
OPTIMAL EXPERIMENTAL DESIGN FOR TRAINING OF  
A FAULT DETECTION ALGORITHM 

 
Shi Jin Lou, Thomas Duever1, Hector Budman 

 
Department of Chemical Engineering 

University of Waterloo, Waterloo, Ontario, Canada, N2L 2G1 
 
Abstract: This paper focuses on Optimal Experimental Design to train a Projection Pursuit Regression 
(PPR) model used for fault detection.  A novel experimental design method, referred to as Gaussian 
Probability Design, is proposed and compared with the conventional Factorial Design.  The Gaussian 
Probability Design automatically searches for the sparseness of the data, and adds pairs of training data on 
both sides of a class boundary in areas where the data density is the lowest.  This design method 
outperforms the Factorial Design in reducing the fault misclassification more effectively with the same 
amount of new training data.   
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1. INTRODUCTION 
 
In most model learning problems, the learner has 
the ability to act on its environment and gather 
specific experimental data that will minimize the 
model errors.  A special case of a model learning 
problem is the training of a fault detection 
algorithm.  In most of the literature dealing with 
fault detection, the learner has been treated as a 
passive recipient of data and its active role in 
determining optimal data for training has been 
ignored. More specifically, the fault detection 
algorithms were generally trained on specific 
faults on the assumption that only these faults 
will occurred in the future. Thus, research work 
on optimal experimental design (OED) for 
training of fault detection techniques has not 
been extensively considered and reported in the 
literature. This work addresses the generalization 
problem where future faults may occur that did 
not occur during training. Therefore, optimal 
experimental design may be a venue to minimize 
the misclassification of faults that were not 
observed during training of the fault detection 
algorithm. 

In this work, the Projection Pursuit Regression 
(PPR) technique has been chosen as the basis for 
the design of the fault detection algorithm.  PPR 
is a multivariate statistical technique [1,3,4], 
ideally suited for nonlinear systems and has been 
applied to fault detection [2].  Similar to other 
multivariate methods it is based on the 
decomposition of the inputs along principal 
components. However the basis functions 

referred to as hidden functions are not fixed a 
priori but determined by the training data and the 
output calculation is based on a nearest 
neighbourhood approach applied in the hidden 
functions space. In a previous work by Lou et al 
[5], PPR has been found to be a good trade-off as 
compared to other techniques from the point of 
view of extrapolation errors due to insufficient 
training data and noise rejection.  This paper 
deals with a novel method to design optimal 
experiments for the training of a PPR-based fault 
detection algorithm.  The objective is to design 
experimental data in some predetermined 
window of operating conditions to minimize the 
fault misclassifications during testing. The 
incentive is to minimize the number of 
experiments for the sake of economy. Three 
different sets of data will be considered: training 
set #1: obtained using the conventional Factorial 
Design to obtain a first model, training set #2: 
added based on the knowledge of the first data 
set, and a testing set, to assess the classification 
accuracy of the algorithm trained with the two 
training data sets.  The current work presents a 
methodology to design the second training data 
set mentioned above. Thus, this study follows a 
sequential approach where the optimal design of 
training set #2 is based on a priori knowledge of 
training set #1. 

Cohn (1996) has applied techniques from OED 
to guide the query selection of a neural network 
learner [6]. Cohn demonstrated that these 
techniques allow the learner to minimize the 
generalization error by minimizing its variance.  
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His OED approach is claimed to be applicable to 
any network architecture whose output is 
differentiable with respect to its parameters and 
may be used for both regression and pattern 
classification problems.  However, for PPR 
models, the derivatives of the output with respect 
to the parameters are actually the outputs of the 
hidden functions.  Since for PPR models, each 
class corresponds to the same hidden output 
value in each hidden function, all data points 
belonging to the same class will have the same 
derivative values with respect to the parameters.  
Thus, Cohn’s method will not be useful for 
distinguishing between better or worse 
experimental points belonging to the same class. 

In this work a method, referred as to Gaussian 
Probability Design, is proposed for designing the 
second set of training data mentioned above.  In 
order to test the efficiency of the proposed 
design, the design of training set #2 will be 
compared to a conventional factorial design of 
this set. Finally, the methods are illustrated and 
compared for a CSTR case study.  This case 
study, previously used [7] for testing fault 
detection algorithms, considers faults as extreme 
values in the inlet temperature and concentration 
conditions. These conditions are inferred from 
the measurements of reaction temperature and 
concentration.  
 

2. CONCEPTION OF EXPERIMENTAL 
DESIGN METHODS 

 
In a pattern classification problem, Optimal 
Experimental Design depends on both the design 
problem and the property of the modelling tool, 
such as the generalisation/localization ability.  
Since PPR is based on a nearest neighbourhood 
idea, if the problem consists of a single straight 
class boundary, a symmetric pair of training data 
with one datum on each side of this boundary is 
sufficient to determine the boundary in the 
middle of the two points. For example, for the 
simple detection problem: nxy += , where x 
is the input, y is the output(measurement), n is a 
noise term and class I:x<0.5,class II:x>0.5.  In a 
simple Factorial Design, the designer can easily 
produce a pair of data symmetric with respect to 
the boundary, x+-Delta. A pair of data points 
symmetric to the boundary will be referred as a 
conjugate pair. On the other hand when the class 
boundary is curvilinear, many conjugate pairs of 
training data may be needed, in order to identify 
the true boundary.  An example for this situation 
is shown in Figure 1 where a curvilinear 
boundary, i.e. composed of different straight 

portions, separates two fault classes to be 
identified.  The output of class I given by the 
rhomboids is equal to 1 whereas the output 
corresponding to class II given by the triangles is 
equal to 2.  Thus, the problem consists of 
inferring the class from the output values. At 
least 8 training data points are needed, as shown 
in Figure 2, in order to accurately determine the 
class boundary between the two classes using a 
PPR algorithm.  

 
Fig. 1.  True classification of a data pattern  

 
To illustrate this point, let us assume in Figure 

2, an initial training set #1 is given by points a 
and b. Then training set #2 will be selected from 
either one of the conjugate pairs defined by 
coordinates (c, d), or (e, f), or (g, h) to test which 
pair result in the best model, in terms of the 
smallest class misclassification.  The test set 
consists of all the grid points shown in Figure 1. 
If c and d are used as new training data, the PPR 
method produces a pattern classification as 
presented in Figure 3.  The misclassification rate 
is as high as 26%.  If e and f are used as the new 
training data, the corresponding data 
classification is shown in Figure 4.  The 
misclassification rate is then reduced to only 
4.5%.  Finally, if the conjugate pair g and h are 
applied as the new training data, the 
misclassification rate will be further reduced to 
3.9%.   

The above example shows that the design of 
training data set #2 will result in the best model, 
if the new data is added to the area with the 
lowest data density.  A major problem with 
Factorial Design is that it does not automatically 
search the sparseness of training data in the data 
domain.  Therefore, an algorithm, which can 
automatically search the data domain and exploit 
the sparseness of training data, is expected to 
give better results with the same amount of data.  
This observation inspired a novel experimental 

 



design method for fault detection, which will be 
introduced in the Section 4.2.   

Fig. 2  Minimum training data needed to identify 
class boundary accurately 

Fig. 3.  Classification results with new training 
data c and d 

 
Fig. 4  Classification results with new training 

data e and f 
 

3. TRAINING DATA SET #1 
 
The CSTR model used in this case study has 
been originally used by Venkatasubramanian to 
study a fault detection algorithm based on a 
Radial Basis Functions Neural Network [7] and 
it is based on conventional component and 

energy balances.  Two outputs are measured: the 
outlet temperature and the outlet concentration.  
These variables are then used to identify the 
faults in two process inputs: the inlet temperature 
and the inlet concentration.  The magnitude of 
the inlet temperature, To, is allowed to change 
from the normal steady state value to 3.0 times 
of that value.  The magnitude of another process 
input, the inlet concentration CAo, is allowed to 
change from the normal steady state value to 1.6 
times of that value.   

g h 
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f c 

d a 
As mentioned before, the experimental design 

methods discussed in this case study are based 
on an initial set of training data which is 
generated by a Factorial Design.  The design is 
carried out at 3 levels: 0, 5, 10.  There are two 
factors: the inlet temperature, and the inlet 
concentration.  For a full Factorial Design with 2 
factors and 3 factorial levels, there are 9 possible 
experimental conditions, as shown in Table 1. 

b 

 
Table 1.  Factorial Design for training data set #1 

Experiment 
run 

Factorial 
level 1 

Factorial 
level 2 

1 0 0 
2 0 5 
3 0 10 
4 5 0 
5 5 5 
6 5 10 
7 10 0 
8 10 5 
9 10 10 

 
The magnitude of inlet temperature, with 

respect to its normal steady state value, is 
decided according to Equation (1): 
Magnitude 1=factorial level 1×0.2+1.0 (1)
The magnitude of inlet concentration, with 
respect to its normal steady state value, is 
decided by Equation (2): 
Magnitude 2=factorial level 2×0.06+1.0 (2)
Based on these definitions the faults are defined 
as shown in Table 2. The generated training data 
is plotted in the process input space in Figure 5.  

Corresponding to the data pattern in the 
process inputs in Figure 5, the process outputs, 
i.e., the reactor temperature and concentration, 
are generated using the CSTR model, to train a 
PPR model.  In order to test the performance of 
the PPR model, a group of testing data has been 
designed.  The testing data are also generated by 
a Factorial Design on 2 factors: the inlet 
temperature and the inlet concentration, but at 20 
factorial levels: 0.25, 0.75, 1.25,…, 8.75, 9.25, 
9.75; i.e., from 0.25 to 9.75, with an interval of  

 



 
Table 2.  Definitions of Faults for the CSTR example 

Normal operation (Class 1): 
 

To <  1.6 times its normal steady state value; 
CAo <  1.18 times its normal steady state value; 

high inlet concentration fault (Class 2): 
 

To <  1.6 times its normal steady state value; 
CAo ≥  1.18 times its normal steady state value; 

High inlet temperature fault (Class 3): 
 

To ≥  1.6 times its normal steady state value; 
CAo <  1.18 times its normal steady state value; 

Concurrent faults (Class 4): 
 

To ≥  1.6 times its normal steady state value; 
CAo ≥  1.18 times its normal steady state value; 

0.5.  A full Factorial Design on two factors at 20 
factorial   levels   results   in   400   experimental 
conditions.  The percentage of misclassification 
is calculated to be 38.5%.  The misclassifications 
are mainly due to the insufficiency of training 
data. 

 
 Class 1;    Class 2;    Class 3;   + Class 4;   --- true class boundary  
Fig. 5.  Original training data in process input 

space,  
 

4. COMPARISON OF EXPERIMENTAL 
DESIGN METHODS FOR TRAINING 

DATA SET #2 
 
4.1 Factorial Design 
 
To generate the new training data #2 using 
Factorial Design, two factorial levels are added 
on each of the two factors.  Now each factor has 
a total of five factorial levels: 0, 2.75, 3.25, 5, 
10.  After the addition of the new data, the 
training data in the process input space has a 
pattern as shown in Figure 6.  Compared to the 
original training data, 16 new data have been 
added.  

The PPR model trained with these new data 
results in 23.25% misclassification, when tested 
on the testing data set defined above.  Checking 
the locations of the misclassification, it is found 

that the new training data generated by the 
Factorial Design does not reduce the 
misclassification in location C in Figure 6.  The 
figure shows that the Factorial Design adds new 
training data to location A and B, because 
sufficient data already exist there.  Location C 
has a much lower density of training data than 
location A and B.  But the Factorial Design does 
not add any new training data in location C, 
because it does not search for the sparseness of 
the training data.  A combed effect of the 
sparseness of training data and the curvilinear 
shape of the class boundary in the process output 
space results in high misclassification in location 
C. 

 Class 1;    Class 2;    Class 3;   + Class 4;   --- true class boundary  

Location A Location B

Location C

Fig. 6.  Training data in the process input space, 
after Factorial Design 

 
4.2 Gaussian Probability Design  
 
As for the Factorial Design, the Gaussian 
Probability Design is also carried out, based on 
the original training data in the process input 
space, which is shown in Figure 5.  The design is 
implemented in the following steps.   

Step 1: The Gaussian probability is calculated 
on a set of experimental data, with respect to 
their process inputs.  The experimental data to be 

 



considered are the grid points next to the class 
boundary. The sampling rates in all dimensions 
of this grid are decided based on a trade-off 
between the design accuracy and the 
computational expense.  The Gaussian 
probability of a datum is calculated by the 
following equation.   
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of the j
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th experimental datum, with respect to all 
the training data in data set #1;  NT is the total 
number of the original training data in data set 
#1.  For the ith training datum 

, x[ T
diii xxX ,2, L= ] i,d represents the 

process input of the ith training datum, in the dth 
dimension;  sd is the sampling rate of the process 
input, in the dth dimension.   

Step 2: An experimental datum is accepted as 
a new training datum, if it has the lowest 
probability value, pmin.   

ENj
p

≤≤
=

1min min { } jp (4) 

Where, NE is the total number of experimental 
data. 

Step 3: Once a new training datum is selected, 
its conjugate point on the other side of a class 
boundary is also selected as a new training 
datum.  A conjugate point can further generate a 
new one with respect to another individual class 
boundary.  This procedure is carried on, until 
each new training datum has a conjugate point 
on the other side of a class boundary, to form a 
conjugate pair.  Conjugate pairs of training data, 
across the class boundary, are sought, because 
they obviously provide equal amount of class 
information, on the two sides of the boundary.  
Unequal amount of training data on the two sides 
of the class boundary will cause the PPR model 
to identify a class boundary that is biased 
towards the side with less training data.   

This proposed design method can be carried 
out in a sequential approach manner.  If the 
design objective, such as the misclassification 
rate in testing, is not met in the previous run of 
design, additional training sets can be added 
according to steps 1-3 above.   

For the CSTR example the experimental data 
to be considered in step #1 are shown in Figure 
7.  The Gaussian probability is calculated on 
each experimental datum, according to Equation 
(3).  New training data are then selected from the 
experimental data following Equation (4).  The 
following three data points have been found to 

locate in the areas with the (equally) lowest 
density: [2.75  2.75], [7.75  2.75], [2.75  7.75].  
The conjugate points of these new training data 
are also selected, according to Step 3 above.  For 
example, the data point ‘a’ in Figure 8 is a new 
training datum selected in the previous design 
steps.  The data point ‘b’ is accepted as a new 
training datum, because it is the conjugate point 
of ‘a’, with respect to class boundary 1.  The 
data point ‘d’ is another conjugate point of ‘a’, 
with respect to class boundary 4.  Since data 
point ‘c’ is a conjugate point of both ‘b’ and ‘d’, 
with respect to the class boundary 2 and 3 
respectively, it is also taken as a new training 
datum, following Step 3.  Finally, the new 
training data, together with the original ones, are 
presented in Figure 8. 

Fig. 7.  Experimental data in Gaussian 
Probability Design,  

Fig. 8.  New training data, together with original 
ones, in process input space,  

New training data 

2

cb
1 3 
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Based on the training data set in Figure 8, a 

PPR model is obtained that gives only 16.25% 
misclassification in the testing.  This result is 
better than 23.25% misclassification by the 
Factorial Design.  Furthermore, the Gaussian 

 



Probability Design achieves this higher accuracy 
with only 8 new training data, significantly less 
than 16 new training data calculated by the 
Factorial Design.  In summary, the Factorial 
Design adds training data to locations A and B, 
which are already dense with training data, but 
leave location C blank.  On the other hand, the 
Gaussian Probability Design automatically 
searches for the data void, and adds new training 
data to location C, where the data density is the 
lowest.  The difference in the location of new 
training data shows the advantage of the 
Gaussian Probability Design, in automatically 
searching for data voids.  
 

5. CONCLUSION 
 

A novel experimental-design method, referred 
to as Gaussian Probability Design, is proposed 
and compared to the conventional Factorial 
Design.  The comparison is carried out on a 
CSTR process.  The simulation results are 
summarised in Table 3.  The results show that, 
for PPR, the Gaussian Probability Design 
provides a more accurate classification of faults 
as compared to the Factorial Design. 
 

Table 3.  Comparison results of experimental 
design methods 

 Misclassification
Original training data 38.50% 

Factorial Design  
(16 new data) 

23.25% 

Gaussian Probability Design 
(8 new data) 

16.25%  

 
The key disadvantage of Factorial Design for 

training a fault detection algorithm is that it can 
not take into account the sparseness of the data.  
The location of new training data is decided by a 
combination of the factorial levels.  The design 
adds training data not only on the class 
boundary, but also inside a class as well.  This is 
often unnecessary for a model, which can make 
reasonable generalisation, such as PPR.  For 
these models, a training datum near the class 
boundary is more important than one inside the 
class.  The classification of a datum inside a 
class can be correctly determined by the PPR 
technique through interpolation, based on the 
data located near the class boundary. When the 
class boundary is of complicated shape, or the 
dimension of the problem is high, i.e. it has a 
large number of inputs and outputs,  Factorial 
Design may lead to a prohibitively large amount 
of training data.   

Our simulation results show that using more 
training data does not necessarily mean less 
misclassification.  This further illustrates that a 
random design of training data may lead to poor 
generalization results.   

The Gaussian Probability Design investigates 
the sparseness of the training data, and adds 
training data to the class boundary area, where 
the data density is the lowest.  Since low density 
indicates insufficiency of training data, this 
method is efficient in filling out the data void.  
The rationale for using the Gaussian probability 
distribution based on assessing the probability of 
points in the neighbourhood of the boundary to 
belong to a specific class based on an initial set 
of training data. Finally, the Gaussian Probability 
design results in smaller number of experiments 
as compared to Factorial Design, since it adds 
points only in the neighbourhood of the class 
boundary. It does not add unnecessary data 
points away from the class boundary that can be 
easily interpolated by the PPR algorithm based 
on the points located at the boundary.  
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