurements of reaction temperature and
concentration.

2. CONCEPTION OF EXPERIMENTAL
DESIGN METHODS

In a pattern classification problem, Optimal
Experimental Design depends on both the design
problem and the property of the modelling tool,
such as the generalisation/localization ability.
Since PPR is based on a nearest neighbourhood
idea, if the problem consists of a single straight
class boundary, a symmetric pair of training data
with one datum on each side of this boundary is
sufficient to determine the boundary in the
middle of the two points. For example, for the
simple detection problem: nxy += , where x
is the input, y is the output(measurement), n is a
noise term and class I:x<0.5,class II:x>0.5. In a
simple Factorial Design, the designer can easily
produce a pair of data symmetric with respect to
the boundary, x+-Delta. A pair of data points
symmetric to the boundary will be referred as a
conjugate pair. On the other hand when the class
boundary is curvilinear, many conjugate pairs of
training data may be needed, in order to identify
the true boundary. An example for this situation
is shown in Figure 1 where a curvilinear
boundary, i.e. composed of different straight

portions, separates two fault classes to be
identified. The output of class I given by the
rhomboids is equal to 1 whereas the output
corresponding to class II given by the triangles is
equal to 2. Thus, the problem consists of
inferring the class from the output values. At
least 8 training data points are needed, as shown
in Figure 2, in order to accurately determine the
class boundary between the two classes using a
PPR algorithm.

Fig. 1. True classification of a data pattern

To illustrate this point, let us assume in Figure

2, an initial training set #1 is given by points a
and b. Then training set #2 will be selected from
either one of the conjugate pairs defined by
coordinates (c, d), or (e, f), or (g, h) to test which
pair result in the best model, in terms of the
smallest class misclassification. The test set
consists of all the grid points shown in Figure 1.
If c and d are used as new training data, the PPR
method produces a pattern classification as
presented in Figure 3. The misclassification rate
is as high as 26%. If e and f are used as the new
training data, the corresponding data
classification is shown in Figure 4. The
misclassification rate is then reduced to only
4.5%. Finally, if the conjugate pair g and h are
applied as the new training data, the
misclassification rate will be further reduced to
3.9%.

The above example shows that the design of
training data set #2 will result in the best model,
if the new data is added to the area with the
lowest data density. A major problem with
Factorial Design is that it does not automatically
search the sparseness of training data in the data
domain. Therefore, an algorithm, which can
automatically search the data domain and exploit
the sparseness of training data, is expected to
give better results with the same amount of data.
This observation inspired a novel experimental

design method for fault detection, which will be
introduced in the Section 4.2.

Fig. 2 Minimum training data needed to identify
class boundary accurately

Fig. 3. Classification results with new training
data c and d

Fig. 4 Classification results with new training

data e and f

3. TRAINING DATA SET #1

The CSTR model used in this case study has
been originally used by Venkatasubramanian to
study a fault detection algorithm based on a
Radial Basis Functions Neural Network [7] and
it is based on conventional component and

energy balances. Two outputs are measured: the
outlet temperature and the outlet concentration.
These variables are then used to identify the
faults in two process inputs: the inlet temperature
and the inlet concentration. The magnitude of
the inlet temperature, To, is allowed to change
from the normal steady state value to 3.0 times
of that value. The magnitude of another process
input, the inlet concentration CAo, is allowed to
change from the normal steady state value to 1.6
times of that value.

g h

e
f c

d a
As mentioned before, the experimental design

methods discussed in this case study are based
on an initial set of training data which is
generated by a Factorial Design. The design is
carried out at 3 levels: 0, 5, 10. There are two
factors: the inlet temperature, and the inlet
concentration. For a full Factorial Design with 2
factors and 3 factorial levels, there are 9 possible
experimental conditions, as shown in Table 1.

b

Table 1. Factorial Design for training data set #1

Experiment
run

Factorial
level 1

Factorial
level 2

1 0 0
2 0 5
3 0 10
4 5 0
5 5 5
6 5 10
7 10 0
8 10 5
9 10 10

The magnitude of inlet temperature, with

respect to its normal steady state value, is
decided according to Equation (1):
Magnitude 1=factorial level 1×0.2+1.0 (1)
The magnitude of inlet concentration, with
respect to its normal steady state value, is
decided by Equation (2):
Magnitude 2=factorial level 2×0.06+1.0 (2)
Based on these definitions the faults are defined
as shown in Table 2. The generated training data
is plotted in the process input space in Figure 5.

Corresponding to the data pattern in the
process inputs in Figure 5, the process outputs,
i.e., the reactor temperature and concentration,
are generated using the CSTR model, to train a
PPR model. In order to test the performance of
the PPR model, a group of testing data has been
designed. The testing data are also generated by
a Factorial Design on 2 factors: the inlet
temperature and the inlet concentration, but at 20
factorial levels: 0.25, 0.75, 1.25,…, 8.75, 9.25,
9.75; i.e., from 0.25 to 9.75, with an interval of

Table 2. Definitions of Faults for the CSTR example

Normal operation (Class 1):

To < 1.6 times its normal steady state value;
CAo < 1.18 times its normal steady state value;

high inlet concentration fault (Class 2):

To < 1.6 times its normal steady state value;
CAo ≥ 1.18 times its normal steady state value;

High inlet temperature fault (Class 3):

To ≥ 1.6 times its normal steady state value;
CAo < 1.18 times its normal steady state value;

Concurrent faults (Class 4):

To ≥ 1.6 times its normal steady state value;
CAo ≥ 1.18 times its normal steady state value;

0.5. A full Factorial Design on two factors at 20
factorial levels results in 400 experimental
conditions. The percentage of misclassification
is calculated to be 38.5%. The misclassifications
are mainly due to the insufficiency of training
data.

 Class 1; Class 2; Class 3; + Class 4; --- true class boundary
Fig. 5. Original training data in process input

space,

4. COMPARISON OF EXPERIMENTAL
DESIGN METHODS FOR TRAINING

DATA SET #2

4.1 Factorial Design

To generate the new training data #2 using
Factorial Design, two factorial levels are added
on each of the two factors. Now each factor has
a total of five factorial levels: 0, 2.75, 3.25, 5,
10. After the addition of the new data, the
training data in the process input space has a
pattern as shown in Figure 6. Compared to the
original training data, 16 new data have been
added.

The PPR model trained with these new data
results in 23.25% misclassification, when tested
on the testing data set defined above. Checking
the locations of the misclassification, it is found

that the new training data generated by the
Factorial Design does not reduce the
misclassification in location C in Figure 6. The
figure shows that the Factorial Design adds new
training data to location A and B, because
sufficient data already exist there. Location C
has a much lower density of training data than
location A and B. But the Factorial Design does
not add any new training data in location C,
because it does not search for the sparseness of
the training data. A combed effect of the
sparseness of training data and the curvilinear
shape of the class boundary in the process output
space results in high misclassification in location
C.

 Class 1; Class 2; Class 3; + Class 4; --- true class boundary

Location A Location B

Location C

Fig. 6. Training data in the process input space,
after Factorial Design

4.2 Gaussian Probability Design

As for the Factorial Design, the Gaussian
Probability Design is also carried out, based on
the original training data in the process input
space, which is shown in Figure 5. The design is
implemented in the following steps.

Step 1: The Gaussian probability is calculated
on a set of experimental data, with respect to
their process inputs. The experimental data to be

considered are the grid points next to the class
boundary. The sampling rates in all dimensions
of this grid are decided based on a trade-off
between the design accuracy and the
computational expense. The Gaussian
probability of a datum is calculated by the
following equation.

∑
=

−
−

−
−

−
−

=
T

d

didjijijN

i

s
xx

s
xx

s
xx

j ep
1

)()()(2,,2

2

2,2,2

1

1,1,
L (3)

Where, represents the Gaussian probability
of the j

jp

ix 1,

th experimental datum, with respect to all
the training data in data set #1; NT is the total
number of the original training data in data set
#1. For the ith training datum

, x[T
diii xxX ,2, L=] i,d represents the

process input of the ith training datum, in the dth
dimension; sd is the sampling rate of the process
input, in the dth dimension.

Step 2: An experimental datum is accepted as
a new training datum, if it has the lowest
probability value, pmin.

ENj
p

≤≤
=

1min min { } jp (4)

Where, NE is the total number of experimental
data.

Step 3: Once a new training datum is selected,
its conjugate point on the other side of a class
boundary is also selected as a new training
datum. A conjugate point can further generate a
new one with respect to another individual class
boundary. This procedure is carried on, until
each new training datum has a conjugate point
on the other side of a class boundary, to form a
conjugate pair. Conjugate pairs of training data,
across the class boundary, are sought, because
they obviously provide equal amount of class
information, on the two sides of the boundary.
Unequal amount of training data on the two sides
of the class boundary will cause the PPR model
to identify a class boundary that is biased
towards the side with less training data.

This proposed design method can be carried
out in a sequential approach manner. If the
design objective, such as the misclassification
rate in testing, is not met in the previous run of
design, additional training sets can be added
according to steps 1-3 above.

For the CSTR example the experimental data
to be considered in step #1 are shown in Figure
7. The Gaussian probability is calculated on
each experimental datum, according to Equation
(3). New training data are then selected from the
experimental data following Equation (4). The
following three data points have been found to

locate in the areas with the (equally) lowest
density: [2.75 2.75], [7.75 2.75], [2.75 7.75].
The conjugate points of these new training data
are also selected, according to Step 3 above. For
example, the data point ‘a’ in Figure 8 is a new
training datum selected in the previous design
steps. The data point ‘b’ is accepted as a new
training datum, because it is the conjugate point
of ‘a’, with respect to class boundary 1. The
data point ‘d’ is another conjugate point of ‘a’,
with respect to class boundary 4. Since data
point ‘c’ is a conjugate point of both ‘b’ and ‘d’,
with respect to the class boundary 2 and 3
respectively, it is also taken as a new training
datum, following Step 3. Finally, the new
training data, together with the original ones, are
presented in Figure 8.

Fig. 7. Experimental data in Gaussian
Probability Design,

Fig. 8. New training data, together with original
ones, in process input space,

New training data

2

cb
1 3

a d

4

Based on the training data set in Figure 8, a

PPR model is obtained that gives only 16.25%
misclassification in the testing. This result is
better than 23.25% misclassification by the
Factorial Design. Furthermore, the Gaussian

Probability Design achieves this higher accuracy
with only 8 new training data, significantly less
than 16 new training data calculated by the
Factorial Design. In summary, the Factorial
Design adds training data to locations A and B,
which are already dense with training data, but
leave location C blank. On the other hand, the
Gaussian Probability Design automatically
searches for the data void, and adds new training
data to location C, where the data density is the
lowest. The difference in the location of new
training data shows the advantage of the
Gaussian Probability Design, in automatically
searching for data voids.

5. CONCLUSION

A novel experimental-design method, referred
to as Gaussian Probability Design, is proposed
and compared to the conventional Factorial
Design. The comparison is carried out on a
CSTR process. The simulation results are
summarised in Table 3. The results show that,
for PPR, the Gaussian Probability Design
provides a more accurate classification of faults
as compared to the Factorial Design.

Table 3. Comparison results of experimental
design methods

 Misclassification
Original training data 38.50%

Factorial Design
(16 new data)

23.25%

Gaussian Probability Design
(8 new data)

16.25%

The key disadvantage of Factorial Design for

training a fault detection algorithm is that it can
not take into account the sparseness of the data.
The location of new training data is decided by a
combination of the factorial levels. The design
adds training data not only on the class
boundary, but also inside a class as well. This is
often unnecessary for a model, which can make
reasonable generalisation, such as PPR. For
these models, a training datum near the class
boundary is more important than one inside the
class. The classification of a datum inside a
class can be correctly determined by the PPR
technique through interpolation, based on the
data located near the class boundary. When the
class boundary is of complicated shape, or the
dimension of the problem is high, i.e. it has a
large number of inputs and outputs, Factorial
Design may lead to a prohibitively large amount
of training data.

Our simulation results show that using more
training data does not necessarily mean less
misclassification. This further illustrates that a
random design of training data may lead to poor
generalization results.

The Gaussian Probability Design investigates
the sparseness of the training data, and adds
training data to the class boundary area, where
the data density is the lowest. Since low density
indicates insufficiency of training data, this
method is efficient in filling out the data void.
The rationale for using the Gaussian probability
distribution based on assessing the probability of
points in the neighbourhood of the boundary to
belong to a specific class based on an initial set
of training data. Finally, the Gaussian Probability
design results in smaller number of experiments
as compared to Factorial Design, since it adds
points only in the neighbourhood of the class
boundary. It does not add unnecessary data
points away from the class boundary that can be
easily interpolated by the PPR algorithm based
on the points located at the boundary.

REFERENCE

[1] Friedman, J.H. and W. Stuetzle, (1981)

Projection Pursuit Regression, Journal of the
American Statistical Association, no.376,
p:817

[2] Flick, T.e., L.K. Jones, R.G. Pries, and C.
Herman, (1990) Pattern Classification using
Projection Pursuit, Pattern Recognition,
Vol. 23, No. 12, pp. 1367-1376

[3] Utojo, U., B. R. Bakshi, (1995) Connections
between Neural Networks and multivariate
Statistical Methods: An Overview, Neural
Networks in Bioprocessing and Chemical
Engineering, Academic Press

[4] Hwang, J.N., S. R. Lay, M. Maechler, R. D.
Martin, J. Schimert, (1994) Regression
Modeling in Back-propagation and
Projection Pursuit Learning, IEEE
Transactions on Neural Network, vol.5, no.3

[5] Lou, S. J., H. Budman, and T. A. Duever,
(accepted in August 2002), Comparison of
fault detection techniques: Haar Wave-Net
versus Projection Pursuit Regression,
Journal of Process Control

[6] Cohn, David A., (1996) Neural network
exploration using optimal experimental
design, Neural Networks, vol.9, no.6,
pp1071-1083

[7] Baughman, D. R.; Liu, Y. A, (1995) Neural
Networks in Bioprocessing and Chemical
Engineering, Academic Press

	Original training data
	REFERENCE

