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DESIGN OF SUB-OPTIMAL ROBUST GAIN-SCHEDULED PI CONTROLLERS
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Abstract: A methodology is proposed for the analysis and design of a robust
gain-scheduled PI controller for nonlinear chemical processes. The stability and
performance tests can be formulated as a finite set of linear matrix inequalities
(LMI) and hence, the resulting problem is numerically tractable. Input
saturation and model error are explicitly incorporated into the analysis. A
simulation study of a nonlinear CSTR (continuous stirred tank reactor) process
indicates that this approach can provide useful sub-optimal robust controllers.
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1. INTRODUCTION

This paper derives LMI-based tests, to test the
closed-loop stability and performance of gain-
scheduled Proportional-Integral (PI) controllers,
when applied to nonlinear processes.

The design of gain-scheduled controllers for
Linear Parameter Varying (LPV) systems has
been reported in a number of publications (e.g.
Shamma and Athans, 1992) and software is
available, e.g. Matlab, to design these controllers
using LMI. Two main problems in the application
of these techniques to chemical engineering
processes are: i- models of chemical systems are
often not available in LPV form ready for the
LMI’s tests, ii- The LMI-based methodology
results in controller structures that are
significantly more complex than the PI or PID
control forms, which are widely accepted by the
chemical industry.  

Following these, Knapp and Budman (2001) have
proposed to model nonlinear processes with a
special class of state-affine nonlinear discrete

model. These state-affine models are in LPV form
where the manipulated variable fulfills the role of
the time-varying parameter. They showed that by
using these models in combination with a discrete
PI controller, the analysis of the closed loop
system can be reduced to the solution of a set of
LMI. These models are nonlinear with respect to
the manipulated variables and then, this input
nonlinearity is treated as model uncertainty with
respect to a linear nominal model. Then, the
robust stability and performance of the closed
loop system can be analyzed with respect to this
model uncertainty.  

Using these state-affine models in combination
with the proposed gain-scheduled PI controller,
the closed-loop system can be represented by a
class of discrete-time systems state-space
equations with a state vector η.

For time-varying real uncertainty, a quadratic
stability test seeks a fixed quadratic Lyapunov
function )()()( tPttV T ηη= that proves stability
for all admissible uncertainties. It is shown that
finding an adequate P, amounts to solving a
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convex problem involving a system of LMI. This
system of LMI can be extended to test robust
performance as well.

In the current paper we have expanded the work
of Knapp (2001) by considering a special class of
scheduled PI controllers, defined in section 2,
where the tuning coefficients of the controller are
linear functions of the manipulated variable.
These linear functions are defined in terms of 4
parameters. Then, this work also addresses the
optimization of these parameters. The
parameterization of the controller in terms of a
small number of parameters greatly facilitates the
optimization step.

The paper is organized as follows. Section 2
presents the state-affine model realization and the
gain-scheduled PI controller structure. Section 3
derives LMI-based stability condition. Section 4
develops the performance condition and addresses
the performance optimization problem. Section 5
integrates input saturation and modeling error into
the analysis. Section 6 illustrates the validity of
the design approach by a case study example.
Section 7 summarizes the conclusions and future
work.

2. STATE-AFFINE MODEL AND GAIN-
SCHEDULED PI CONTROLLER

Based on Knapp and Budman’s (2000, 2001)
work, a state-affine model for a nonlinear process
is obtained as follows
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where HGF ,, are polynomial matrices.
Disturbances of infinite frequencies can not be
effectively rejected unless an infinite closed-loop
bandwidth is used, because of robust stability
limitations. Therefore, the actual disturbance )(tv
is filtered through a low-pass filter as follows:

)()1()()1( tvBWtBWdtd −+=+       (2)

Where 10 ≤≤ BW , which is a bandwidth related
weight. 

A gain-scheduled PI controller of the form given
by (3) is used. When 0== dc WW , the control

law û reduces to a conventional discrete PI
controller with proportional gain cK and reset
time Iτ . Thus the coefficients cC and cD of the PI
controller are augmented in equation (3) by a
linear dependency with respect to the manipulated
variable u to allow for scheduling as a function of
u.  )(ˆ tu stands for the control action calculated
without saturation whereas )(tu is computed with
saturation limits.
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For a process represented by the state-affine
model (1), at the nominal operating point, it is
valid to assume that the process can be accurately
modeled by the linear part of the state-affine
model given by (4). It is also assumed that most of
the model uncertainty is due to the time-varying
nonlinearity of the state-affine model around this
operating point. It is therefore possible to describe
the model uncertainty iδ  in the form of (5).
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(5) represents the key advantage of the
methodology used here. In general it is very
difficult to quantify the uncertainty, iδ , from
mechanistic first-principle models (Doyle, 1990).
In our case, since iδ  is equal to the powers of the
input, it can be easily quantified. Each input in a
process is known to lie between a lower and an
upper limit known during the design stage due to,
for example, actuator constraints or economic
considerations. According to (5):

[ ] [ ]iiiuutu δδδ ∈→∈)(                    (6)

}},{:),,,{(: 21 iiinS δδωωωω ∈= L

Rewriting (1) using (5) gives:

)()()(

)(}{)(}{)1(

0

1
11

1
0

tdtxHty

tuGGtxFFtx
n

i
ii

n

i
ii

+=

+++=+ ∑∑
=

+
=

δδ
 (7)



3

The closed-loop system of (7),  (2) and (3) is then
put into a form given by (8) suitable for analysis.
The state matrix )(δA depends on the
uncertainties defined by (6).
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3. QUADRATIC STABILITY

Consider the uncertain nonlinear system (8). This
system is quadratic stable if there exists a
positive-definite quadratic Lyapunov function 

)()()( tPttV T ηη= , 0>P (9)

such that 0)( >tV and 0)()1( <−+ tVtV for all
admissible uncertainties and for all initial
conditions 0η . 

Definition 3.1(quadratic stability): The system 

0)0(),()()1( ηηηδη ==+ tAt           (10)

is quadratically stable if there exists a symmetric
matrix P such that

0>P                                             (11)
0)()( <− PPAA T δδ                  (12)

hold for all admissible uncertainties.

When δ ranges in a polytope with vertices in S ,
it suffices to enforce (12) at the vertices, and so
(12) is equivalent to the following convex LMI
problem

SallforPPAA T ∈<− ωωω ,0)()(    (13)

A complete summary of LMI theory is given by
Boyd et al. (1994).

4. QUADRATIC ∞H  PERFORMANCE

Definition 4.1 (quadratic ∞H performance):
System (1) with zero initial state has quadratic

∞H performance γ if there exists a symmetric
matrix P such that

0>P                                      (14)
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is satisfied for all admissible uncertainties. 

This condition establishes that the closed-loop
system defined by (8) satisfies 

22 LL ve γ< for

all 2L -bounded input ν , that is (15) guarantees

0)()()()()()1( 2 <−+−+ tvtvtetetVtV TT γ
(16)

(15) is equivalent to the finite LMI as follows
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Equation (17) is solved as a generalized
eigenvalue problem (GEVP), to optimizeγ .



4

5. INPUT SATURATION AND MODELING
ERROR

Input saturation would occur when the controller
outputs )(ˆ tu  exceeded the limits. The gain-
scheduled PI controller can be reformulated using
a variable gain cK~ . Define:
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Then the gain of the controller is given by:

ψψ cc KKif =≤≤
~10

==> cc KKelse ~1ψ constant

These definitions ensure that u never exceeds the

saturation limit of 1 whereas û can exceed the
limit.

A lumped error tδ in the output is considered as
the modeling error so that the H matrix can be
rewritten as follows: 

ttWHHHH t δδ +=→= 00        (19)

tδ  can be easily calculated from the difference
between the model prediction and the actual data
from the process (Budman and Knapp, 2000 and
2001). Limits of ψ and tδ need to be taken into
account in the stability and performance analysis. 

6. DESIGN CASE STUDY: CSTR

The case study under investigation is a CSTR
from Doyle et al. (1989). A state-affine mode is
first obtained, see (Budman and Knapp, 2000 and
2001). Input saturation with [ ]14.0∈ψ  and
modeling error with [ ]11−=tδ  and

025.0=tW , will also be considered. In principle,
the lower limit of ψ should have been assumed to
be equal to zero for the case that the calculated
control action is infinite. When a lower limit of
zero was assumed, robustness could not be
achieved. Fortunately, the output in a real process
is always bounded due to sensor saturation or the
physical limitation of the process, e.g. conversion
cannot be larger than 1. Accordingly, following

equation (3), a finite upper limit for the control
action exists and consequently a lower bound of ψ
larger than zero can be assumed.     

Fig.1 shows the robust stability and robust
performance ( 1=γ ) regions for linear PI
controllers, i.e. with cW and dW equal to zero,
defined in terms of the proportional gain and reset
time. 
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Fig.1. Stability and performance regions of linear
PI controller parameters. Stability region is
the area above the solid line including the
solid line as limit. Performance region for a

1=γ  is the area above the dotted line
including the dotted line as limit.

For the purpose of comparison with the gain-
scheduled controller, a set of PI controller
parameters was selected in the neighborhood of
the robust performance boundary shown in Fig. 1.
as follows: 2=cK  and 1545.1=Iτ . This point
corresponds approximately to the Internal Model
Control (IMC) tuning parameters around the
nominal operating point based on the rules
available in the literature (Morari and Zafiriou,
1989). Using these linear PI controller parameters
in equation (3), gain-scheduled PI controller
weights dc WW ,  can be calculated according to
the stability and performance tests presented
above. Accordingly, regions of robust stability
and robust performance are computed in terms of
different combinations of the weights and the
results are shown in Fig.2 and 3. The circles
shown in Fig.2 and 3 represent the linear PI
controllers selected on the limit of robust stability
and performance, respectively, i.e.

0,0 == dc WW , also shown on the curves in
Fig.1.

In order to improve upon the performance of the
linear PI controller, a pair of gain scheduling
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weight values can be sought inside the robust
performance region, corresponding to a point
indicated by a star in Fig.3, that will provide a
better performance. Since the performance of the
controller is directly related to the parameter γ as
shown by equation (17) the objective is to
minimize this value. 
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Fig.2. Stability region of gain-scheduled PI
controller weights, that is, the area inside the
solid box including the solid circle as limit.
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Fig.3. Performance region of gain-scheduled PI
controller weights, that is, the area inside the
dotted box including the dotted circle as limit.

The problem of searching for a optimalγ  is not
convex in terms of the controller parameters. The
conditions result in a nonlinear matrix inequality
for the controller parameters. Branch and bound
methods have been proposed to solve LMI’s
systems of this type (Fukuda and Kojima, 2001;
Braatz, et al., 1997). For simplicity, it was decided
to limit the search to a sub-optimal design in the
neighborhood of the selected linear PI controller
using the FMIN optimization function in Matlab.
This was done by using cK and Iτ  computed by
the IMC rules and by optimizing the values of the
weights cW  and dW . The objective is to assess

the improvement in performance over that
obtained with this IMC-PI controller.
Subsequently, an additional optimization was
conducted where all the parameters, i.e. cK ,

Iτ and the weights, were allowed to change to
minimizeγ .

The optimization of the controller weights using
the GEVP procedure produces the best robust
gain-scheduled PI controller in the neighborhood
of the IMC design, shown as a star in Fig.3. For
this design optimal

*γ =0.5890 and this is an

improvement of 38.9% over optimal
oγ =0.9634 in

robust performance obtained with the IMC-PI
design. When all the parameters are optimized, an
additional improvement in performance is
obtained with optimalγ =0.3894. Table 1
summarizes the optimization results.

Table 1 Optimization design results
IMC-PI G-S PI 1 G-S PI 2

cK 2 2 1.3723

Iτ 1.1545 1.1545 2.949

cW 0 0.6547 -0.004

dW 0 -0.015 0.001

optimalγ 0.9634 0.5890 0.3894

simulationγ 0.3787 0.3495 0.202

To assess the conservatism of the analysis a
simulation study is conducted for the CSTR using
the different controllers synthesized in this work.
The performance is tested by investigating
through a large number of simulations how the
system rejects a bounded disturbance. simulationγ
is used to refer to  the performance limit obtained
from the simulation. 

simulationγ  calculated based 
22 LL ve γ<  is

always bounded by optimalγ  in each case,
indicating that the analysis tests produce a worst-
performance bound as expected and it is not
exceeded. The difference between optimalγ and

simulationγ  shows that the design procedure is
conservative to some degree.

Simulations were conducted for a large number of
different disturbances. A disturbance was sought
that would result in the worst performance for
each controller. Then for the worst case found
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from simulation, simulationγ  was calculated.
Simulation results for the IMC-PI controller and
for the sub-optimal gain-scheduled PI controller
are shown in Fig.4. These simulations correspond
to a spike type disturbance also shown in Fig.4.
Worse performance than the one shown in Fig.4
may be also possible but there is no systematic
way to find the specific disturbance function that
will lead to it.
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Fig.4. Closed-loop simulations of state-affine
model (lower two curves).
Linear PI controller (dotted line),

2=cK , 1545.1=Iτ , 3787.0=simulationγ .
Gain-scheduled PI controller (solid
line), 3723.1=cK , 949.2=Iτ , 004.0−=cW ,

001.0=dW , 202.0=simulationγ .

Conservatism associated with the design approach
comes from two main facts. First, a possible
source of this conservatism is that simulation can
only be done on a limited period of time, while
the calculation of the performance condition
requires an infinite simulation interval. Second,
conservatism is obviously inherent to the robust
control approach where several scenarios included
in the analysis will not occur during actual closed-
loop operation.

7. CONCLUSIONS

An approach is proposed to design gain-scheduled
PI controllers for nonlinear processes using
process data. It is based on empirical state-affine
models of the process. Gain-scheduled PI
controller with sub-optimal performance is
obtained using a GEVP based optimization
algorithm. Simulations show that the gain-
scheduled controller provides better performance
than a conventional PI controller found for
robustness with IMC rules. A performance index
γ , although conservative, has been found to be a

good indicator of the relative performance of the
different controllers. 
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